/************
*
* This file is part of a tool for producing 3D content in the PRC format.
* Copyright (C) 2008 Orest Shardt <shardtor (at) gmail dot com> and
* Michail Vidiassov <
[email protected]>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <
http://www.gnu.org/licenses/>.
*
*************/
#include "prc/oPRCFile.h"
#include <cstring>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <sstream>
#include <time.h>
#include <zlib.h>
namespace prc {
#define WriteUnsignedInteger( value ) out << (uint32_t)(value);
#define WriteInteger( value ) out << (int32_t)(value);
#define WriteDouble( value ) out << (double)(value);
#define WriteString( value ) out << (value);
#define WriteUncompressedUnsignedInteger( value ) writeUncompressedUnsignedInteger(out, (uint32_t)(value));
#define WriteUncompressedBlock( value, count ) out.write((char *)(value),(count));
#define SerializeFileStructureUncompressedUniqueId( value ) (value).serializeFileStructureUncompressedUniqueId(out);
#define SerializeCompressedUniqueId( value ) (value).serializeCompressedUniqueId(out);
#define SerializeContentPRCBase write(out);
#define SerializeRgbColor( value ) (value).serializeRgbColor(out);
#define SerializePicture( value ) (value).serializePicture(out);
#define SerializeTextureDefinition( value ) (value)->serializeTextureDefinition(out);
#define SerializeMarkup( value ) (value)->serializeMarkup(out);
#define SerializeAnnotationEntity( value ) (value)->serializeAnnotationEntity(out);
#define SerializeFontKeysSameFont( value ) (value).serializeFontKeysSameFont(out);
#define SerializeMaterial( value ) (value)->serializeMaterial(out);
#define SerializeUserData UserData(0,0).write(out);
#define SerializeEmptyContentPRCBase ContentPRCBase(PRC_TYPE_ROOT_PRCBase).serializeContentPRCBase(out);
#define SerializeCategory1LineStyle( value ) (value)->serializeCategory1LineStyle(out);
#define SerializeCoordinateSystem( value ) (value)->serializeCoordinateSystem(out);
#define SerializeRepresentationItem( value ) (value)->serializeRepresentationItem(out);
#define SerializePartDefinition( value ) (value)->serializePartDefinition(out);
#define SerializeProductOccurrence( value ) (value)->serializeProductOccurrence(out);
#define SerializeContextAndBodies( value ) (value)->serializeContextAndBodies(out);
#define SerializeGeometrySummary( value ) (value)->serializeGeometrySummary(out);
#define SerializeContextGraphics( value ) (value)->serializeContextGraphics(out);
#define SerializeStartHeader serializeStartHeader(out);
#define SerializeUncompressedFiles \
{ \
const size_t number_of_uncompressed_files = uncompressed_files.size(); \
WriteUncompressedUnsignedInteger (number_of_uncompressed_files) \
for(PRCUncompressedFileList::const_iterator it = uncompressed_files.begin(); it != uncompressed_files.end(); it++) \
{ \
WriteUncompressedUnsignedInteger ((*it)->file_size) \
WriteUncompressedBlock ((*it)->data, (*it)->file_size) \
} \
}
#define SerializeModelFileData serializeModelFileData(modelFile_out); modelFile_out.compress();
#define SerializeUnit( value ) (value).serializeUnit(out);
using namespace std;
void PRCFileStructure::serializeFileStructureGlobals(PRCbitStream &out)
{
// even though this is technically not part of this section,
// it is handled here for convenience
const uint32_t number_of_schema = 0;
WriteUnsignedInteger (number_of_schema)
WriteUnsignedInteger (PRC_TYPE_ASM_FileStructureGlobals)
PRCSingleAttribute sa((int32_t)PRCVersion);
PRCAttribute a("__PRC_RESERVED_ATTRIBUTE_PRCInternalVersion");
a.addKey(sa);
ContentPRCBase cb(PRC_TYPE_ROOT_PRCBase);
cb.addAttribute(a);
cb.serializeContentPRCBase(out);
WriteUnsignedInteger (number_of_referenced_file_structures)
// SerializeFileStructureInternalGlobalData
WriteDouble (tessellation_chord_height_ratio)
WriteDouble (tessellation_angle_degree)
// SerializeMarkupSerializationHelper
WriteString (default_font_family_name)
const size_t number_of_fonts = font_keys_of_font.size();
WriteUnsignedInteger (number_of_fonts)
for (size_t i=0;i<number_of_fonts;i++)
{
SerializeFontKeysSameFont (font_keys_of_font[i])
}
const size_t number_of_colors = colors.size();
WriteUnsignedInteger (number_of_colors)
for (size_t i=0;i<number_of_colors;i++)
SerializeRgbColor (colors[i])
const size_t number_of_pictures = pictures.size();
WriteUnsignedInteger (number_of_pictures)
for (uint32_t i=0;i<number_of_pictures;i++)
SerializePicture (pictures[i])
const size_t number_of_texture_definitions = texture_definitions.size();
WriteUnsignedInteger (number_of_texture_definitions)
for (size_t i=0;i<number_of_texture_definitions;i++)
SerializeTextureDefinition (texture_definitions[i])
const size_t number_of_materials = materials.size();
WriteUnsignedInteger (number_of_materials)
for (size_t i=0;i<number_of_materials;i++)
SerializeMaterial (materials[i])
// number of line patterns hard coded for now
const uint32_t number_of_line_patterns = 1;
WriteUnsignedInteger (number_of_line_patterns)
PRCLinePattern().serializeLinePattern(out);
const size_t number_of_styles = styles.size();
WriteUnsignedInteger (number_of_styles)
for (size_t i=0;i<number_of_styles;i++)
SerializeCategory1LineStyle (styles[i])
const size_t number_of_fill_patterns = 0;
WriteUnsignedInteger (number_of_fill_patterns)
const size_t number_of_reference_coordinate_systems = reference_coordinate_systems.size();
WriteUnsignedInteger (number_of_reference_coordinate_systems)
for (size_t i=0;i<number_of_reference_coordinate_systems;i++)
SerializeCoordinateSystem (reference_coordinate_systems[i])
SerializeUserData
}
void PRCFileStructure::serializeFileStructureTree(PRCbitStream &out)
{
WriteUnsignedInteger (PRC_TYPE_ASM_FileStructureTree)
SerializeEmptyContentPRCBase
const size_t number_of_part_definitions = part_definitions.size();
WriteUnsignedInteger (number_of_part_definitions)
for (size_t i=0;i<number_of_part_definitions;i++)
SerializePartDefinition (part_definitions[i])
const size_t number_of_product_occurrences = product_occurrences.size();
WriteUnsignedInteger (number_of_product_occurrences)
for (size_t i=0;i<number_of_product_occurrences;i++)
{
product_occurrences[i]->unit_information.unit_from_CAD_file = true;
product_occurrences[i]->unit_information.unit = unit;
SerializeProductOccurrence (product_occurrences[i])
}
// SerializeFileStructureInternalData
WriteUnsignedInteger (PRC_TYPE_ASM_FileStructure)
SerializeEmptyContentPRCBase
const uint32_t next_available_index = makePRCID();
WriteUnsignedInteger (next_available_index)
const size_t index_product_occurence = number_of_product_occurrences; // Asymptote (oPRCFile) specific - we write the root product last
