/************
*
*   This file is part of a tool for producing 3D content in the PRC format.
*   Copyright (C) 2008  Orest Shardt <shardtor (at) gmail dot com> and
*                       Michail Vidiassov <[email protected]>
*
*   This program is free software: you can redistribute it and/or modify
*   it under the terms of the GNU Lesser General Public License as published by
*   the Free Software Foundation, either version 3 of the License, or
*   (at your option) any later version.
*
*   This program is distributed in the hope that it will be useful,
*   but WITHOUT ANY WARRANTY; without even the implied warranty of
*   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
*   GNU Lesser General Public License for more details.
*
*   You should have received a copy of the GNU Lesser General Public License
*   along with this program.  If not, see <http://www.gnu.org/licenses/>.
*
*************/

#include "prc/oPRCFile.h"
#include <cstring>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <sstream>
#include <time.h>
#include <zlib.h>

namespace prc {

#define WriteUnsignedInteger( value ) out << (uint32_t)(value);
#define WriteInteger( value ) out << (int32_t)(value);
#define WriteDouble( value ) out << (double)(value);
#define WriteString( value ) out << (value);
#define WriteUncompressedUnsignedInteger( value ) writeUncompressedUnsignedInteger(out, (uint32_t)(value));
#define WriteUncompressedBlock( value, count ) out.write((char *)(value),(count));
#define SerializeFileStructureUncompressedUniqueId( value ) (value).serializeFileStructureUncompressedUniqueId(out);
#define SerializeCompressedUniqueId( value ) (value).serializeCompressedUniqueId(out);
#define SerializeContentPRCBase write(out);
#define SerializeRgbColor( value ) (value).serializeRgbColor(out);
#define SerializePicture( value ) (value).serializePicture(out);
#define SerializeTextureDefinition( value ) (value)->serializeTextureDefinition(out);
#define SerializeMarkup( value ) (value)->serializeMarkup(out);
#define SerializeAnnotationEntity( value ) (value)->serializeAnnotationEntity(out);
#define SerializeFontKeysSameFont( value ) (value).serializeFontKeysSameFont(out);
#define SerializeMaterial( value ) (value)->serializeMaterial(out);

#define SerializeUserData UserData(0,0).write(out);
#define SerializeEmptyContentPRCBase ContentPRCBase(PRC_TYPE_ROOT_PRCBase).serializeContentPRCBase(out);
#define SerializeCategory1LineStyle( value ) (value)->serializeCategory1LineStyle(out);
#define SerializeCoordinateSystem( value ) (value)->serializeCoordinateSystem(out);
#define SerializeRepresentationItem( value ) (value)->serializeRepresentationItem(out);
#define SerializePartDefinition( value ) (value)->serializePartDefinition(out);
#define SerializeProductOccurrence( value ) (value)->serializeProductOccurrence(out);
#define SerializeContextAndBodies( value ) (value)->serializeContextAndBodies(out);
#define SerializeGeometrySummary( value ) (value)->serializeGeometrySummary(out);
#define SerializeContextGraphics( value ) (value)->serializeContextGraphics(out);
#define SerializeStartHeader serializeStartHeader(out);
#define SerializeUncompressedFiles  \
{ \
 const size_t number_of_uncompressed_files = uncompressed_files.size(); \
 WriteUncompressedUnsignedInteger (number_of_uncompressed_files) \
 for(PRCUncompressedFileList::const_iterator it = uncompressed_files.begin(); it != uncompressed_files.end(); it++) \
 { \
   WriteUncompressedUnsignedInteger ((*it)->file_size) \
   WriteUncompressedBlock ((*it)->data, (*it)->file_size) \
 } \
}
#define SerializeModelFileData serializeModelFileData(modelFile_out); modelFile_out.compress();
#define SerializeUnit( value ) (value).serializeUnit(out);

using namespace std;

void PRCFileStructure::serializeFileStructureGlobals(PRCbitStream &out)
{
 // even though this is technically not part of this section,
 // it is handled here for convenience
 const uint32_t number_of_schema = 0;
 WriteUnsignedInteger (number_of_schema)

 WriteUnsignedInteger (PRC_TYPE_ASM_FileStructureGlobals)

 PRCSingleAttribute sa((int32_t)PRCVersion);
 PRCAttribute a("__PRC_RESERVED_ATTRIBUTE_PRCInternalVersion");
 a.addKey(sa);
 ContentPRCBase cb(PRC_TYPE_ROOT_PRCBase);
 cb.addAttribute(a);
 cb.serializeContentPRCBase(out);
 WriteUnsignedInteger (number_of_referenced_file_structures)
 // SerializeFileStructureInternalGlobalData
 WriteDouble (tessellation_chord_height_ratio)
 WriteDouble (tessellation_angle_degree)

 // SerializeMarkupSerializationHelper
 WriteString (default_font_family_name)

 const size_t number_of_fonts = font_keys_of_font.size();
 WriteUnsignedInteger (number_of_fonts)
 for (size_t i=0;i<number_of_fonts;i++)
 {
   SerializeFontKeysSameFont (font_keys_of_font[i])
 }

 const size_t number_of_colors = colors.size();
 WriteUnsignedInteger (number_of_colors)
 for (size_t i=0;i<number_of_colors;i++)
     SerializeRgbColor (colors[i])

 const size_t number_of_pictures = pictures.size();
 WriteUnsignedInteger (number_of_pictures)
 for (uint32_t i=0;i<number_of_pictures;i++)
    SerializePicture (pictures[i])

 const size_t number_of_texture_definitions = texture_definitions.size();
 WriteUnsignedInteger (number_of_texture_definitions)
 for (size_t i=0;i<number_of_texture_definitions;i++)
    SerializeTextureDefinition (texture_definitions[i])

 const size_t number_of_materials = materials.size();
 WriteUnsignedInteger (number_of_materials)
 for (size_t i=0;i<number_of_materials;i++)
    SerializeMaterial (materials[i])

 // number of line patterns hard coded for now
 const uint32_t number_of_line_patterns = 1;
 WriteUnsignedInteger (number_of_line_patterns)
 PRCLinePattern().serializeLinePattern(out);

 const size_t number_of_styles = styles.size();
 WriteUnsignedInteger (number_of_styles)
 for (size_t i=0;i<number_of_styles;i++)
    SerializeCategory1LineStyle (styles[i])

 const size_t number_of_fill_patterns = 0;
 WriteUnsignedInteger (number_of_fill_patterns)

 const size_t number_of_reference_coordinate_systems = reference_coordinate_systems.size();
 WriteUnsignedInteger (number_of_reference_coordinate_systems)
 for (size_t i=0;i<number_of_reference_coordinate_systems;i++)
    SerializeCoordinateSystem (reference_coordinate_systems[i])

 SerializeUserData
}

void PRCFileStructure::serializeFileStructureTree(PRCbitStream &out)
{
 WriteUnsignedInteger (PRC_TYPE_ASM_FileStructureTree)

 SerializeEmptyContentPRCBase

 const size_t number_of_part_definitions = part_definitions.size();
 WriteUnsignedInteger (number_of_part_definitions)
 for (size_t i=0;i<number_of_part_definitions;i++)
   SerializePartDefinition (part_definitions[i])

 const size_t number_of_product_occurrences = product_occurrences.size();
 WriteUnsignedInteger (number_of_product_occurrences)
 for (size_t i=0;i<number_of_product_occurrences;i++)
 {
   product_occurrences[i]->unit_information.unit_from_CAD_file = true;
   product_occurrences[i]->unit_information.unit = unit;
   SerializeProductOccurrence (product_occurrences[i])
 }

 // SerializeFileStructureInternalData
 WriteUnsignedInteger (PRC_TYPE_ASM_FileStructure)
 SerializeEmptyContentPRCBase
 const uint32_t next_available_index = makePRCID();
 WriteUnsignedInteger (next_available_index)
 const size_t index_product_occurence = number_of_product_occurrences;  // Asymptote (oPRCFile) specific - we write the root product last
 WriteUnsignedInteger (index_product_occurence)

 SerializeUserData
}

void PRCFileStructure::serializeFileStructureTessellation(PRCbitStream &out)
{
 WriteUnsignedInteger (PRC_TYPE_ASM_FileStructureTessellation)

 SerializeEmptyContentPRCBase
 const size_t number_of_tessellations = tessellations.size();
 WriteUnsignedInteger (number_of_tessellations)
 for (size_t i=0;i<number_of_tessellations;i++)
   tessellations[i]->serializeBaseTessData(out);

 SerializeUserData
}

void PRCFileStructure::serializeFileStructureGeometry(PRCbitStream &out)
{
 WriteUnsignedInteger (PRC_TYPE_ASM_FileStructureGeometry)

 SerializeEmptyContentPRCBase
 const size_t number_of_contexts = contexts.size();
 WriteUnsignedInteger (number_of_contexts)
 for (size_t i=0;i<number_of_contexts;i++)
   SerializeContextAndBodies (contexts[i])

 SerializeUserData
}

void PRCFileStructure::serializeFileStructureExtraGeometry(PRCbitStream &out)
{
 WriteUnsignedInteger (PRC_TYPE_ASM_FileStructureExtraGeometry)

 SerializeEmptyContentPRCBase
 const size_t number_of_contexts = contexts.size();
 WriteUnsignedInteger (number_of_contexts)
 for (size_t i=0;i<number_of_contexts;i++)
 {
    SerializeGeometrySummary (contexts[i])
    SerializeContextGraphics (contexts[i])
 }

 SerializeUserData
}

void oPRCFile::serializeModelFileData(PRCbitStream &out)
{
 // even though this is technically not part of this section,
 // it is handled here for convenience
 const uint32_t number_of_schema = 0;
 WriteUnsignedInteger (number_of_schema)
 WriteUnsignedInteger (PRC_TYPE_ASM_ModelFile)