WriteUnsignedInteger (index_product_occurence)
SerializeUserData
}
void PRCFileStructure::serializeFileStructureTessellation(PRCbitStream &out)
{
WriteUnsignedInteger (PRC_TYPE_ASM_FileStructureTessellation)
SerializeEmptyContentPRCBase
const size_t number_of_tessellations = tessellations.size();
WriteUnsignedInteger (number_of_tessellations)
for (size_t i=0;i<number_of_tessellations;i++)
tessellations[i]->serializeBaseTessData(out);
SerializeUserData
}
void PRCFileStructure::serializeFileStructureGeometry(PRCbitStream &out)
{
WriteUnsignedInteger (PRC_TYPE_ASM_FileStructureGeometry)
SerializeEmptyContentPRCBase
const size_t number_of_contexts = contexts.size();
WriteUnsignedInteger (number_of_contexts)
for (size_t i=0;i<number_of_contexts;i++)
SerializeContextAndBodies (contexts[i])
SerializeUserData
}
void PRCFileStructure::serializeFileStructureExtraGeometry(PRCbitStream &out)
{
WriteUnsignedInteger (PRC_TYPE_ASM_FileStructureExtraGeometry)
SerializeEmptyContentPRCBase
const size_t number_of_contexts = contexts.size();
WriteUnsignedInteger (number_of_contexts)
for (size_t i=0;i<number_of_contexts;i++)
{
SerializeGeometrySummary (contexts[i])
SerializeContextGraphics (contexts[i])
}
SerializeUserData
}
void oPRCFile::serializeModelFileData(PRCbitStream &out)
{
// even though this is technically not part of this section,
// it is handled here for convenience
const uint32_t number_of_schema = 0;
WriteUnsignedInteger (number_of_schema)
WriteUnsignedInteger (PRC_TYPE_ASM_ModelFile)
PRCSingleAttribute sa((int32_t)PRCVersion);
PRCAttribute a("__PRC_RESERVED_ATTRIBUTE_PRCInternalVersion");
a.addKey(sa);
ContentPRCBase cb(PRC_TYPE_ROOT_PRCBase,"PRC file");
cb.addAttribute(a);
cb.serializeContentPRCBase(out);
SerializeUnit (unit)
out << (uint32_t)1; // 1 product occurrence
//UUID
SerializeCompressedUniqueId( fileStructures[0]->file_structure_uuid )
// index+1
out << (uint32_t)fileStructures[0]->product_occurrences.size();
// active
out << true;
out << (uint32_t)0; // index in model file
SerializeUserData
}
void makeFileUUID(PRCUniqueId& UUID)
{
// make a UUID
static uint32_t count = 0;
++count;
// the minimum requirement on UUIDs is that all must be unique in the file
UUID.id0 = 0x33595341; // some constant
UUID.id1 = (uint32_t)time(NULL); // the time
UUID.id2 = count;
UUID.id3 = 0xa5a55a5a; // Something random, not seeded by the time, would be nice. But for now, a constant
// maybe add something else to make it more unique
// so multiple files can be combined
// a hash of some data perhaps?
}
void makeAppUUID(PRCUniqueId& UUID)
{
UUID.id0 = UUID.id1 = UUID.id2 = UUID.id3 = 0;
}
void PRCUncompressedFile::write(ostream &out) const
{
if(data!=NULL)
{
WriteUncompressedUnsignedInteger (file_size)
out.write((char*)data,file_size);
}
}
uint32_t PRCUncompressedFile::getSize() const
{
return sizeof(file_size)+file_size;
}
void PRCStartHeader::serializeStartHeader(ostream &out) const
{
WriteUncompressedBlock ("PRC",3)
WriteUncompressedUnsignedInteger (minimal_version_for_read)
WriteUncompressedUnsignedInteger (authoring_version)
SerializeFileStructureUncompressedUniqueId( file_structure_uuid );
SerializeFileStructureUncompressedUniqueId( application_uuid );
}
uint32_t PRCStartHeader::getStartHeaderSize() const
{
return 3+(2+2*4)*sizeof(uint32_t);
}
void PRCFileStructure::write(ostream &out)
{
// SerializeFileStructureHeader
SerializeStartHeader
SerializeUncompressedFiles
globals_out.write(out);
tree_out.write(out);
tessellations_out.write(out);
geometry_out.write(out);
extraGeometry_out.write(out);
}
#define SerializeFileStructureGlobals serializeFileStructureGlobals(globals_out); globals_out.compress(); sizes[1]=globals_out.getSize();
#define SerializeFileStructureTree serializeFileStructureTree(tree_out); tree_out.compress(); sizes[2]=tree_out.getSize();
#define SerializeFileStructureTessellation serializeFileStructureTessellation(tessellations_out); tessellations_out.compress(); sizes[3]=tessellations_out.getSize();
#define SerializeFileStructureGeometry serializeFileStructureGeometry(geometry_out); geometry_out.compress(); sizes[4]=geometry_out.getSize();
#define SerializeFileStructureExtraGeometry serializeFileStructureExtraGeometry(extraGeometry_out); extraGeometry_out.compress(); sizes[5]=extraGeometry_out.getSize();
#define FlushSerialization resetGraphicsAndName();
void PRCFileStructure::prepare()
{
uint32_t size = 0;
size += getStartHeaderSize();
size += sizeof(uint32_t);
for(PRCUncompressedFileList::const_iterator it = uncompressed_files.begin(); it != uncompressed_files.end(); it++)
size += (*it)->getSize();
sizes[0]=size;
SerializeFileStructureGlobals
FlushSerialization
SerializeFileStructureTree
FlushSerialization
SerializeFileStructureTessellation
FlushSerialization
SerializeFileStructureGeometry
FlushSerialization
SerializeFileStructureExtraGeometry
FlushSerialization
}
uint32_t PRCFileStructure::getSize()
{
uint32_t size = 0;
for(size_t i=0; i<6; i++)
size += sizes[i];
return size;
}
void PRCFileStructureInformation::write(ostream &out)
{
SerializeFileStructureUncompressedUniqueId( UUID );
WriteUncompressedUnsignedInteger (reserved)
WriteUncompressedUnsignedInteger (number_of_offsets)
for(uint32_t i = 0; i < number_of_offsets; ++i)
{
WriteUncompressedUnsignedInteger (offsets[i])
}
}
uint32_t PRCFileStructureInformation::getSize()
{
return (4+2+number_of_offsets)*sizeof(uint32_t);
}
void PRCHeader::write(ostream &out)
{
SerializeStartHeader
WriteUncompressedUnsignedInteger (number_of_file_structures)
for(uint32_t i = 0; i < number_of_file_structures; ++i)
{
fileStructureInformation[i].write(out);
}
WriteUncompressedUnsignedInteger (model_file_offset)
WriteUncompressedUnsignedInteger (file_size)
SerializeUncompressedFiles
}
uint32_t PRCHeader::getSize()
{
uint32_t size = getStartHeaderSize() + sizeof(uint32_t);
for(uint32_t i = 0; i < number_of_file_structures; ++i)
size += fileStructureInformation[i].getSize();
size += 3*sizeof(uint32_t);
for(PRCUncompressedFileList::const_iterator it = uncompressed_files.begin(); it != uncompressed_files.end(); it++)
size += (*it)->getSize();
return size;
}
void oPRCFile::doGroup(PRCgroup& group)
{
const std::string& name = group.name;
PRCProductOccurrence*& product_occurrence = group.product_occurrence;
PRCProductOccurrence*& parent_product_occurrence = group.parent_product_occurrence;
PRCPartDefinition*& part_definition = group.part_definition;
PRCPartDefinition*& parent_part_definition = group.parent_part_definition;
if(group.options.tess)
{
if(!group.lines.empty())
{
for(PRCtesslineMap::const_iterator wit=group.lines.begin(); wit!=group.lines.end(); wit++)
{
bool same_color = true;
const PRCtesslineList& lines = wit->second;
const PRCRgbColor &color = lines.front().color;
for(PRCtesslineList::const_iterator lit=lines.begin(); lit!=lines.end(); lit++)
if(color!=lit->color)
{
same_color = false;
break;
}
map<PRCVector3d,uint32_t> points;
PRC3DWireTess *tess = new PRC3DWireTess();
if(!same_color)
{
tess->is_segment_color = true;
tess->is_rgba = false;
}
for(PRCtesslineList::const_iterator lit=lines.begin(); lit!=lines.end(); lit++)
{
tess->wire_indexes.push_back(static_cast<uint32_t>(lit->point.size()));
for(uint32_t i=0; i<lit->point.size(); i++)
{
map<PRCVector3d,uint32_t>::iterator pPoint = points.find(lit->point[i]);
if(pPoint!=points.end())
tess->wire_indexes.push_back(pPoint->second);
else
{
const uint32_t point_index = static_cast<uint32_t>(tess->coordinates.size());
points.insert(make_pair(lit->point[i],point_index));
tess->wire_indexes.push_back(point_index);
tess->coordinates.push_back(lit->point[i].x);
tess->coordinates.push_back(lit->point[i].y);
tess->coordinates.push_back(lit->point[i].z);
}
if(!same_color && i>0)
{
tess->rgba_vertices.push_back(byte(lit->color.red));
tess->rgba_vertices.push_back(byte(lit->color.green));
tess->rgba_vertices.push_back(byte(lit->color.blue));
}
}
}
const uint32_t tess_index = add3DWireTess(tess);
PRCPolyWire *polyWire = new PRCPolyWire();
polyWire->index_tessellation = tess_index;
if(same_color)
polyWire->index_of_line_style = addColourWidth(RGBAColour(color.red,color.green,color.blue),wit->first);
else
polyWire->index_of_line_style = addColourWidth(RGBAColour(1,1,1),wit->first);
part_definition->addPolyWire(polyWire);
}
}
// make rectangles pairs of triangles in a tesselation
if(!group.rectangles.empty())
{
bool same_color = true;
const uint32_t &style = group.rectangles.front().style;
for(PRCtessrectangleList::const_iterator rit=group.rectangles.begin(); rit!=group.rectangles.end(); rit++)
if(style!=rit->style)
{
same_color = false;
break;
}
map<PRCVector3d,uint32_t> points;
PRC3DTess *tess = new PRC3DTess();
tess->crease_angle = group.options.crease_angle;
PRCTessFace *tessFace = new PRCTessFace();
tessFace->used_entities_flag=PRC_FACETESSDATA_Triangle;
uint32_t triangles = 0;
for(PRCtessrectangleList::const_iterator rit=group.rectangles.begin(); rit!=group.rectangles.end(); rit++)
{
const bool degenerate = (rit->vertices[0]==rit->vertices[1]);
uint32_t vertex_indices[4];
for(size_t i = (degenerate?1:0); i < 4; ++i)
{
map<PRCVector3d,uint32_t>::const_iterator pPoint = points.find(rit->vertices[i]);
if(pPoint!=points.end())
vertex_indices[i] = pPoint->second;
else
{
points.insert(make_pair(rit->vertices[i],(vertex_indices[i] = static_cast<uint32_t>(tess->coordinates.size()))));
tess->coordinates.push_back(rit->vertices[i].x);
tess->coordinates.push_back(rit->vertices[i].y);
tess->coordinates.push_back(rit->vertices[i].z);
}
}
if(degenerate)
{
tess->triangulated_index.push_back(vertex_indices[1]);
tess->triangulated_index.push_back(vertex_indices[2]);
tess->triangulated_index.push_back(vertex_indices[3]);
triangles++;
if(!same_color)
tessFace->line_attributes.push_back(rit->style);
}
else
{
tess->triangulated_index.push_back(vertex_indices[0]);
tess->triangulated_index.push_back(vertex_indices[2]);
tess->triangulated_index.push_back(vertex_indices[3]);
triangles++;
if(!same_color)
tessFace->line_attributes.push_back(rit->style);
tess->triangulated_index.push_back(vertex_indices[3]);
tess->triangulated_index.push_back(vertex_indices[1]);
tess->triangulated_index.push_back(vertex_indices[0]);
triangles++;
if(!same_color)
tessFace->line_attributes.push_back(rit->style);
}
}
tessFace->sizes_triangulated.push_back(triangles);
tess->addTessFace(tessFace);
const uint32_t tess_index = add3DTess(tess);
PRCPolyBrepModel *polyBrepModel = new PRCPolyBrepModel();
polyBrepModel->index_tessellation = tess_index;
polyBrepModel->is_closed = group.options.closed;
if(same_color)
polyBrepModel->index_of_line_style = style;
part_definition->addPolyBrepModel(polyBrepModel);
}
}
if(!group.quads.empty())
{
map<PRCVector3d,uint32_t> points;
PRC3DTess *tess = new PRC3DTess();
tess->crease_angle = group.options.crease_angle;
PRCTessFace *tessFace = new PRCTessFace();
tessFace->used_entities_flag=PRC_FACETESSDATA_Triangle;
uint32_t triangles = 0;
tessFace->is_rgba = false;
for(PRCtessquadList::const_iterator qit=group.quads.begin(); qit!=group.quads.end(); qit++)
{
const RGBAColour* C = qit->colours;
if(C[0].A != 1.0 || C[1].A != 1.0 || C[2].A != 1.0 || C[3].A != 1.0)
{
tessFace->is_rgba = true;
break;
}
}
bool same_colour = true;
const RGBAColour& colour = group.quads.front().colours[0];
for(PRCtessquadList::const_iterator qit=group.quads.begin(); qit!=group.quads.end(); qit++)
{
const RGBAColour* C = qit->colours;
if(colour!=C[0] || colour!=C[1] || colour!=C[2] || colour!=C[3])
{
same_colour = false;
break;
}
}
for(PRCtessquadList::const_iterator qit=group.quads.begin(); qit!=group.quads.end(); qit++)
{
const RGBAColour* C = qit->colours;
const bool degenerate = (qit->vertices[0]==qit->vertices[1]);
uint32_t vertex_indices[4];
for(size_t i = (degenerate?1:0); i < 4; ++i)
{
map<PRCVector3d,uint32_t>::const_iterator pPoint = points.find(qit->vertices[i]);
if(pPoint!=points.end())
vertex_indices[i] = pPoint->second;
else
{
points.insert(make_pair(qit->vertices[i],(vertex_indices[i] = static_cast<uint32_t>(tess->coordinates.size()))));
tess->coordinates.push_back(qit->vertices[i].x);
tess->coordinates.push_back(qit->vertices[i].y);
tess->coordinates.push_back(qit->vertices[i].z);
}
}
if(degenerate)
{
tess->triangulated_index.push_back(vertex_indices[1]);
tess->triangulated_index.push_back(vertex_indices[2]);
tess->triangulated_index.push_back(vertex_indices[3]);
triangles++;
if(!same_colour)
{
tessFace->rgba_vertices.push_back(byte(C[1].R));
tessFace->rgba_vertices.push_back(byte(C[1].G));
tessFace->rgba_vertices.push_back(byte(C[1].B));
if(tessFace->is_rgba)
tessFace->rgba_vertices.push_back(byte(C[1].A));
tessFace->rgba_vertices.push_back(byte(C[2].R));
tessFace->rgba_vertices.push_back(byte(C[2].G));
tessFace->rgba_vertices.push_back(byte(C[2].B));
if(tessFace->is_rgba)
tessFace->rgba_vertices.push_back(byte(C[2].A));
tessFace->rgba_vertices.push_back(byte(C[3].R));
tessFace->rgba_vertices.push_back(byte(C[3].G));
tessFace->rgba_vertices.push_back(byte(C[3].B));
if(tessFace->is_rgba)
tessFace->rgba_vertices.push_back(byte(C[3].A));
}
}
else
{
tess->triangulated_index.push_back(vertex_indices[0]);
tess->triangulated_index.push_back(vertex_indices[2]);
tess->triangulated_index.push_back(vertex_indices[3]);