 PRCSingleAttribute sa((int32_t)PRCVersion);
 PRCAttribute a("__PRC_RESERVED_ATTRIBUTE_PRCInternalVersion");
 a.addKey(sa);
 ContentPRCBase cb(PRC_TYPE_ROOT_PRCBase,"PRC file");
 cb.addAttribute(a);
 cb.serializeContentPRCBase(out);

 SerializeUnit (unit)

 out << (uint32_t)1; // 1 product occurrence
 //UUID
 SerializeCompressedUniqueId( fileStructures[0]->file_structure_uuid )
 // index+1
 out << (uint32_t)fileStructures[0]->product_occurrences.size();
 // active
 out << true;
 out << (uint32_t)0; // index in model file

 SerializeUserData
}

void makeFileUUID(PRCUniqueId& UUID)
{
 // make a UUID
 static uint32_t count = 0;
 ++count;
 // the minimum requirement on UUIDs is that all must be unique in the file
 UUID.id0 = 0x33595341; // some constant
 UUID.id1 = (uint32_t)time(NULL); // the time
 UUID.id2 = count;
 UUID.id3 = 0xa5a55a5a; // Something random, not seeded by the time, would be nice. But for now, a constant
 // maybe add something else to make it more unique
 // so multiple files can be combined
 // a hash of some data perhaps?
}

void makeAppUUID(PRCUniqueId& UUID)
{
 UUID.id0 = UUID.id1 = UUID.id2 = UUID.id3 = 0;
}

void PRCUncompressedFile::write(ostream &out) const
{
 if(data!=NULL)
 {
   WriteUncompressedUnsignedInteger (file_size)
   out.write((char*)data,file_size);
 }
}

uint32_t PRCUncompressedFile::getSize() const
{
 return sizeof(file_size)+file_size;
}


void PRCStartHeader::serializeStartHeader(ostream &out) const
{
 WriteUncompressedBlock ("PRC",3)
 WriteUncompressedUnsignedInteger (minimal_version_for_read)
 WriteUncompressedUnsignedInteger (authoring_version)
 SerializeFileStructureUncompressedUniqueId( file_structure_uuid );
 SerializeFileStructureUncompressedUniqueId( application_uuid );
}

uint32_t PRCStartHeader::getStartHeaderSize() const
{
 return 3+(2+2*4)*sizeof(uint32_t);
}


void PRCFileStructure::write(ostream &out)
{
 // SerializeFileStructureHeader
 SerializeStartHeader
 SerializeUncompressedFiles
 globals_out.write(out);
 tree_out.write(out);
 tessellations_out.write(out);
 geometry_out.write(out);
 extraGeometry_out.write(out);
}

#define SerializeFileStructureGlobals serializeFileStructureGlobals(globals_out); globals_out.compress(); sizes[1]=globals_out.getSize();
#define SerializeFileStructureTree serializeFileStructureTree(tree_out); tree_out.compress(); sizes[2]=tree_out.getSize();
#define SerializeFileStructureTessellation serializeFileStructureTessellation(tessellations_out); tessellations_out.compress(); sizes[3]=tessellations_out.getSize();
#define SerializeFileStructureGeometry serializeFileStructureGeometry(geometry_out); geometry_out.compress(); sizes[4]=geometry_out.getSize();
#define SerializeFileStructureExtraGeometry serializeFileStructureExtraGeometry(extraGeometry_out); extraGeometry_out.compress(); sizes[5]=extraGeometry_out.getSize();
#define FlushSerialization resetGraphicsAndName();
void PRCFileStructure::prepare()
{
 uint32_t size = 0;
 size += getStartHeaderSize();
 size += sizeof(uint32_t);
 for(PRCUncompressedFileList::const_iterator it = uncompressed_files.begin(); it != uncompressed_files.end(); it++)
   size += (*it)->getSize();
 sizes[0]=size;

 SerializeFileStructureGlobals
 FlushSerialization

 SerializeFileStructureTree
 FlushSerialization

 SerializeFileStructureTessellation
 FlushSerialization

 SerializeFileStructureGeometry
 FlushSerialization

 SerializeFileStructureExtraGeometry
 FlushSerialization
}

uint32_t PRCFileStructure::getSize()
{
 uint32_t size = 0;
 for(size_t i=0; i<6; i++)
   size += sizes[i];
 return size;
}


void PRCFileStructureInformation::write(ostream &out)
{
 SerializeFileStructureUncompressedUniqueId( UUID );

 WriteUncompressedUnsignedInteger (reserved)
 WriteUncompressedUnsignedInteger (number_of_offsets)
 for(uint32_t i = 0; i < number_of_offsets; ++i)
 {
   WriteUncompressedUnsignedInteger (offsets[i])
 }
}

uint32_t PRCFileStructureInformation::getSize()
{
 return (4+2+number_of_offsets)*sizeof(uint32_t);
}

void PRCHeader::write(ostream &out)
{
 SerializeStartHeader
 WriteUncompressedUnsignedInteger (number_of_file_structures)
 for(uint32_t i = 0; i < number_of_file_structures; ++i)
 {
   fileStructureInformation[i].write(out);
 }
 WriteUncompressedUnsignedInteger (model_file_offset)
 WriteUncompressedUnsignedInteger (file_size)
 SerializeUncompressedFiles
}

uint32_t PRCHeader::getSize()
{
 uint32_t size = getStartHeaderSize() + sizeof(uint32_t);
 for(uint32_t i = 0; i < number_of_file_structures; ++i)
   size += fileStructureInformation[i].getSize();
 size += 3*sizeof(uint32_t);
 for(PRCUncompressedFileList::const_iterator it = uncompressed_files.begin(); it != uncompressed_files.end(); it++)
   size += (*it)->getSize();
 return size;
}

void oPRCFile::doGroup(PRCgroup& group)
{
   const std::string& name = group.name;

   PRCProductOccurrence*& product_occurrence        = group.product_occurrence;
   PRCProductOccurrence*& parent_product_occurrence = group.parent_product_occurrence;
   PRCPartDefinition*& part_definition              = group.part_definition;
   PRCPartDefinition*& parent_part_definition       = group.parent_part_definition;

   if(group.options.tess)
   {
     if(!group.lines.empty())
     {
       for(PRCtesslineMap::const_iterator wit=group.lines.begin(); wit!=group.lines.end(); wit++)
       {
         bool same_color = true;
         const PRCtesslineList& lines = wit->second;
         const PRCRgbColor &color = lines.front().color;
         for(PRCtesslineList::const_iterator lit=lines.begin(); lit!=lines.end(); lit++)
           if(color!=lit->color)
           {
             same_color = false;
             break;
           }
         map<PRCVector3d,uint32_t> points;
         PRC3DWireTess *tess = new PRC3DWireTess();
         if(!same_color)
         {
           tess->is_segment_color = true;
           tess->is_rgba = false;
         }
         for(PRCtesslineList::const_iterator lit=lines.begin(); lit!=lines.end(); lit++)
         {
           tess->wire_indexes.push_back(static_cast<uint32_t>(lit->point.size()));
           for(uint32_t i=0; i<lit->point.size(); i++)
           {
             map<PRCVector3d,uint32_t>::iterator pPoint = points.find(lit->point[i]);
             if(pPoint!=points.end())
               tess->wire_indexes.push_back(pPoint->second);
             else
             {
               const uint32_t point_index = static_cast<uint32_t>(tess->coordinates.size());
               points.insert(make_pair(lit->point[i],point_index));
               tess->wire_indexes.push_back(point_index);
               tess->coordinates.push_back(lit->point[i].x);
               tess->coordinates.push_back(lit->point[i].y);
               tess->coordinates.push_back(lit->point[i].z);
             }
             if(!same_color && i>0)
             {
               tess->rgba_vertices.push_back(byte(lit->color.red));
               tess->rgba_vertices.push_back(byte(lit->color.green));
               tess->rgba_vertices.push_back(byte(lit->color.blue));
             }
           }
         }
         const uint32_t tess_index = add3DWireTess(tess);
         PRCPolyWire *polyWire = new PRCPolyWire();
         polyWire->index_tessellation = tess_index;
         if(same_color)
           polyWire->index_of_line_style = addColourWidth(RGBAColour(color.red,color.green,color.blue),wit->first);
         else
           polyWire->index_of_line_style = addColourWidth(RGBAColour(1,1,1),wit->first);
         part_definition->addPolyWire(polyWire);
       }
     }
//    make rectangles pairs of triangles in a tesselation
     if(!group.rectangles.empty())
     {
       bool same_color = true;
       const uint32_t &style = group.rectangles.front().style;
       for(PRCtessrectangleList::const_iterator rit=group.rectangles.begin(); rit!=group.rectangles.end(); rit++)
         if(style!=rit->style)
         {
           same_color = false;
           break;
         }
       map<PRCVector3d,uint32_t> points;
       PRC3DTess *tess = new PRC3DTess();
       tess->crease_angle = group.options.crease_angle;
       PRCTessFace *tessFace = new PRCTessFace();
       tessFace->used_entities_flag=PRC_FACETESSDATA_Triangle;
       uint32_t triangles = 0;
       for(PRCtessrectangleList::const_iterator rit=group.rectangles.begin(); rit!=group.rectangles.end(); rit++)
       {
         const bool degenerate = (rit->vertices[0]==rit->vertices[1]);
         uint32_t vertex_indices[4];
         for(size_t i = (degenerate?1:0); i < 4; ++i)
         {
           map<PRCVector3d,uint32_t>::const_iterator pPoint = points.find(rit->vertices[i]);
           if(pPoint!=points.end())
             vertex_indices[i] =  pPoint->second;
           else
           {
             points.insert(make_pair(rit->vertices[i],(vertex_indices[i] = static_cast<uint32_t>(tess->coordinates.size()))));
             tess->coordinates.push_back(rit->vertices[i].x);
             tess->coordinates.push_back(rit->vertices[i].y);
             tess->coordinates.push_back(rit->vertices[i].z);
           }
         }
         if(degenerate)
         {
           tess->triangulated_index.push_back(vertex_indices[1]);
           tess->triangulated_index.push_back(vertex_indices[2]);
           tess->triangulated_index.push_back(vertex_indices[3]);
           triangles++;
           if(!same_color)
             tessFace->line_attributes.push_back(rit->style);
         }
         else
         {
           tess->triangulated_index.push_back(vertex_indices[0]);
           tess->triangulated_index.push_back(vertex_indices[2]);
           tess->triangulated_index.push_back(vertex_indices[3]);
           triangles++;
           if(!same_color)
             tessFace->line_attributes.push_back(rit->style);
           tess->triangulated_index.push_back(vertex_indices[3]);
           tess->triangulated_index.push_back(vertex_indices[1]);
           tess->triangulated_index.push_back(vertex_indices[0]);
           triangles++;
           if(!same_color)
             tessFace->line_attributes.push_back(rit->style);
         }
       }
       tessFace->sizes_triangulated.push_back(triangles);
       tess->addTessFace(tessFace);
       const uint32_t tess_index = add3DTess(tess);
       PRCPolyBrepModel *polyBrepModel = new PRCPolyBrepModel();
       polyBrepModel->index_tessellation = tess_index;
       polyBrepModel->is_closed = group.options.closed;
       if(same_color)
         polyBrepModel->index_of_line_style = style;
       part_definition->addPolyBrepModel(polyBrepModel);
     }
   }