triangles++;
if(!same_colour)
{
tessFace->rgba_vertices.push_back(byte(C[0].R));
tessFace->rgba_vertices.push_back(byte(C[0].G));
tessFace->rgba_vertices.push_back(byte(C[0].B));
if(tessFace->is_rgba)
tessFace->rgba_vertices.push_back(byte(C[0].A));
tessFace->rgba_vertices.push_back(byte(C[2].R));
tessFace->rgba_vertices.push_back(byte(C[2].G));
tessFace->rgba_vertices.push_back(byte(C[2].B));
if(tessFace->is_rgba)
tessFace->rgba_vertices.push_back(byte(C[2].A));
tessFace->rgba_vertices.push_back(byte(C[3].R));
tessFace->rgba_vertices.push_back(byte(C[3].G));
tessFace->rgba_vertices.push_back(byte(C[3].B));
if(tessFace->is_rgba)
tessFace->rgba_vertices.push_back(byte(C[3].A));
}
tess->triangulated_index.push_back(vertex_indices[3]);
tess->triangulated_index.push_back(vertex_indices[1]);
tess->triangulated_index.push_back(vertex_indices[0]);
triangles++;
if(!same_colour)
{
tessFace->rgba_vertices.push_back(byte(C[3].R));
tessFace->rgba_vertices.push_back(byte(C[3].G));
tessFace->rgba_vertices.push_back(byte(C[3].B));
if(tessFace->is_rgba)
tessFace->rgba_vertices.push_back(byte(C[3].A));
tessFace->rgba_vertices.push_back(byte(C[1].R));
tessFace->rgba_vertices.push_back(byte(C[1].G));
tessFace->rgba_vertices.push_back(byte(C[1].B));
if(tessFace->is_rgba)
tessFace->rgba_vertices.push_back(byte(C[1].A));
tessFace->rgba_vertices.push_back(byte(C[0].R));
tessFace->rgba_vertices.push_back(byte(C[0].G));
tessFace->rgba_vertices.push_back(byte(C[0].B));
if(tessFace->is_rgba)
tessFace->rgba_vertices.push_back(byte(C[0].A));
}
}
}
tessFace->sizes_triangulated.push_back(triangles);
tess->addTessFace(tessFace);
const uint32_t tess_index = add3DTess(tess);
PRCPolyBrepModel *polyBrepModel = new PRCPolyBrepModel();
polyBrepModel->index_tessellation = tess_index;
polyBrepModel->is_closed = group.options.closed;
if(same_colour)
polyBrepModel->index_of_line_style = addColour(colour);
part_definition->addPolyBrepModel(polyBrepModel);
}
if(!group.points.empty())
{
for(PRCpointsetMap::const_iterator pit=group.points.begin(); pit!=group.points.end(); pit++)
{
PRCPointSet *pointset = new PRCPointSet();
pointset->index_of_line_style = pit->first;
pointset->point = pit->second;
part_definition->addPointSet(pointset);
}
}
if(!group.pointsets.empty())
{
for(std::vector<PRCPointSet*>::iterator pit=group.pointsets.begin(); pit!=group.pointsets.end(); pit++)
{
part_definition->addPointSet(*pit);
}
}
if(!group.polymodels.empty())
{
for(std::vector<PRCPolyBrepModel*>::iterator pit=group.polymodels.begin(); pit!=group.polymodels.end(); pit++)
{
(*pit)->is_closed = group.options.closed;
part_definition->addPolyBrepModel(*pit);
}
}
if(!group.polywires.empty())
{
for(std::vector<PRCPolyWire*>::iterator pit=group.polywires.begin(); pit!=group.polywires.end(); pit++)
{
part_definition->addPolyWire(*pit);
}
}
if(!group.wires.empty())
{
PRCTopoContext *wireContext = NULL;
const uint32_t context_index = getTopoContext(wireContext);
for(PRCwireList::iterator wit=group.wires.begin(); wit!=group.wires.end(); wit++)
{
PRCWireEdge *wireEdge = new PRCWireEdge;
wireEdge->curve_3d = wit->curve;
PRCSingleWireBody *wireBody = new PRCSingleWireBody;
wireBody->setWireEdge(wireEdge);
const uint32_t wire_body_index = wireContext->addSingleWireBody(wireBody);
PRCWire *wire = new PRCWire();
wire->index_of_line_style = wit->style;
wire->context_id = context_index;
wire->body_id = wire_body_index;
if(wit->transform)
wire->index_local_coordinate_system = addTransform(wit->transform);
part_definition->addWire(wire);
}
}
PRCfaceList &faces = group.faces;
if(!faces.empty())
{
bool same_color = true;
const uint32_t style = faces.front().style;
for(PRCfaceList::const_iterator fit=faces.begin(); fit!=faces.end(); fit++)
if(style!=fit->style)
{
same_color = false;
break;
}
PRCTopoContext *context = NULL;
const uint32_t context_index = getTopoContext(context);
context->granularity = group.options.granularity;
// Acrobat 9 also does the following:
// context->tolerance = group.options.granularity;
// context->have_smallest_face_thickness = true;
// context->smallest_thickness = group.options.granularity;
PRCShell *shell = new PRCShell;
for(PRCfaceList::iterator fit=faces.begin(); fit!=faces.end(); fit++)
{
if(fit->transform || group.options.do_break ||
(fit->transparent && !group.options.no_break))
{
PRCShell *shell = new PRCShell;
shell->addFace(fit->face);
PRCConnex *connex = new PRCConnex;
connex->addShell(shell);
PRCBrepData *body = new PRCBrepData;
body->addConnex(connex);
const uint32_t body_index = context->addBrepData(body);
PRCBrepModel *brepmodel = new PRCBrepModel();
brepmodel->index_of_line_style = fit->style;
brepmodel->context_id = context_index;
brepmodel->body_id = body_index;
brepmodel->is_closed = group.options.closed;
brepmodel->index_local_coordinate_system = addTransform(fit->transform);
part_definition->addBrepModel(brepmodel);
}
else
{
if(!same_color)
fit->face->index_of_line_style = fit->style;
shell->addFace(fit->face);
}
}
if(shell->face.empty())
{
delete shell;
}
else
{
PRCConnex *connex = new PRCConnex;
connex->addShell(shell);
PRCBrepData *body = new PRCBrepData;
body->addConnex(connex);
const uint32_t body_index = context->addBrepData(body);
PRCBrepModel *brepmodel = new PRCBrepModel();
if(same_color)
brepmodel->index_of_line_style = style;
brepmodel->context_id = context_index;
brepmodel->body_id = body_index;
brepmodel->is_closed = group.options.closed;
part_definition->addBrepModel(brepmodel);
}
}
PRCcompfaceList &compfaces = group.compfaces;
if(!compfaces.empty())
{
bool same_color = true;
const uint32_t style = compfaces.front().style;
for(PRCcompfaceList::const_iterator fit=compfaces.begin(); fit!=compfaces.end(); fit++)
if(style!=fit->style)
{
same_color = false;
break;
}
PRCTopoContext *context = NULL;
const uint32_t context_index = getTopoContext(context);
PRCCompressedBrepData *body = new PRCCompressedBrepData;
body->serial_tolerance=group.options.compression;
body->brep_data_compressed_tolerance=0.1*group.options.compression;
for(PRCcompfaceList::const_iterator fit=compfaces.begin(); fit!=compfaces.end(); fit++)
{
if(group.options.do_break ||
(fit->transparent && !group.options.no_break))
{
PRCCompressedBrepData *body = new PRCCompressedBrepData;
body->face.push_back(fit->face);
body->serial_tolerance=group.options.compression;
body->brep_data_compressed_tolerance=2.8346456*
group.options.compression;
const uint32_t body_index = context->addCompressedBrepData(body);
PRCBrepModel *brepmodel = new PRCBrepModel();
brepmodel->index_of_line_style = fit->style;
brepmodel->context_id = context_index;
brepmodel->body_id = body_index;
brepmodel->is_closed = group.options.closed;
part_definition->addBrepModel(brepmodel);
}
else
{
if(!same_color)
fit->face->index_of_line_style = fit->style;
body->face.push_back(fit->face);
}
}
if(body->face.empty())
{
delete body;
}
else
{
const uint32_t body_index = context->addCompressedBrepData(body);
PRCBrepModel *brepmodel = new PRCBrepModel();
if(same_color)
brepmodel->index_of_line_style = style;
brepmodel->context_id = context_index;
brepmodel->body_id = body_index;
brepmodel->is_closed = group.options.closed;
part_definition->addBrepModel(brepmodel);
}
}
// Simplify and reduce to as simple entities as possible
// products with named representation items can not be reduced to sets, since
// outside references are already set
bool nonamedparts = true;
for(PRCRepresentationItemList::const_iterator it=part_definition->representation_item.begin(); it!=part_definition->representation_item.end(); it++)
{
if (!(*it)->name.empty())
{
nonamedparts = false;
break;
}
}
lastgroupname.clear();
lastgroupnames.clear();
// First option - reduce to one element in parent
if (parent_part_definition && product_occurrence->index_son_occurrence.empty() &&
part_definition->representation_item.size() == 1 &&
( name.empty() || part_definition->representation_item.front()->name.empty() ) &&
( !group.transform || part_definition->representation_item.front()->index_local_coordinate_system==m1) )
{
if(part_definition->representation_item.front()->name.empty() )
part_definition->representation_item.front()->name = name;
if(part_definition->representation_item.front()->index_local_coordinate_system==m1)
part_definition->representation_item.front()->index_local_coordinate_system = addTransform(group.transform);
lastgroupname = calculate_unique_name(part_definition->representation_item.front(), parent_product_occurrence);
parent_part_definition->addRepresentationItem(part_definition->representation_item.front());
part_definition->representation_item.clear();
delete product_occurrence; product_occurrence = NULL;
delete part_definition; part_definition = NULL;
}
// Second option - reduce to a set
else if (parent_part_definition && product_occurrence->index_son_occurrence.empty() &&
!part_definition->representation_item.empty() &&
!group.options.do_break && nonamedparts)
{
PRCSet *set = new PRCSet(name);
set->index_local_coordinate_system = addTransform(group.transform);
lastgroupname = calculate_unique_name(set, parent_product_occurrence);
for(PRCRepresentationItemList::iterator it=part_definition->representation_item.begin(); it!=part_definition->representation_item.end(); it++)
{
lastgroupnames.push_back(calculate_unique_name(*it, parent_product_occurrence));
set->addRepresentationItem(*it);
}
part_definition->representation_item.clear();
parent_part_definition->addSet(set);
delete product_occurrence; product_occurrence = NULL;
delete part_definition; part_definition = NULL;
}
// Third option - create product
else if ( !product_occurrence->index_son_occurrence.empty() || !part_definition->representation_item.empty())
{
// if everything is enclosed in one group - drop the root group
if (parent_product_occurrence == NULL && group.transform == NULL &&
part_definition->representation_item.empty() && product_occurrence->index_son_occurrence.size()==1) {
delete part_definition; part_definition = NULL;
delete product_occurrence; product_occurrence = NULL;
}
else
{
lastgroupname = calculate_unique_name(product_occurrence, NULL);
if (part_definition->representation_item.empty()) {
delete part_definition; part_definition = NULL;
}
else
{
for(PRCRepresentationItemList::const_iterator it=part_definition->representation_item.begin(); it!=part_definition->representation_item.end(); it++)
if ((*it)->name.empty())
lastgroupnames.push_back(calculate_unique_name(*it, product_occurrence));
product_occurrence->index_part = addPartDefinition(part_definition);
}
if (group.transform) {
product_occurrence->location = group.transform;
group.transform = NULL;
}
if (parent_product_occurrence) {
parent_product_occurrence->index_son_occurrence.push_back(addProductOccurrence(product_occurrence));
}
else {
addProductOccurrence(product_occurrence);
}
}
}
// Last case - absolutely nothing to do
else
{
delete product_occurrence; product_occurrence = NULL;
delete part_definition; part_definition = NULL;
}
}
std::string oPRCFile::calculate_unique_name(const ContentPRCBase *prc_entity,const ContentPRCBase *prc_occurence)
{
std::stringstream ss (std::stringstream::in | std::stringstream::out);
uint8_t *serialization_buffer = NULL;
PRCbitStream serialization(serialization_buffer,0u);
const PRCFileStructure *pfile_structure = fileStructures[0];
const PRCUniqueId& uuid = pfile_structure->file_structure_uuid;
// ConvertUniqueIdentifierToString (prc_entity)
// SerializeCompressedUniqueId (file_structure)
serialization << uuid.id0 << uuid.id1 << uuid.id2 << uuid.id3;
// WriteUnsignedInteger (type)
serialization << prc_entity->getType();
// WriteUnsignedInteger (unique_identifier)
serialization << prc_entity->getPRCID();
if (prc_occurence)
{
// serialization_buffer = Flush serialization (serialization)
{
const uint32_t size_serialization = serialization.getSize();
while(size_serialization == serialization.getSize())
serialization << false;
}
// ConvertUniqueIdentifierToString (prc_occurrence_unique_id)
// SerializeCompressedUniqueId (file_structure)
serialization << uuid.id0 << uuid.id1 << uuid.id2 << uuid.id3;
// WriteUnsignedInteger (type)
serialization << (uint32_t)PRC_TYPE_ASM_ProductOccurence;
// WriteUnsignedInteger (unique_identifier)
serialization << prc_occurence->getPRCID();
}
ss << (prc_entity->name.empty()?"node":prc_entity->name) << '.';
const uint32_t size_serialization = serialization.getSize();
for(size_t j=0; j<size_serialization; j++)
ss << hex << setfill('0') << setw(2) << (uint32_t)(serialization_buffer[j]);
return ss.str();
}
bool oPRCFile::finish()
{
if(groups.size()!=1) {
fputs("begingroup without matching endgroup",stderr);
exit(1);
}
doGroup(groups.top());
// write each section's bit data
fileStructures[0]->prepare();
SerializeModelFileData
// create the header
// fill out enough info so that sizes can be computed correctly
header.number_of_file_structures = number_of_file_structures;
header.fileStructureInformation = new PRCFileStructureInformation[number_of_file_structures];
for(uint32_t i = 0; i < number_of_file_structures; ++i)
{
header.fileStructureInformation[i].UUID = fileStructures[i]->file_structure_uuid;
header.fileStructureInformation[i].reserved = 0;