   if(!group.quads.empty())
   {
     map<PRCVector3d,uint32_t> points;
     PRC3DTess *tess = new PRC3DTess();
     tess->crease_angle = group.options.crease_angle;
     PRCTessFace *tessFace = new PRCTessFace();
     tessFace->used_entities_flag=PRC_FACETESSDATA_Triangle;
     uint32_t triangles = 0;

     tessFace->is_rgba = false;
     for(PRCtessquadList::const_iterator qit=group.quads.begin(); qit!=group.quads.end(); qit++)
     {
       const RGBAColour* C = qit->colours;
       if(C[0].A != 1.0 || C[1].A != 1.0 || C[2].A != 1.0 || C[3].A != 1.0)
       {
         tessFace->is_rgba = true;
         break;
       }
     }
     bool same_colour = true;
     const RGBAColour& colour = group.quads.front().colours[0];
     for(PRCtessquadList::const_iterator qit=group.quads.begin(); qit!=group.quads.end(); qit++)
     {
       const RGBAColour* C = qit->colours;
       if(colour!=C[0] || colour!=C[1] || colour!=C[2] || colour!=C[3])
       {
         same_colour = false;
         break;
       }
     }

     for(PRCtessquadList::const_iterator qit=group.quads.begin(); qit!=group.quads.end(); qit++)
     {
       const RGBAColour* C = qit->colours;
       const bool degenerate = (qit->vertices[0]==qit->vertices[1]);
       uint32_t vertex_indices[4];
       for(size_t i = (degenerate?1:0); i < 4; ++i)
       {
         map<PRCVector3d,uint32_t>::const_iterator pPoint = points.find(qit->vertices[i]);
         if(pPoint!=points.end())
           vertex_indices[i] =  pPoint->second;
         else
         {
           points.insert(make_pair(qit->vertices[i],(vertex_indices[i] = static_cast<uint32_t>(tess->coordinates.size()))));
           tess->coordinates.push_back(qit->vertices[i].x);
           tess->coordinates.push_back(qit->vertices[i].y);
           tess->coordinates.push_back(qit->vertices[i].z);
         }
       }
       if(degenerate)
       {
         tess->triangulated_index.push_back(vertex_indices[1]);
         tess->triangulated_index.push_back(vertex_indices[2]);
         tess->triangulated_index.push_back(vertex_indices[3]);
         triangles++;
         if(!same_colour)
         {
           tessFace->rgba_vertices.push_back(byte(C[1].R));
           tessFace->rgba_vertices.push_back(byte(C[1].G));
           tessFace->rgba_vertices.push_back(byte(C[1].B));
           if(tessFace->is_rgba)
             tessFace->rgba_vertices.push_back(byte(C[1].A));

           tessFace->rgba_vertices.push_back(byte(C[2].R));
           tessFace->rgba_vertices.push_back(byte(C[2].G));
           tessFace->rgba_vertices.push_back(byte(C[2].B));
           if(tessFace->is_rgba)
             tessFace->rgba_vertices.push_back(byte(C[2].A));

           tessFace->rgba_vertices.push_back(byte(C[3].R));
           tessFace->rgba_vertices.push_back(byte(C[3].G));
           tessFace->rgba_vertices.push_back(byte(C[3].B));
           if(tessFace->is_rgba)
             tessFace->rgba_vertices.push_back(byte(C[3].A));
         }
       }
       else
       {
         tess->triangulated_index.push_back(vertex_indices[0]);
         tess->triangulated_index.push_back(vertex_indices[2]);
         tess->triangulated_index.push_back(vertex_indices[3]);
         triangles++;
         if(!same_colour)
         {
           tessFace->rgba_vertices.push_back(byte(C[0].R));
           tessFace->rgba_vertices.push_back(byte(C[0].G));
           tessFace->rgba_vertices.push_back(byte(C[0].B));
           if(tessFace->is_rgba)
             tessFace->rgba_vertices.push_back(byte(C[0].A));

           tessFace->rgba_vertices.push_back(byte(C[2].R));
           tessFace->rgba_vertices.push_back(byte(C[2].G));
           tessFace->rgba_vertices.push_back(byte(C[2].B));
           if(tessFace->is_rgba)
             tessFace->rgba_vertices.push_back(byte(C[2].A));

           tessFace->rgba_vertices.push_back(byte(C[3].R));
           tessFace->rgba_vertices.push_back(byte(C[3].G));
           tessFace->rgba_vertices.push_back(byte(C[3].B));
           if(tessFace->is_rgba)
             tessFace->rgba_vertices.push_back(byte(C[3].A));
         }
         tess->triangulated_index.push_back(vertex_indices[3]);
         tess->triangulated_index.push_back(vertex_indices[1]);
         tess->triangulated_index.push_back(vertex_indices[0]);
         triangles++;
         if(!same_colour)
         {
           tessFace->rgba_vertices.push_back(byte(C[3].R));
           tessFace->rgba_vertices.push_back(byte(C[3].G));
           tessFace->rgba_vertices.push_back(byte(C[3].B));
           if(tessFace->is_rgba)
             tessFace->rgba_vertices.push_back(byte(C[3].A));

           tessFace->rgba_vertices.push_back(byte(C[1].R));
           tessFace->rgba_vertices.push_back(byte(C[1].G));
           tessFace->rgba_vertices.push_back(byte(C[1].B));
           if(tessFace->is_rgba)
             tessFace->rgba_vertices.push_back(byte(C[1].A));

           tessFace->rgba_vertices.push_back(byte(C[0].R));
           tessFace->rgba_vertices.push_back(byte(C[0].G));
           tessFace->rgba_vertices.push_back(byte(C[0].B));
           if(tessFace->is_rgba)
             tessFace->rgba_vertices.push_back(byte(C[0].A));
         }
       }
     }
     tessFace->sizes_triangulated.push_back(triangles);
     tess->addTessFace(tessFace);
     const uint32_t tess_index = add3DTess(tess);
     PRCPolyBrepModel *polyBrepModel = new PRCPolyBrepModel();
     polyBrepModel->index_tessellation = tess_index;
     polyBrepModel->is_closed = group.options.closed;
     if(same_colour)
       polyBrepModel->index_of_line_style = addColour(colour);
     part_definition->addPolyBrepModel(polyBrepModel);
   }

   if(!group.points.empty())
   {
     for(PRCpointsetMap::const_iterator pit=group.points.begin(); pit!=group.points.end(); pit++)
     {
       PRCPointSet *pointset = new PRCPointSet();
       pointset->index_of_line_style = pit->first;
       pointset->point = pit->second;
       part_definition->addPointSet(pointset);
     }
   }

   if(!group.pointsets.empty())
   {
     for(std::vector<PRCPointSet*>::iterator pit=group.pointsets.begin(); pit!=group.pointsets.end(); pit++)
     {
       part_definition->addPointSet(*pit);
     }
   }

   if(!group.polymodels.empty())
   {
     for(std::vector<PRCPolyBrepModel*>::iterator pit=group.polymodels.begin(); pit!=group.polymodels.end(); pit++)
     {
       (*pit)->is_closed = group.options.closed;
       part_definition->addPolyBrepModel(*pit);
     }
   }

   if(!group.polywires.empty())
   {
     for(std::vector<PRCPolyWire*>::iterator pit=group.polywires.begin(); pit!=group.polywires.end(); pit++)
     {
       part_definition->addPolyWire(*pit);
     }
   }

   if(!group.wires.empty())
   {
     PRCTopoContext *wireContext = NULL;
     const uint32_t context_index = getTopoContext(wireContext);
     for(PRCwireList::iterator wit=group.wires.begin(); wit!=group.wires.end(); wit++)
     {
       PRCWireEdge *wireEdge = new PRCWireEdge;
       wireEdge->curve_3d = wit->curve;
       PRCSingleWireBody *wireBody = new PRCSingleWireBody;
       wireBody->setWireEdge(wireEdge);
       const uint32_t wire_body_index = wireContext->addSingleWireBody(wireBody);
       PRCWire *wire = new PRCWire();
       wire->index_of_line_style = wit->style;
       wire->context_id = context_index;
       wire->body_id = wire_body_index;
       if(wit->transform)
           wire->index_local_coordinate_system = addTransform(wit->transform);
       part_definition->addWire(wire);
     }
   }