header.fileStructureInformation[i].number_of_offsets = 6;
header.fileStructureInformation[i].offsets = new uint32_t[6];
}
header.minimal_version_for_read = PRCVersion;
header.authoring_version = PRCVersion;
makeFileUUID(header.file_structure_uuid);
makeAppUUID(header.application_uuid);
header.file_size = getSize();
header.model_file_offset = header.file_size - modelFile_out.getSize();
uint32_t currentOffset = header.getSize();
for(uint32_t i = 0; i < number_of_file_structures; ++i)
{
for(size_t j=0; j<6; j++)
{
header.fileStructureInformation[i].offsets[j] = currentOffset;
currentOffset += fileStructures[i]->sizes[j];
}
}
// write the data
header.write(output);
for(uint32_t i = 0; i < number_of_file_structures; ++i)
{
fileStructures[i]->write(output);
}
modelFile_out.write(output);
output.flush();
for(uint32_t i = 0; i < number_of_file_structures; ++i)
delete[] header.fileStructureInformation[i].offsets;
delete[] header.fileStructureInformation;
return true;
}
uint32_t oPRCFile::getSize()
{
uint32_t size = header.getSize();
for(uint32_t i = 0; i < number_of_file_structures; ++i)
{
size += fileStructures[i]->getSize();
}
size += modelFile_out.getSize();
return size;
}
uint32_t PRCFileStructure::addPicture(EPRCPictureDataFormat format, uint32_t size, const uint8_t *p, uint32_t width, uint32_t height, std::string name)
{
uint8_t *data = NULL;
uint32_t components=0;
PRCPicture picture(name);
if(size==0 || p==NULL)
{ cerr << "image not set" << endl; return m1; }
PRCUncompressedFile* uncompressed_file = new PRCUncompressedFile;
if(format==KEPRCPicture_PNG || format==KEPRCPicture_JPG)
{
data = new uint8_t[size];
memcpy(data, p, size);
uncompressed_files.push_back(uncompressed_file);
uncompressed_files.back()->file_size = size;
uncompressed_files.back()->data = data;
picture.format = format;
picture.uncompressed_file_index = static_cast<uint32_t>(uncompressed_files.size()-1);
picture.pixel_width = 0; // width and height are ignored for JPG and PNG pictures - but let us keep things clean
picture.pixel_height = 0;
pictures.push_back(picture);
return static_cast<uint32_t>(pictures.size()-1);
}
switch(format)
{
case KEPRCPicture_BITMAP_RGB_BYTE:
components = 3; break;
case KEPRCPicture_BITMAP_RGBA_BYTE:
components = 4; break;
case KEPRCPicture_BITMAP_GREY_BYTE:
components = 1; break;
case KEPRCPicture_BITMAP_GREYA_BYTE:
components = 2; break;
default:
{ cerr << "unknown picture format" << endl; return m1; }
}
if(width==0 || height==0)
{ cerr << "width or height parameter not set" << endl; return m1; }
if (size < width*height*components)
{ cerr << "image too small" << endl; return m1; }
{
uint32_t compressedDataSize = 0;
const int CHUNK= 1024; // is this reasonable?
z_stream strm;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
if(deflateInit(&strm,Z_DEFAULT_COMPRESSION) != Z_OK)
{ cerr << "Compression initialization failed" << endl; return m1; }
unsigned int sizeAvailable = deflateBound(&strm,size);
uint8_t *compressedData = (uint8_t*) malloc(sizeAvailable);
strm.avail_in = size;
strm.next_in = (unsigned char*)p;
strm.next_out = (unsigned char*)compressedData;
strm.avail_out = sizeAvailable;
int code;
unsigned int chunks = 0;
while((code = deflate(&strm,Z_FINISH)) == Z_OK)
{
++chunks;
// strm.avail_out should be 0 if we got Z_OK
compressedDataSize = sizeAvailable - strm.avail_out;
compressedData = (uint8_t*) realloc(compressedData,CHUNK*chunks);
strm.next_out = (Bytef*)(compressedData + compressedDataSize);
strm.avail_out += CHUNK;
sizeAvailable += CHUNK;
}
compressedDataSize = sizeAvailable-strm.avail_out;
if(code != Z_STREAM_END)
{
deflateEnd(&strm);
free(compressedData);
{ cerr << "Compression error" << endl; return m1; }
}
deflateEnd(&strm);
size = compressedDataSize;
data = new uint8_t[compressedDataSize];
memcpy(data, compressedData, compressedDataSize);
free(compressedData);
}
uncompressed_files.push_back(uncompressed_file);
uncompressed_files.back()->file_size = size;
uncompressed_files.back()->data = data;
picture.format = format;
picture.uncompressed_file_index = static_cast<uint32_t>(uncompressed_files.size()-1);
picture.pixel_width = width;
picture.pixel_height = height;
pictures.push_back(picture);
return static_cast<uint32_t>(pictures.size()-1);
}
uint32_t PRCFileStructure::addTextureDefinition(PRCTextureDefinition*& pTextureDefinition)
{
texture_definitions.push_back(pTextureDefinition);
pTextureDefinition = NULL;
return static_cast<uint32_t>(texture_definitions.size()-1);
}
uint32_t PRCFileStructure::addRgbColor(const PRCRgbColor &color)
{
colors.push_back(color);
return 3*static_cast<uint32_t>(colors.size()-1);
}
uint32_t PRCFileStructure::addRgbColorUnique(const PRCRgbColor &color)
{
for(uint32_t i = 0; i < colors.size(); ++i)
{
if(colors[i] == color)
return 3*i;
}
colors.push_back(color);
return 3*static_cast<uint32_t>(colors.size()-1);
}
uint32_t oPRCFile::addColor(const PRCRgbColor &color)
{
PRCcolorMap::const_iterator pColor = colorMap.find(color);
if(pColor!=colorMap.end())
return pColor->second;
// color_index = addRgbColorUnique(color);
const uint32_t color_index = fileStructures[0]->addRgbColor(color);
colorMap.insert(make_pair(color,color_index));
return color_index;
}
uint32_t oPRCFile::addColour(const RGBAColour &colour)
{
PRCcolourMap::const_iterator pColour = colourMap.find(colour);
if(pColour!=colourMap.end())
return pColour->second;
const uint32_t color_index = addColor(PRCRgbColor(colour.R, colour.G, colour.B));
PRCStyle *style = new PRCStyle();
style->line_width = 1.0;
style->is_vpicture = false;
style->line_pattern_vpicture_index = 0;
style->is_material = false;
style->color_material_index = color_index;
style->is_transparency_defined = (colour.A < 1.0);
style->transparency = (uint8_t)(colour.A * 256);
style->additional = 0;
const uint32_t style_index = fileStructures[0]->addStyle(style);
colourMap.insert(make_pair(colour,style_index));
return style_index;
}
uint32_t oPRCFile::addColourWidth(const RGBAColour &colour, double width)
{
RGBAColourWidth colourwidth(colour.R, colour.G, colour.B, colour.A, width);
PRCcolourwidthMap::const_iterator pColour = colourwidthMap.find(colourwidth);
if(pColour!=colourwidthMap.end())
return pColour->second;
const uint32_t color_index = addColor(PRCRgbColor(colour.R, colour.G, colour.B));
PRCStyle *style = new PRCStyle();
style->line_width = width;
style->is_vpicture = false;
style->line_pattern_vpicture_index = 0;
style->is_material = false;
style->color_material_index = color_index;
style->is_transparency_defined = (colour.A < 1.0);
style->transparency = (uint8_t)(colour.A * 256);
style->additional = 0;
const uint32_t style_index = fileStructures[0]->addStyle(style);