   PRCfaceList &faces = group.faces;
   if(!faces.empty())
   {
     bool same_color = true;
     const uint32_t style = faces.front().style;
     for(PRCfaceList::const_iterator fit=faces.begin(); fit!=faces.end(); fit++)
       if(style!=fit->style)
       {
         same_color = false;
         break;
       }
     PRCTopoContext *context = NULL;
     const uint32_t context_index = getTopoContext(context);
     context->granularity = group.options.granularity;
  // Acrobat 9 also does the following:
  // context->tolerance = group.options.granularity;
  // context->have_smallest_face_thickness = true;
  // context->smallest_thickness = group.options.granularity;
     PRCShell *shell = new PRCShell;

     for(PRCfaceList::iterator fit=faces.begin(); fit!=faces.end(); fit++)
     {
       if(fit->transform || group.options.do_break ||
          (fit->transparent && !group.options.no_break))
       {
         PRCShell *shell = new PRCShell;
         shell->addFace(fit->face);
         PRCConnex *connex = new PRCConnex;
         connex->addShell(shell);
         PRCBrepData *body = new PRCBrepData;
         body->addConnex(connex);
         const uint32_t body_index = context->addBrepData(body);

         PRCBrepModel *brepmodel = new PRCBrepModel();
         brepmodel->index_of_line_style = fit->style;
         brepmodel->context_id = context_index;
         brepmodel->body_id = body_index;
         brepmodel->is_closed = group.options.closed;

         brepmodel->index_local_coordinate_system = addTransform(fit->transform);

         part_definition->addBrepModel(brepmodel);
       }
       else
       {
         if(!same_color)
           fit->face->index_of_line_style = fit->style;
         shell->addFace(fit->face);
       }
     }
     if(shell->face.empty())
     {
       delete shell;
     }
     else
     {
       PRCConnex *connex = new PRCConnex;
       connex->addShell(shell);
       PRCBrepData *body = new PRCBrepData;
       body->addConnex(connex);
       const uint32_t body_index = context->addBrepData(body);
       PRCBrepModel *brepmodel = new PRCBrepModel();
       if(same_color)
         brepmodel->index_of_line_style = style;
       brepmodel->context_id = context_index;
       brepmodel->body_id = body_index;
       brepmodel->is_closed = group.options.closed;
       part_definition->addBrepModel(brepmodel);
     }
   }

   PRCcompfaceList &compfaces = group.compfaces;
   if(!compfaces.empty())
   {
     bool same_color = true;
     const uint32_t style = compfaces.front().style;
     for(PRCcompfaceList::const_iterator fit=compfaces.begin(); fit!=compfaces.end(); fit++)
       if(style!=fit->style)
       {
         same_color = false;
         break;
       }
     PRCTopoContext *context = NULL;
     const uint32_t context_index = getTopoContext(context);
     PRCCompressedBrepData *body = new PRCCompressedBrepData;

     body->serial_tolerance=group.options.compression;
     body->brep_data_compressed_tolerance=0.1*group.options.compression;

     for(PRCcompfaceList::const_iterator fit=compfaces.begin(); fit!=compfaces.end(); fit++)
     {
       if(group.options.do_break ||
          (fit->transparent && !group.options.no_break))
       {
         PRCCompressedBrepData *body = new PRCCompressedBrepData;
         body->face.push_back(fit->face);

         body->serial_tolerance=group.options.compression;
         body->brep_data_compressed_tolerance=2.8346456*
           group.options.compression;
         const uint32_t body_index = context->addCompressedBrepData(body);

         PRCBrepModel *brepmodel = new PRCBrepModel();
         brepmodel->index_of_line_style = fit->style;
         brepmodel->context_id = context_index;
         brepmodel->body_id = body_index;
         brepmodel->is_closed = group.options.closed;

         part_definition->addBrepModel(brepmodel);
       }
       else
       {
         if(!same_color)
           fit->face->index_of_line_style = fit->style;
         body->face.push_back(fit->face);
       }
     }
     if(body->face.empty())
     {
       delete body;
     }
     else
     {
       const uint32_t body_index = context->addCompressedBrepData(body);
       PRCBrepModel *brepmodel = new PRCBrepModel();
       if(same_color)
         brepmodel->index_of_line_style = style;
       brepmodel->context_id = context_index;
       brepmodel->body_id = body_index;
       brepmodel->is_closed = group.options.closed;
       part_definition->addBrepModel(brepmodel);
     }
   }

   // Simplify and reduce to as simple entities as possible
   // products with named representation items can not be reduced to sets, since
   // outside references are already set
   bool nonamedparts = true;
   for(PRCRepresentationItemList::const_iterator it=part_definition->representation_item.begin(); it!=part_definition->representation_item.end(); it++)
   {
     if (!(*it)->name.empty())
     {
       nonamedparts = false;
       break;
   }
   }
   lastgroupname.clear();
   lastgroupnames.clear();
   // First option - reduce to one element in parent
   if (parent_part_definition && product_occurrence->index_son_occurrence.empty() &&
       part_definition->representation_item.size() == 1 &&
       ( name.empty() || part_definition->representation_item.front()->name.empty() ) &&
       ( !group.transform  || part_definition->representation_item.front()->index_local_coordinate_system==m1) )
   {
     if(part_definition->representation_item.front()->name.empty() )
       part_definition->representation_item.front()->name = name;
     if(part_definition->representation_item.front()->index_local_coordinate_system==m1)
       part_definition->representation_item.front()->index_local_coordinate_system = addTransform(group.transform);
     lastgroupname = calculate_unique_name(part_definition->representation_item.front(), parent_product_occurrence);
     parent_part_definition->addRepresentationItem(part_definition->representation_item.front());
     part_definition->representation_item.clear();
     delete product_occurrence; product_occurrence = NULL;
     delete part_definition; part_definition = NULL;
   }
   // Second option - reduce to a set
   else if (parent_part_definition && product_occurrence->index_son_occurrence.empty() &&
     !part_definition->representation_item.empty() &&
     !group.options.do_break && nonamedparts)
   {
     PRCSet *set = new PRCSet(name);
     set->index_local_coordinate_system = addTransform(group.transform);
     lastgroupname = calculate_unique_name(set, parent_product_occurrence);
     for(PRCRepresentationItemList::iterator it=part_definition->representation_item.begin(); it!=part_definition->representation_item.end(); it++)
     {
       lastgroupnames.push_back(calculate_unique_name(*it, parent_product_occurrence));
       set->addRepresentationItem(*it);
     }
     part_definition->representation_item.clear();
     parent_part_definition->addSet(set);
     delete product_occurrence; product_occurrence = NULL;
     delete part_definition; part_definition = NULL;
   }
   // Third option - create product
   else if ( !product_occurrence->index_son_occurrence.empty() || !part_definition->representation_item.empty())
   {
     // if everything is enclosed in one group - drop the root group
     if (parent_product_occurrence == NULL && group.transform == NULL &&
         part_definition->representation_item.empty() && product_occurrence->index_son_occurrence.size()==1) {
       delete part_definition; part_definition = NULL;
       delete product_occurrence; product_occurrence = NULL;
     }
     else
     {
       lastgroupname = calculate_unique_name(product_occurrence, NULL);
       if (part_definition->representation_item.empty()) {
         delete part_definition; part_definition = NULL;
       }
     else
       {
         for(PRCRepresentationItemList::const_iterator it=part_definition->representation_item.begin(); it!=part_definition->representation_item.end(); it++)
           if ((*it)->name.empty())
             lastgroupnames.push_back(calculate_unique_name(*it, product_occurrence));
       product_occurrence->index_part = addPartDefinition(part_definition);
       }
     if (group.transform) {
       product_occurrence->location = group.transform;
       group.transform = NULL;
     }
     if (parent_product_occurrence) {
       parent_product_occurrence->index_son_occurrence.push_back(addProductOccurrence(product_occurrence));
     }
     else {
       addProductOccurrence(product_occurrence);
     }
   }
   }
   // Last case - absolutely nothing to do
   else
   {
     delete product_occurrence; product_occurrence = NULL;
     delete part_definition; part_definition = NULL;
   }

}

std::string oPRCFile::calculate_unique_name(const ContentPRCBase *prc_entity,const ContentPRCBase *prc_occurence)
{
 std::stringstream ss (std::stringstream::in | std::stringstream::out);
 uint8_t *serialization_buffer = NULL;
 PRCbitStream serialization(serialization_buffer,0u);
 const PRCFileStructure *pfile_structure = fileStructures[0];
 const PRCUniqueId& uuid = pfile_structure->file_structure_uuid;
// ConvertUniqueIdentifierToString (prc_entity)
// SerializeCompressedUniqueId (file_structure)
 serialization << uuid.id0 << uuid.id1 << uuid.id2 << uuid.id3;
// WriteUnsignedInteger (type)
 serialization << prc_entity->getType();
// WriteUnsignedInteger (unique_identifier)
 serialization << prc_entity->getPRCID();
 if (prc_occurence)
 {
// serialization_buffer = Flush serialization (serialization)
 {
   const uint32_t size_serialization = serialization.getSize();
   while(size_serialization == serialization.getSize())
     serialization << false;
 }
// ConvertUniqueIdentifierToString (prc_occurrence_unique_id)
// SerializeCompressedUniqueId (file_structure)
   serialization << uuid.id0 << uuid.id1 << uuid.id2 << uuid.id3;
// WriteUnsignedInteger (type)
   serialization << (uint32_t)PRC_TYPE_ASM_ProductOccurence;
// WriteUnsignedInteger (unique_identifier)
   serialization << prc_occurence->getPRCID();
 }
 ss << (prc_entity->name.empty()?"node":prc_entity->name) << '.';
 const uint32_t size_serialization = serialization.getSize();
 for(size_t j=0; j<size_serialization; j++)
   ss << hex << setfill('0') << setw(2) << (uint32_t)(serialization_buffer[j]);

 return ss.str();
}

bool oPRCFile::finish()
{
 if(groups.size()!=1) {
   fputs("begingroup without matching endgroup",stderr);
   exit(1);
 }
 doGroup(groups.top());