colourwidthMap.insert(make_pair(colourwidth,style_index));
return style_index;
}
uint32_t oPRCFile::addTransform(PRCGeneralTransformation3d*& transform)
{
if(!transform)
return m1;
PRCtransformMap::const_iterator pTransform = transformMap.find(*transform);
if(pTransform!=transformMap.end())
return pTransform->second;
PRCCoordinateSystem *coordinateSystem = new PRCCoordinateSystem();
bool transform_replaced = false;
if( transform->M(0,1)==0 && transform->M(0,2)==0 &&
transform->M(1,0)==0 && transform->M(1,2)==0 &&
transform->M(2,0)==0 && transform->M(2,1)==0 &&
transform->M(3,0)==0 && transform->M(3,1)==0 && transform->M(3,2)==0 && transform->M(3,3)==1 )
{
transform_replaced = true;
PRCCartesianTransformation3d *carttransform = new PRCCartesianTransformation3d;
// if(transform->M(0,3)==0 && transform->M(1,3)==0 && transform->M(1,3)==0 &&
// transform->M(0,0)==1 && transform->M(1,1)==1 && transform->M(2,2)==1 )
// carttransform->behaviour = PRC_TRANSFORMATION_Identity;
if(transform->M(0,3)!=0 || transform->M(1,3)!=0 || transform->M(2,3)!=0)
{
carttransform->behaviour |= PRC_TRANSFORMATION_Translate;
carttransform->origin.Set(transform->M(0,3),transform->M(1,3),transform->M(2,3));
}
if(transform->M(0,0)!=transform->M(1,1) || transform->M(0,0)!=transform->M(2,2))
{
carttransform->behaviour |= PRC_TRANSFORMATION_NonUniformScale;
carttransform->scale.Set(transform->M(0,0),transform->M(1,1),transform->M(2,2));
}
else
if(transform->M(0,0)!=1)
{
carttransform->behaviour |= PRC_TRANSFORMATION_Scale;
carttransform->uniform_scale=transform->M(0,0);
}
coordinateSystem->axis_set = carttransform;
}
else
coordinateSystem->axis_set = transform;
const uint32_t coordinate_system_index = fileStructures[0]->addCoordinateSystem(coordinateSystem);
transformMap.insert(make_pair(*transform,coordinate_system_index));
if(transform_replaced)
delete transform;
transform = NULL;
return coordinate_system_index;
}
uint32_t oPRCFile::addTransform(const double* t)
{
if(!t)
return m1;
PRCGeneralTransformation3d* transform = new PRCGeneralTransformation3d(t);
return addTransform(transform);
}
uint32_t oPRCFile::addTransform(const double origin[3], const double x_axis[3], const double y_axis[3], double scale)
{
PRCCartesianTransformation3d* transform = new PRCCartesianTransformation3d(origin, x_axis, y_axis, scale);
if(transform->behaviour==PRC_TRANSFORMATION_Identity)
return m1;
PRCCoordinateSystem *coordinateSystem = new PRCCoordinateSystem();
coordinateSystem->axis_set = transform;
const uint32_t coordinate_system_index = fileStructures[0]->addCoordinateSystem(coordinateSystem);
return coordinate_system_index;
}
uint32_t oPRCFile::addMaterial(const PRCmaterial& m)
{
uint32_t material_index = m1;
const PRCmaterialgeneric materialgeneric(m);
PRCmaterialgenericMap::const_iterator pMaterialgeneric = materialgenericMap.find(materialgeneric);
if(pMaterialgeneric!=materialgenericMap.end())
material_index = pMaterialgeneric->second;
else
{
PRCMaterialGeneric *materialGeneric = new PRCMaterialGeneric();
const PRCRgbColor ambient(m.ambient.R, m.ambient.G, m.ambient.B);
materialGeneric->ambient = addColor(ambient);
const PRCRgbColor diffuse(m.diffuse.R, m.diffuse.G, m.diffuse.B);
materialGeneric->diffuse = addColor(diffuse);
const PRCRgbColor emissive(m.emissive.R, m.emissive.G, m.emissive.B);
materialGeneric->emissive = addColor(emissive);
const PRCRgbColor specular(m.specular.R, m.specular.G, m.specular.B);
materialGeneric->specular = addColor(specular);
materialGeneric->shininess = m.shininess;
materialGeneric->ambient_alpha = m.ambient.A;
materialGeneric->diffuse_alpha = m.diffuse.A;
materialGeneric->emissive_alpha = m.emissive.A;
materialGeneric->specular_alpha = m.specular.A;
material_index = addMaterialGeneric(materialGeneric);
materialgenericMap.insert(make_pair(materialgeneric,material_index));
}
uint32_t color_material_index = m1;
if(m.picture_data!=NULL)
{
uint32_t picture_index = m1;
PRCpicture picture(m);
PRCpictureMap::const_iterator pPicture = pictureMap.find(picture);
if(pPicture!=pictureMap.end())
picture_index = pPicture->second;
else
{
picture_index = addPicture(picture);
uint8_t* data = new uint8_t[picture.size];
memcpy(data,picture.data,picture.size);
picture.data = data;
pictureMap.insert(make_pair(picture,picture_index));
}
uint32_t texture_definition_index = m1;
PRCtexturedefinition texturedefinition(picture_index, m);
PRCtexturedefinitionMap::const_iterator pTexturedefinition = texturedefinitionMap.find(texturedefinition);
if(pTexturedefinition!=texturedefinitionMap.end())
texture_definition_index = pTexturedefinition->second;
else
{
PRCTextureDefinition *TextureDefinition = new PRCTextureDefinition;
if (m.picture_size==216688 && m.picture_format==KEPRCPicture_JPG)
TextureDefinition->texture_mapping_attribute=PRC_TEXTURE_MAPPING_OPACITY;
TextureDefinition->picture_index = picture_index;
TextureDefinition->texture_function = m.picture_replace ? KEPRCTextureFunction_Replace : KEPRCTextureFunction_Modulate;
TextureDefinition->texture_wrapping_mode_S = m.picture_repeat ? KEPRCTextureWrappingMode_Repeat : KEPRCTextureWrappingMode_ClampToEdge;
TextureDefinition->texture_wrapping_mode_T = m.picture_repeat ? KEPRCTextureWrappingMode_Repeat : KEPRCTextureWrappingMode_ClampToEdge;
TextureDefinition->texture_mapping_attribute_components = (m.picture_format==KEPRCPicture_BITMAP_RGB_BYTE || m.picture_format==KEPRCPicture_JPG) ? PRC_TEXTURE_MAPPING_COMPONENTS_RGB : PRC_TEXTURE_MAPPING_COMPONENTS_RGBA;
texture_definition_index = addTextureDefinition(TextureDefinition);
texturedefinitionMap.insert(make_pair(texturedefinition,texture_definition_index));
}
uint32_t texture_application_index = m1;
const PRCtextureapplication textureapplication(material_index, texture_definition_index);
PRCtextureapplicationMap::const_iterator pTextureapplication = textureapplicationMap.find(textureapplication);
if(pTextureapplication!=textureapplicationMap.end())
texture_application_index = pTextureapplication->second;
else
{
PRCTextureApplication *TextureApplication = new PRCTextureApplication;
TextureApplication->material_generic_index = material_index;
TextureApplication->texture_definition_index = texture_definition_index;
texture_application_index = addTextureApplication(TextureApplication);
textureapplicationMap.insert(make_pair(textureapplication,texture_application_index));
}
color_material_index = texture_application_index;
}
else
color_material_index = material_index;
uint32_t style_index = m1;
PRCstyle style(0,m.alpha,true,color_material_index);
PRCstyleMap::const_iterator pStyle = styleMap.find(style);