 // write each section's bit data
 fileStructures[0]->prepare();
 SerializeModelFileData

 // create the header

 // fill out enough info so that sizes can be computed correctly
 header.number_of_file_structures = number_of_file_structures;
 header.fileStructureInformation = new PRCFileStructureInformation[number_of_file_structures];
 for(uint32_t i = 0; i < number_of_file_structures; ++i)
 {
   header.fileStructureInformation[i].UUID = fileStructures[i]->file_structure_uuid;
   header.fileStructureInformation[i].reserved = 0;
   header.fileStructureInformation[i].number_of_offsets = 6;
   header.fileStructureInformation[i].offsets = new uint32_t[6];
 }

 header.minimal_version_for_read = PRCVersion;
 header.authoring_version = PRCVersion;
 makeFileUUID(header.file_structure_uuid);
 makeAppUUID(header.application_uuid);

 header.file_size = getSize();
 header.model_file_offset = header.file_size - modelFile_out.getSize();

 uint32_t currentOffset = header.getSize();

 for(uint32_t i = 0; i < number_of_file_structures; ++i)
 {
   for(size_t j=0; j<6; j++)
   {
     header.fileStructureInformation[i].offsets[j] = currentOffset;
     currentOffset += fileStructures[i]->sizes[j];
   }
 }

 // write the data
 header.write(output);

 for(uint32_t i = 0; i < number_of_file_structures; ++i)
 {
   fileStructures[i]->write(output);
 }

 modelFile_out.write(output);
 output.flush();

 for(uint32_t i = 0; i < number_of_file_structures; ++i)
   delete[] header.fileStructureInformation[i].offsets;
 delete[] header.fileStructureInformation;

 return true;
}

uint32_t oPRCFile::getSize()
{
 uint32_t size = header.getSize();

 for(uint32_t i = 0; i < number_of_file_structures; ++i)
 {
   size += fileStructures[i]->getSize();
 }

 size += modelFile_out.getSize();
 return size;
}

uint32_t PRCFileStructure::addPicture(EPRCPictureDataFormat format, uint32_t size, const uint8_t *p, uint32_t width, uint32_t height, std::string name)
{
 uint8_t *data = NULL;
 uint32_t components=0;
 PRCPicture picture(name);
 if(size==0 || p==NULL)
   { cerr << "image not set" << endl; return m1; }
 PRCUncompressedFile* uncompressed_file = new PRCUncompressedFile;
 if(format==KEPRCPicture_PNG || format==KEPRCPicture_JPG)
 {
   data = new uint8_t[size];
   memcpy(data, p, size);
   uncompressed_files.push_back(uncompressed_file);
   uncompressed_files.back()->file_size = size;
   uncompressed_files.back()->data = data;
   picture.format = format;
   picture.uncompressed_file_index = static_cast<uint32_t>(uncompressed_files.size()-1);
   picture.pixel_width = 0; // width and height are ignored for JPG and PNG pictures - but let us keep things clean
   picture.pixel_height = 0;
   pictures.push_back(picture);
   return static_cast<uint32_t>(pictures.size()-1);
 }

 switch(format)
 {
   case KEPRCPicture_BITMAP_RGB_BYTE:
     components = 3; break;
   case KEPRCPicture_BITMAP_RGBA_BYTE:
     components = 4; break;
   case KEPRCPicture_BITMAP_GREY_BYTE:
     components = 1; break;
   case KEPRCPicture_BITMAP_GREYA_BYTE:
     components = 2; break;
   default:
     { cerr << "unknown picture format" << endl; return m1; }
 }
     if(width==0 || height==0)
       { cerr << "width or height parameter not set" << endl; return m1; }
     if (size < width*height*components)
       { cerr << "image too small" << endl; return m1; }

     {
       uint32_t compressedDataSize = 0;
       const int CHUNK= 1024; // is this reasonable?

       z_stream strm;
       strm.zalloc = Z_NULL;
       strm.zfree = Z_NULL;
       strm.opaque = Z_NULL;
       if(deflateInit(&strm,Z_DEFAULT_COMPRESSION) != Z_OK)
         { cerr << "Compression initialization failed" << endl; return m1; }
       unsigned int sizeAvailable = deflateBound(&strm,size);
       uint8_t *compressedData = (uint8_t*) malloc(sizeAvailable);
       strm.avail_in = size;
       strm.next_in = (unsigned char*)p;
       strm.next_out = (unsigned char*)compressedData;
       strm.avail_out = sizeAvailable;

       int code;
       unsigned int chunks = 0;
       while((code = deflate(&strm,Z_FINISH)) == Z_OK)
       {
         ++chunks;
         // strm.avail_out should be 0 if we got Z_OK
         compressedDataSize = sizeAvailable - strm.avail_out;
         compressedData = (uint8_t*) realloc(compressedData,CHUNK*chunks);
         strm.next_out = (Bytef*)(compressedData + compressedDataSize);
         strm.avail_out += CHUNK;
         sizeAvailable += CHUNK;
       }
       compressedDataSize = sizeAvailable-strm.avail_out;

       if(code != Z_STREAM_END)
       {
         deflateEnd(&strm);
         free(compressedData);
         { cerr << "Compression error" << endl; return m1; }
       }

       deflateEnd(&strm);
       size = compressedDataSize;
       data = new uint8_t[compressedDataSize];
       memcpy(data, compressedData, compressedDataSize);
       free(compressedData);
     }
     uncompressed_files.push_back(uncompressed_file);
     uncompressed_files.back()->file_size = size;
     uncompressed_files.back()->data = data;
     picture.format = format;
     picture.uncompressed_file_index = static_cast<uint32_t>(uncompressed_files.size()-1);
     picture.pixel_width = width;
     picture.pixel_height = height;
     pictures.push_back(picture);
     return static_cast<uint32_t>(pictures.size()-1);
}

uint32_t PRCFileStructure::addTextureDefinition(PRCTextureDefinition*& pTextureDefinition)
{
 texture_definitions.push_back(pTextureDefinition);
 pTextureDefinition = NULL;
 return static_cast<uint32_t>(texture_definitions.size()-1);
}

uint32_t PRCFileStructure::addRgbColor(const PRCRgbColor &color)
{
 colors.push_back(color);
 return 3*static_cast<uint32_t>(colors.size()-1);
}

uint32_t PRCFileStructure::addRgbColorUnique(const PRCRgbColor &color)
{
 for(uint32_t i = 0; i < colors.size(); ++i)
 {
   if(colors[i] == color)
     return 3*i;
 }
 colors.push_back(color);
 return 3*static_cast<uint32_t>(colors.size()-1);
}

uint32_t oPRCFile::addColor(const PRCRgbColor &color)
{
 PRCcolorMap::const_iterator pColor = colorMap.find(color);
 if(pColor!=colorMap.end())
   return pColor->second;
//  color_index = addRgbColorUnique(color);
 const uint32_t color_index = fileStructures[0]->addRgbColor(color);
 colorMap.insert(make_pair(color,color_index));
 return color_index;
}

uint32_t oPRCFile::addColour(const RGBAColour &colour)
{
 PRCcolourMap::const_iterator pColour = colourMap.find(colour);
 if(pColour!=colourMap.end())
   return pColour->second;
 const uint32_t color_index = addColor(PRCRgbColor(colour.R, colour.G, colour.B));
 PRCStyle *style = new PRCStyle();
 style->line_width = 1.0;
 style->is_vpicture = false;
 style->line_pattern_vpicture_index = 0;
 style->is_material = false;
 style->color_material_index = color_index;
 style->is_transparency_defined = (colour.A < 1.0);
 style->transparency = (uint8_t)(colour.A * 256);
 style->additional = 0;
 const uint32_t style_index = fileStructures[0]->addStyle(style);
 colourMap.insert(make_pair(colour,style_index));
 return style_index;
}

uint32_t oPRCFile::addColourWidth(const RGBAColour &colour, double width)
{
 RGBAColourWidth colourwidth(colour.R, colour.G, colour.B, colour.A, width);
 PRCcolourwidthMap::const_iterator pColour = colourwidthMap.find(colourwidth);
 if(pColour!=colourwidthMap.end())
   return pColour->second;
 const uint32_t color_index = addColor(PRCRgbColor(colour.R, colour.G, colour.B));
 PRCStyle *style = new PRCStyle();
 style->line_width = width;
 style->is_vpicture = false;
 style->line_pattern_vpicture_index = 0;
 style->is_material = false;
 style->color_material_index = color_index;
 style->is_transparency_defined = (colour.A < 1.0);
 style->transparency = (uint8_t)(colour.A * 256);
 style->additional = 0;
 const uint32_t style_index = fileStructures[0]->addStyle(style);
 colourwidthMap.insert(make_pair(colourwidth,style_index));
 return style_index;
}

uint32_t oPRCFile::addTransform(PRCGeneralTransformation3d*& transform)
{
 if(!transform)
   return m1;
 PRCtransformMap::const_iterator pTransform = transformMap.find(*transform);
 if(pTransform!=transformMap.end())
   return pTransform->second;
 PRCCoordinateSystem *coordinateSystem = new PRCCoordinateSystem();
 bool transform_replaced = false;
 if(                         transform->M(0,1)==0 && transform->M(0,2)==0 &&
     transform->M(1,0)==0 &&                         transform->M(1,2)==0 &&
     transform->M(2,0)==0 && transform->M(2,1)==0 &&
     transform->M(3,0)==0 && transform->M(3,1)==0 && transform->M(3,2)==0 && transform->M(3,3)==1 )
 {
   transform_replaced = true;
   PRCCartesianTransformation3d *carttransform = new PRCCartesianTransformation3d;
//  if(transform->M(0,3)==0 && transform->M(1,3)==0 && transform->M(1,3)==0 &&
//     transform->M(0,0)==1 && transform->M(1,1)==1 && transform->M(2,2)==1 )
//    carttransform->behaviour = PRC_TRANSFORMATION_Identity;
   if(transform->M(0,3)!=0 || transform->M(1,3)!=0 || transform->M(2,3)!=0)
   {
     carttransform->behaviour |= PRC_TRANSFORMATION_Translate;
     carttransform->origin.Set(transform->M(0,3),transform->M(1,3),transform->M(2,3));
   }
   if(transform->M(0,0)!=transform->M(1,1) || transform->M(0,0)!=transform->M(2,2))
   {
     carttransform->behaviour |= PRC_TRANSFORMATION_NonUniformScale;
     carttransform->scale.Set(transform->M(0,0),transform->M(1,1),transform->M(2,2));
   }
   else
     if(transform->M(0,0)!=1)
     {
       carttransform->behaviour |= PRC_TRANSFORMATION_Scale;
       carttransform->uniform_scale=transform->M(0,0);
     }
   coordinateSystem->axis_set = carttransform;
 }
 else
 coordinateSystem->axis_set = transform;
 const uint32_t coordinate_system_index = fileStructures[0]->addCoordinateSystem(coordinateSystem);
 transformMap.insert(make_pair(*transform,coordinate_system_index));
 if(transform_replaced)
   delete transform;
 transform = NULL;
 return coordinate_system_index;
}

uint32_t oPRCFile::addTransform(const double* t)
{
 if(!t)
   return m1;
 PRCGeneralTransformation3d* transform = new PRCGeneralTransformation3d(t);
 return addTransform(transform);
}

uint32_t oPRCFile::addTransform(const double origin[3], const double x_axis[3], const double y_axis[3], double scale)
{
 PRCCartesianTransformation3d* transform = new PRCCartesianTransformation3d(origin, x_axis, y_axis, scale);
 if(transform->behaviour==PRC_TRANSFORMATION_Identity)
   return m1;
 PRCCoordinateSystem *coordinateSystem = new PRCCoordinateSystem();
 coordinateSystem->axis_set = transform;
 const uint32_t coordinate_system_index = fileStructures[0]->addCoordinateSystem(coordinateSystem);
 return coordinate_system_index;
}

uint32_t oPRCFile::addMaterial(const PRCmaterial& m)
{
 uint32_t material_index = m1;
 const PRCmaterialgeneric materialgeneric(m);
 PRCmaterialgenericMap::const_iterator pMaterialgeneric = materialgenericMap.find(materialgeneric);
 if(pMaterialgeneric!=materialgenericMap.end())
   material_index = pMaterialgeneric->second;
 else
{
 PRCMaterialGeneric *materialGeneric = new PRCMaterialGeneric();
 const PRCRgbColor ambient(m.ambient.R, m.ambient.G, m.ambient.B);
 materialGeneric->ambient = addColor(ambient);
   const PRCRgbColor diffuse(m.diffuse.R, m.diffuse.G, m.diffuse.B);
 materialGeneric->diffuse = addColor(diffuse);
   const PRCRgbColor emissive(m.emissive.R, m.emissive.G, m.emissive.B);

 materialGeneric->emissive = addColor(emissive);
   const PRCRgbColor specular(m.specular.R, m.specular.G, m.specular.B);
 materialGeneric->specular = addColor(specular);

   materialGeneric->shininess = m.shininess;
   materialGeneric->ambient_alpha = m.ambient.A;
   materialGeneric->diffuse_alpha = m.diffuse.A;
   materialGeneric->emissive_alpha = m.emissive.A;
   materialGeneric->specular_alpha = m.specular.A;
   material_index = addMaterialGeneric(materialGeneric);
   materialgenericMap.insert(make_pair(materialgeneric,material_index));
 }
 uint32_t color_material_index = m1;
 if(m.picture_data!=NULL)
 {
   uint32_t picture_index = m1;
   PRCpicture picture(m);
   PRCpictureMap::const_iterator pPicture = pictureMap.find(picture);
   if(pPicture!=pictureMap.end())
     picture_index = pPicture->second;
   else
   {
     picture_index = addPicture(picture);
     uint8_t* data = new uint8_t[picture.size];
     memcpy(data,picture.data,picture.size);
     picture.data = data;
     pictureMap.insert(make_pair(picture,picture_index));
   }

   uint32_t texture_definition_index = m1;
   PRCtexturedefinition texturedefinition(picture_index, m);
   PRCtexturedefinitionMap::const_iterator pTexturedefinition = texturedefinitionMap.find(texturedefinition);
   if(pTexturedefinition!=texturedefinitionMap.end())
     texture_definition_index = pTexturedefinition->second;
   else
   {
     PRCTextureDefinition *TextureDefinition = new PRCTextureDefinition;
     if (m.picture_size==216688 && m.picture_format==KEPRCPicture_JPG)
       TextureDefinition->texture_mapping_attribute=PRC_TEXTURE_MAPPING_OPACITY;
     TextureDefinition->picture_index = picture_index;
     TextureDefinition->texture_function = m.picture_replace ? KEPRCTextureFunction_Replace : KEPRCTextureFunction_Modulate;
     TextureDefinition->texture_wrapping_mode_S = m.picture_repeat ? KEPRCTextureWrappingMode_Repeat : KEPRCTextureWrappingMode_ClampToEdge;
     TextureDefinition->texture_wrapping_mode_T = m.picture_repeat ? KEPRCTextureWrappingMode_Repeat : KEPRCTextureWrappingMode_ClampToEdge;
     TextureDefinition->texture_mapping_attribute_components = (m.picture_format==KEPRCPicture_BITMAP_RGB_BYTE || m.picture_format==KEPRCPicture_JPG) ? PRC_TEXTURE_MAPPING_COMPONENTS_RGB : PRC_TEXTURE_MAPPING_COMPONENTS_RGBA;
     texture_definition_index = addTextureDefinition(TextureDefinition);
     texturedefinitionMap.insert(make_pair(texturedefinition,texture_definition_index));
   }

   uint32_t texture_application_index = m1;
   const PRCtextureapplication textureapplication(material_index, texture_definition_index);
   PRCtextureapplicationMap::const_iterator pTextureapplication = textureapplicationMap.find(textureapplication);
   if(pTextureapplication!=textureapplicationMap.end())
     texture_application_index = pTextureapplication->second;
   else
   {
     PRCTextureApplication *TextureApplication = new PRCTextureApplication;
     TextureApplication->material_generic_index = material_index;
     TextureApplication->texture_definition_index = texture_definition_index;
     texture_application_index = addTextureApplication(TextureApplication);
     textureapplicationMap.insert(make_pair(textureapplication,texture_application_index));
   }

   color_material_index = texture_application_index;
 }
 else
   color_material_index = material_index;

 uint32_t style_index = m1;
 PRCstyle style(0,m.alpha,true,color_material_index);
 PRCstyleMap::const_iterator pStyle = styleMap.find(style);
 if(pStyle!=styleMap.end())
   style_index = pStyle->second;
 else
 {
   PRCStyle *Style = new PRCStyle();
   Style->line_width = 0.0;
   Style->is_vpicture = false;
   Style->line_pattern_vpicture_index = 0;
   Style->is_material = true;
   Style->is_transparency_defined = (m.alpha < 1.0);
   Style->transparency = (uint8_t)(m.alpha * 256);
   Style->additional = 0;
   Style->color_material_index = color_material_index;
   style_index = addStyle(Style);
   styleMap.insert(make_pair(style,style_index));
 }
//  materialMap.insert(make_pair(material,style_index));
  return style_index;
}

void oPRCFile::begingroup(const char *name, PRCoptions *options,
                         const double* t)
{
 const PRCgroup &parent_group = groups.top();
 groups.push(PRCgroup());
 PRCgroup &group = groups.top();
 group.name=name;
 if(options) group.options=*options;
 if(t&&!isid(t))
   group.transform = new PRCGeneralTransformation3d(t);
 group.product_occurrence = new PRCProductOccurrence(name);
 group.parent_product_occurrence = parent_group.product_occurrence;
 group.part_definition = new PRCPartDefinition;
 group.parent_part_definition = parent_group.part_definition;
}

void oPRCFile::endgroup()
{
 if(groups.size()<2) {
   fputs("begingroup without matching endgroup",stderr);
   exit(1);
 }
 doGroup(groups.top());
 groups.pop();

// std::cout << lastgroupname << std::endl;
// for(std::vector<std::string>::const_iterator it=lastgroupnames.begin(); it!=lastgroupnames.end(); it++)
//   std::cout << " " << *it << std::endl;

}

PRCgroup& oPRCFile::findGroup()
{
 return groups.top();
}

void oPRCFile::addPoints(uint32_t n, const double P[][3], const RGBAColour &c, double w)
{
 if(n==0 || P==NULL)
    return;
 PRCgroup &group = findGroup();
 PRCPointSet *pointset = new PRCPointSet();
 group.pointsets.push_back(pointset);
 pointset->index_of_line_style = addColourWidth(c,w);
 pointset->point.reserve(n);
 for(uint32_t i=0; i<n; i++)
   pointset->point.push_back(PRCVector3d(P[i][0],P[i][1],P[i][2]));
}

void oPRCFile::useMesh(uint32_t tess_index, uint32_t style_index, const double origin[3], const double x_axis[3], const double y_axis[3], double scale)
{
 PRCgroup &group = findGroup();
 PRCPolyBrepModel *polyBrepModel = new PRCPolyBrepModel();
 polyBrepModel->index_local_coordinate_system = addTransform(origin, x_axis, y_axis, scale);
 polyBrepModel->index_tessellation = tess_index;
 polyBrepModel->is_closed = group.options.closed;
 polyBrepModel->index_of_line_style = style_index;
 group.polymodels.push_back(polyBrepModel);
}

void oPRCFile::useMesh(uint32_t tess_index, uint32_t style_index, const double* t)
{
 PRCgroup &group = findGroup();
 PRCPolyBrepModel *polyBrepModel = new PRCPolyBrepModel();
 polyBrepModel->index_local_coordinate_system = addTransform(t);
 polyBrepModel->index_tessellation = tess_index;
 polyBrepModel->is_closed = group.options.closed;
 polyBrepModel->index_of_line_style = style_index;
 group.polymodels.push_back(polyBrepModel);
}

void oPRCFile::useLines(uint32_t tess_index, uint32_t style_index, const double origin[3], const double x_axis[3], const double y_axis[3], double scale)
{
 PRCgroup &group = findGroup();
 PRCPolyWire *polyWire = new PRCPolyWire();
 polyWire->index_local_coordinate_system = addTransform(origin, x_axis, y_axis, scale);
 polyWire->index_tessellation = tess_index;
 polyWire->index_of_line_style = style_index;
 group.polywires.push_back(polyWire);
}

void oPRCFile::useLines(uint32_t tess_index, uint32_t style_index, const double* t)
{
 PRCgroup &group = findGroup();
 PRCPolyWire *polyWire = new PRCPolyWire();
 polyWire->index_local_coordinate_system = addTransform(t);
 polyWire->index_tessellation = tess_index;
 polyWire->index_of_line_style = style_index;
 group.polywires.push_back(polyWire);
}

void oPRCFile::addQuads(uint32_t nP, const double P[][3], uint32_t nI, const uint32_t PI[][4], const PRCmaterial &m,
uint32_t nN, const double N[][3],   const uint32_t NI[][4],
uint32_t nT, const double T[][2],   const uint32_t TI[][4],
uint32_t nC, const RGBAColour C[],  const uint32_t CI[][4],
uint32_t nM, const PRCmaterial M[], const uint32_t MI[], double ca)
{
 if(nP==0 || P==NULL || nI==0 || PI==NULL)
    return;
 const uint32_t tess_index = createQuadMesh(nP, P, nI, PI, m, nN, N, NI, nT, T, TI, nC, C, CI, nM, M, MI, ca);
 useMesh(tess_index,m1);
}

uint32_t oPRCFile::createQuadMesh(uint32_t nP, const double P[][3], uint32_t nI, const uint32_t PI[][4], uint32_t style_index,
uint32_t nN, const double N[][3],   const uint32_t NI[][4],
uint32_t nT, const double T[][2],   const uint32_t TI[][4],
uint32_t nC, const RGBAColour C[],  const uint32_t CI[][4],
uint32_t nS, const uint32_t S[],    const uint32_t SI[], double ca)
{
 if(nP==0 || P==NULL || nI==0 || PI==NULL)
    return m1;

 const bool triangle_color = (nS != 0 && S != NULL && SI != NULL);
 const bool vertex_color   = (nC != 0 && C != NULL && CI != NULL);
 const bool has_normals    = (nN != 0 && N != NULL && NI != NULL);
 const bool textured       = (nT != 0 && T != NULL && TI != NULL);

 PRC3DTess *tess = new PRC3DTess();
 PRCTessFace *tessFace = new PRCTessFace();
 tessFace->used_entities_flag = textured ? PRC_FACETESSDATA_TriangleTextured : PRC_FACETESSDATA_Triangle;
 tessFace->number_of_texture_coordinate_indexes = textured ? 1 : 0;
 tess->coordinates.reserve(3*nP);
 for(uint32_t i=0; i<nP; i++)
 {
   tess->coordinates.push_back(P[i][0]);
   tess->coordinates.push_back(P[i][1]);
   tess->coordinates.push_back(P[i][2]);
 }
 if(has_normals)
 {
   tess->normal_coordinate.reserve(3*nN);
 for(uint32_t i=0; i<nN; i++)
 {
   tess->normal_coordinate.push_back(N[i][0]);
   tess->normal_coordinate.push_back(N[i][1]);
   tess->normal_coordinate.push_back(N[i][2]);
 }
 }
 else
   tess->crease_angle = ca;
 if(textured)
 {
   tess->texture_coordinate.reserve(2*nT);
 for(uint32_t i=0; i<nT; i++)
 {
   tess->texture_coordinate.push_back(T[i][0]);
   tess->texture_coordinate.push_back(T[i][1]);
 }
 }
 tess->triangulated_index.reserve(2*(3*nI+(has_normals?3:0)*nI+(textured?3:0)*nI));
 for(uint32_t i=0; i<nI; i++)
 {
   // first triangle
   if(has_normals)
   tess->triangulated_index.push_back(3*NI[i][0]);
   if(textured)
   tess->triangulated_index.push_back(2*TI[i][0]);
   tess->triangulated_index.push_back(3*PI[i][0]);
   if(has_normals)
   tess->triangulated_index.push_back(3*NI[i][1]);
   if(textured)
   tess->triangulated_index.push_back(2*TI[i][1]);
   tess->triangulated_index.push_back(3*PI[i][1]);
   if(has_normals)
   tess->triangulated_index.push_back(3*NI[i][3]);
   if(textured)
   tess->triangulated_index.push_back(2*TI[i][3]);
   tess->triangulated_index.push_back(3*PI[i][3]);
   // second triangle
   if(has_normals)
   tess->triangulated_index.push_back(3*NI[i][1]);
   if(textured)
   tess->triangulated_index.push_back(2*TI[i][1]);
   tess->triangulated_index.push_back(3*PI[i][1]);
   if(has_normals)
   tess->triangulated_index.push_back(3*NI[i][2]);
   if(textured)
   tess->triangulated_index.push_back(2*TI[i][2]);
   tess->triangulated_index.push_back(3*PI[i][2]);
   if(has_normals)
   tess->triangulated_index.push_back(3*NI[i][3]);
   if(textured)
   tess->triangulated_index.push_back(2*TI[i][3]);
   tess->triangulated_index.push_back(3*PI[i][3]);
 }
 tessFace->sizes_triangulated.push_back(2*nI);
 if(triangle_color)
 {
   tessFace->line_attributes.reserve(2*nI);
   for(uint32_t i=0; i<nI; i++)
   {
      tessFace->line_attributes.push_back(SI[i]);
      tessFace->line_attributes.push_back(SI[i]);
   }
 }
 else
 {
     tessFace->line_attributes.push_back(style_index);
 }
 if(vertex_color)
 {
   tessFace->is_rgba=false;
   for(uint32_t i=0; i<nI; i++)
     if(1.0 != C[CI[i][0]].A || 1.0 != C[CI[i][1]].A || 1.0 != C[CI[i][2]].A)
     {
        tessFace->is_rgba=true;
        break;
     }

   tessFace->rgba_vertices.reserve(2*(tessFace->is_rgba?4:3)*3*nI);
   for(uint32_t i=0; i<nI; i++)
   {
      // first triangle
      tessFace->rgba_vertices.push_back(byte(C[CI[i][0]].R));
      tessFace->rgba_vertices.push_back(byte(C[CI[i][0]].G));
      tessFace->rgba_vertices.push_back(byte(C[CI[i][0]].B));
      if(tessFace->is_rgba)
      tessFace->rgba_vertices.push_back(byte(C[CI[i][0]].A));
      tessFace->rgba_vertices.push_back(byte(C[CI[i][1]].R));
      tessFace->rgba_vertices.push_back(byte(C[CI[i][1]].G));
      tessFace->rgba_vertices.push_back(byte(C[CI[i][1]].B));
      if(tessFace->is_rgba)
      tessFace->rgba_vertices.push_back(byte(C[CI[i][1]].A));
      tessFace->rgba_vertices.push_back(byte(C[CI[i][3]].R));
      tessFace->rgba_vertices.push_back(byte(C[CI[i][3]].G));
      tessFace->rgba_vertices.push_back(byte(C[CI[i][3]].B));
      if(tessFace->is_rgba)
      tessFace->rgba_vertices.push_back(byte(C[CI[i][3]].A));
      // second triangle
      tessFace->rgba_vertices.push_back(byte(C[CI[i][1]].R));
      tessFace->rgba_vertices.push_back(byte(C[CI[i][1]].G));
      tessFace->rgba_vertices.push_back(byte(C[CI[i][1]].B));
      if(tessFace->is_rgba)
      tessFace->rgba_vertices.push_back(byte(C[CI[i][1]].A));
      tessFace->rgba_vertices.push_back(byte(C[CI[i][2]].R));
      tessFace->rgba_vertices.push_back(byte(C[CI[i][2]].G));
      tessFace->rgba_vertices.push_back(byte(C[CI[i][2]].B));
      if(tessFace->is_rgba)
      tessFace->rgba_vertices.push_back(byte(C[CI[i][2]].A));
      tessFace->rgba_vertices.push_back(byte(C[CI[i][3]].R));
      tessFace->rgba_vertices.push_back(byte(C[CI[i][3]].G));
      tessFace->rgba_vertices.push_back(byte(C[CI[i][3]].B));
      if(tessFace->is_rgba)
      tessFace->rgba_vertices.push_back(byte(C[CI[i][3]].A));
   }
 }
 tess->addTessFace(tessFace);
 const uint32_t tess_index = add3DTess(tess);
 return tess_index;
}

/*
void oPRCFile::addTriangle(const double P[][3], const double T[][2], uint32_t style_index)
{
 PRCgroup &group = findGroup();

 group.triangles.push_back(PRCtesstriangle());
 PRCtesstriangle &triangle = group.triangles.back();
 for(size_t i = 0; i < 3; i++)
 {
   triangle.vertices[i].x = P[i][0];
   triangle.vertices[i].y = P[i][1];
   triangle.vertices[i].z = P[i][2];
   triangle.texcoords[i].x = T[i][0];
   triangle.texcoords[i].y = T[i][1];
 }
 triangle.style = style_index;
}
*/

void oPRCFile::addLines(uint32_t nP, const double P[][3], uint32_t nI, const uint32_t PI[],
const RGBAColour& c, double w,
bool segment_color, uint32_t nC, const RGBAColour C[], uint32_t nCI, const uint32_t CI[])
{
 if(nP==0 || P==NULL || nI==0 || PI==NULL)
   return;
 const uint32_t tess_index = createLines(nP, P, nI, PI, segment_color, nC, C, nCI, CI);
 useLines(tess_index, c, w);
}

uint32_t oPRCFile::createLines(uint32_t nP, const double P[][3], uint32_t nI, const uint32_t PI[],
bool segment_color, uint32_t nC, const RGBAColour C[], uint32_t nCI, const uint32_t CI[])
{
 if(nP==0 || P==NULL || nI==0 || PI==NULL)
   return m1;

 const bool vertex_color  = (nC != 0 && C != NULL && CI != NULL);

 PRC3DWireTess *tess = new PRC3DWireTess();
 tess->coordinates.reserve(3*nP);
 for(uint32_t i=0; i<nP; i++)
 {
   tess->coordinates.push_back(P[i][0]);
   tess->coordinates.push_back(P[i][1]);
   tess->coordinates.push_back(P[i][2]);
 }
 tess->wire_indexes.reserve(nI);
 for(uint32_t i=0; i<nI;)
 {
   tess->wire_indexes.push_back(PI[i]);
   const uint32_t ni = i+PI[i]+1;
   for(i++; i<ni; i++)
     tess->wire_indexes.push_back(3*PI[i]);
 }
 if(vertex_color)
 {
   tess->is_segment_color = segment_color;
   tess->is_rgba=false;
   for(uint32_t i=0; i<nCI; i++)
     if(1.0 != C[CI[i]].A)
     {
        tess->is_rgba=true;
        break;
     }
   tess->rgba_vertices.reserve((tess->is_rgba?4:3)*nCI);
   for(uint32_t i=0; i<nCI; i++)
   {
      tess->rgba_vertices.push_back(byte(C[CI[i]].R));
      tess->rgba_vertices.push_back(byte(C[CI[i]].G));
      tess->rgba_vertices.push_back(byte(C[CI[i]].B));
      if(tess->is_rgba)
      tess->rgba_vertices.push_back(byte(C[CI[i]].A));
   }
 }
 const uint32_t tess_index = add3DWireTess(tess);
 return tess_index;
}

#define PRCFACETRANSFORM const double origin[3], const double x_axis[3], const double y_axis[3], double scale, const double* t

void oPRCFile::addHemisphere(double radius, const PRCmaterial &m, PRCFACETRANSFORM)
{
 ADDFACE(PRCSphere)
 SETTRANSF
 surface->uv_domain.min.x = 0;
 surface->uv_domain.max.x = 2*pi;
 surface->uv_domain.min.y = 0;
 surface->uv_domain.max.y = 0.5*pi;
 surface->radius = radius;
}

void oPRCFile::addSphere(double radius, const PRCmaterial &m, PRCFACETRANSFORM)
{
 ADDFACE(PRCSphere)
 SETTRANSF
 surface->uv_domain.min.x = 0;
 surface->uv_domain.max.x = 2*pi;
 surface->uv_domain.min.y =-0.5*pi;
 surface->uv_domain.max.y = 0.5*pi;
 surface->radius = radius;
}

void oPRCFile::addDisk(double radius, const PRCmaterial &m, PRCFACETRANSFORM)
{
 ADDFACE(PRCRuled)
 SETTRANSF
 PRCCircle *first_curve = new PRCCircle;
 first_curve->radius = radius;
 surface->first_curve = first_curve;
 PRCCircle *second_curve = new PRCCircle;
 second_curve->radius = 0;
 surface->second_curve = second_curve;

 surface->uv_domain.min.x = 0;
 surface->uv_domain.max.x = 1;
 surface->uv_domain.min.y = 0;
 surface->uv_domain.max.y = 2*pi;
 surface->parameterization_on_v_coeff_a = -1;
 surface->parameterization_on_v_coeff_b = 2*pi;
}

void oPRCFile::addCylinder(double radius, double height, const PRCmaterial &m, PRCFACETRANSFORM)
{
 ADDFACE(PRCCylinder)
 SETTRANSF
 surface->uv_domain.min.x = 0;
 surface->uv_domain.max.x = 2*pi;
 surface->uv_domain.min.y = (height>0)?0:height;
 surface->uv_domain.max.y = (height>0)?height:0;
 surface->radius = radius;
}

void oPRCFile::addCone(double radius, double height, const PRCmaterial &m, PRCFACETRANSFORM)
{
 ADDFACE(PRCCone)
 SETTRANSF
 surface->uv_domain.min.x = 0;
 surface->uv_domain.max.x = 2*pi;
 surface->uv_domain.min.y = (height>0)?0:height;
 surface->uv_domain.max.y = (height>0)?height:0;
 surface->bottom_radius = radius;
 surface->semi_angle = -atan(radius/height);;
}

void oPRCFile::addTorus(double major_radius, double minor_radius, double angle1, double angle2, const PRCmaterial &m, PRCFACETRANSFORM)
{
 ADDFACE(PRCTorus)
 SETTRANSF
 surface->uv_domain.min.x = (angle1/180)*pi;
 surface->uv_domain.max.x = (angle2/180)*pi;
 surface->uv_domain.min.y = 0;
 surface->uv_domain.max.y = 2*pi;
 surface->major_radius = major_radius;
 surface->minor_radius = minor_radius;
}

#undef ADDWIRE
#undef SETTRANSF

uint32_t PRCFileStructure::addMaterialGeneric(PRCMaterialGeneric*& pMaterialGeneric)
{
 materials.push_back(pMaterialGeneric);
 pMaterialGeneric = NULL;
 return static_cast<uint32_t>(materials.size()-1);
}

uint32_t PRCFileStructure::addTextureApplication(PRCTextureApplication*& pTextureApplication)
{
 materials.push_back(pTextureApplication);
 pTextureApplication = NULL;
 return static_cast<uint32_t>(materials.size()-1);
}

uint32_t PRCFileStructure::addStyle(PRCStyle*& pStyle)
{
 styles.push_back(pStyle);
 pStyle = NULL;
 return static_cast<uint32_t>(styles.size()-1);
}

uint32_t PRCFileStructure::addPartDefinition(PRCPartDefinition*& pPartDefinition)
{
 part_definitions.push_back(pPartDefinition);
 pPartDefinition = NULL;
 return static_cast<uint32_t>(part_definitions.size()-1);
}

uint32_t PRCFileStructure::addProductOccurrence(PRCProductOccurrence*& pProductOccurrence)
{
 product_occurrences.push_back(pProductOccurrence);
 pProductOccurrence = NULL;
 return static_cast<uint32_t>(product_occurrences.size()-1);
}

uint32_t PRCFileStructure::addTopoContext(PRCTopoContext*& pTopoContext)
{
 contexts.push_back(pTopoContext);
 pTopoContext = NULL;
 return static_cast<uint32_t>(contexts.size()-1);
}

uint32_t PRCFileStructure::getTopoContext(PRCTopoContext*& pTopoContext)
{
 pTopoContext = new PRCTopoContext;
 contexts.push_back(pTopoContext);
 return static_cast<uint32_t>(contexts.size()-1);
}

uint32_t PRCFileStructure::add3DTess(PRC3DTess*& p3DTess)
{
 tessellations.push_back(p3DTess);
 p3DTess = NULL;
 return static_cast<uint32_t>(tessellations.size()-1);
}

uint32_t PRCFileStructure::add3DWireTess(PRC3DWireTess*& p3DWireTess)
{
 tessellations.push_back(p3DWireTess);
 p3DWireTess = NULL;
 return static_cast<uint32_t>(tessellations.size()-1);
}
/*
uint32_t PRCFileStructure::addMarkupTess(PRCMarkupTess*& pMarkupTess)
{
 tessellations.push_back(pMarkupTess);
 pMarkupTess = NULL;
 return tessellations.size()-1;
}

uint32_t PRCFileStructure::addMarkup(PRCMarkup*& pMarkup)
{
 markups.push_back(pMarkup);
 pMarkup = NULL;
 return markups.size()-1;
}

uint32_t PRCFileStructure::addAnnotationItem(PRCAnnotationItem*& pAnnotationItem)
{
 annotation_entities.push_back(pAnnotationItem);
 pAnnotationItem = NULL;
 return annotation_entities.size()-1;
}
*/
uint32_t PRCFileStructure::addCoordinateSystem(PRCCoordinateSystem*& pCoordinateSystem)
{
 reference_coordinate_systems.push_back(pCoordinateSystem);
 pCoordinateSystem = NULL;
 return static_cast<uint32_t>(reference_coordinate_systems.size()-1);
}

uint32_t PRCFileStructure::addCoordinateSystemUnique(PRCCoordinateSystem*& pCoordinateSystem)
{
 for(uint32_t i = 0; i < reference_coordinate_systems.size(); ++i)
 {
   if(*(reference_coordinate_systems[i])==*pCoordinateSystem) {
     pCoordinateSystem = NULL;
     return i;
   }
 }
 reference_coordinate_systems.push_back(pCoordinateSystem);
 pCoordinateSystem = NULL;
 return static_cast<uint32_t>(reference_coordinate_systems.size()-1);
}

}