if(pStyle!=styleMap.end())
style_index = pStyle->second;
else
{
PRCStyle *Style = new PRCStyle();
Style->line_width = 0.0;
Style->is_vpicture = false;
Style->line_pattern_vpicture_index = 0;
Style->is_material = true;
Style->is_transparency_defined = (m.alpha < 1.0);
Style->transparency = (uint8_t)(m.alpha * 256);
Style->additional = 0;
Style->color_material_index = color_material_index;
style_index = addStyle(Style);
styleMap.insert(make_pair(style,style_index));
}
// materialMap.insert(make_pair(material,style_index));
return style_index;
}
void oPRCFile::begingroup(const char *name, PRCoptions *options,
const double* t)
{
const PRCgroup &parent_group = groups.top();
groups.push(PRCgroup());
PRCgroup &group = groups.top();
group.name=name;
if(options) group.options=*options;
if(t&&!isid(t))
group.transform = new PRCGeneralTransformation3d(t);
group.product_occurrence = new PRCProductOccurrence(name);
group.parent_product_occurrence = parent_group.product_occurrence;
group.part_definition = new PRCPartDefinition;
group.parent_part_definition = parent_group.part_definition;
}
void oPRCFile::endgroup()
{
if(groups.size()<2) {
fputs("begingroup without matching endgroup",stderr);
exit(1);
}
doGroup(groups.top());
groups.pop();
// std::cout << lastgroupname << std::endl;
// for(std::vector<std::string>::const_iterator it=lastgroupnames.begin(); it!=lastgroupnames.end(); it++)
// std::cout << " " << *it << std::endl;
}
PRCgroup& oPRCFile::findGroup()
{
return groups.top();
}
void oPRCFile::addPoints(uint32_t n, const double P[][3], const RGBAColour &c, double w)
{
if(n==0 || P==NULL)
return;
PRCgroup &group = findGroup();
PRCPointSet *pointset = new PRCPointSet();
group.pointsets.push_back(pointset);
pointset->index_of_line_style = addColourWidth(c,w);
pointset->point.reserve(n);
for(uint32_t i=0; i<n; i++)
pointset->point.push_back(PRCVector3d(P[i][0],P[i][1],P[i][2]));
}
void oPRCFile::useMesh(uint32_t tess_index, uint32_t style_index, const double origin[3], const double x_axis[3], const double y_axis[3], double scale)
{
PRCgroup &group = findGroup();
PRCPolyBrepModel *polyBrepModel = new PRCPolyBrepModel();
polyBrepModel->index_local_coordinate_system = addTransform(origin, x_axis, y_axis, scale);
polyBrepModel->index_tessellation = tess_index;
polyBrepModel->is_closed = group.options.closed;
polyBrepModel->index_of_line_style = style_index;
group.polymodels.push_back(polyBrepModel);
}
void oPRCFile::useMesh(uint32_t tess_index, uint32_t style_index, const double* t)
{
PRCgroup &group = findGroup();
PRCPolyBrepModel *polyBrepModel = new PRCPolyBrepModel();
polyBrepModel->index_local_coordinate_system = addTransform(t);
polyBrepModel->index_tessellation = tess_index;
polyBrepModel->is_closed = group.options.closed;
polyBrepModel->index_of_line_style = style_index;
group.polymodels.push_back(polyBrepModel);
}
void oPRCFile::useLines(uint32_t tess_index, uint32_t style_index, const double origin[3], const double x_axis[3], const double y_axis[3], double scale)
{
PRCgroup &group = findGroup();
PRCPolyWire *polyWire = new PRCPolyWire();
polyWire->index_local_coordinate_system = addTransform(origin, x_axis, y_axis, scale);
polyWire->index_tessellation = tess_index;
polyWire->index_of_line_style = style_index;
group.polywires.push_back(polyWire);
}
void oPRCFile::useLines(uint32_t tess_index, uint32_t style_index, const double* t)
{
PRCgroup &group = findGroup();
PRCPolyWire *polyWire = new PRCPolyWire();
polyWire->index_local_coordinate_system = addTransform(t);
polyWire->index_tessellation = tess_index;
polyWire->index_of_line_style = style_index;
group.polywires.push_back(polyWire);
}
void oPRCFile::addQuads(uint32_t nP, const double P[][3], uint32_t nI, const uint32_t PI[][4], const PRCmaterial &m,
uint32_t nN, const double N[][3], const uint32_t NI[][4],
uint32_t nT, const double T[][2], const uint32_t TI[][4],
uint32_t nC, const RGBAColour C[], const uint32_t CI[][4],
uint32_t nM, const PRCmaterial M[], const uint32_t MI[], double ca)
{
if(nP==0 || P==NULL || nI==0 || PI==NULL)
return;
const uint32_t tess_index = createQuadMesh(nP, P, nI, PI, m, nN, N, NI, nT, T, TI, nC, C, CI, nM, M, MI, ca);
useMesh(tess_index,m1);
}
uint32_t oPRCFile::createQuadMesh(uint32_t nP, const double P[][3], uint32_t nI, const uint32_t PI[][4], uint32_t style_index,
uint32_t nN, const double N[][3], const uint32_t NI[][4],
uint32_t nT, const double T[][2], const uint32_t TI[][4],
uint32_t nC, const RGBAColour C[], const uint32_t CI[][4],
uint32_t nS, const uint32_t S[], const uint32_t SI[], double ca)
{
if(nP==0 || P==NULL || nI==0 || PI==NULL)
return m1;
const bool triangle_color = (nS != 0 && S != NULL && SI != NULL);
const bool vertex_color = (nC != 0 && C != NULL && CI != NULL);
const bool has_normals = (nN != 0 && N != NULL && NI != NULL);
const bool textured = (nT != 0 && T != NULL && TI != NULL);
PRC3DTess *tess = new PRC3DTess();
PRCTessFace *tessFace = new PRCTessFace();
tessFace->used_entities_flag = textured ? PRC_FACETESSDATA_TriangleTextured : PRC_FACETESSDATA_Triangle;
tessFace->number_of_texture_coordinate_indexes = textured ? 1 : 0;
tess->coordinates.reserve(3*nP);
for(uint32_t i=0; i<nP; i++)
{
tess->coordinates.push_back(P[i][0]);
tess->coordinates.push_back(P[i][1]);
tess->coordinates.push_back(P[i][2]);
}
if(has_normals)
{
tess->normal_coordinate.reserve(3*nN);
for(uint32_t i=0; i<nN; i++)
{
tess->normal_coordinate.push_back(N[i][0]);
tess->normal_coordinate.push_back(N[i][1]);
tess->normal_coordinate.push_back(N[i][2]);
}
}
else
tess->crease_angle = ca;
if(textured)
{
tess->texture_coordinate.reserve(2*nT);
for(uint32_t i=0; i<nT; i++)
{
tess->texture_coordinate.push_back(T[i][0]);
tess->texture_coordinate.push_back(T[i][1]);
}
}
tess->triangulated_index.reserve(2*(3*nI+(has_normals?3:0)*nI+(textured?3:0)*nI));
for(uint32_t i=0; i<nI; i++)
{
// first triangle
if(has_normals)
tess->triangulated_index.push_back(3*NI[i][0]);
if(textured)
tess->triangulated_index.push_back(2*TI[i][0]);
tess->triangulated_index.push_back(3*PI[i][0]);
if(has_normals)
tess->triangulated_index.push_back(3*NI[i][1]);
if(textured)
tess->triangulated_index.push_back(2*TI[i][1]);
tess->triangulated_index.push_back(3*PI[i][1]);
if(has_normals)
tess->triangulated_index.push_back(3*NI[i][3]);
if(textured)
tess->triangulated_index.push_back(2*TI[i][3]);
tess->triangulated_index.push_back(3*PI[i][3]);
// second triangle
if(has_normals)
tess->triangulated_index.push_back(3*NI[i][1]);
if(textured)
tess->triangulated_index.push_back(2*TI[i][1]);
tess->triangulated_index.push_back(3*PI[i][1]);
if(has_normals)
tess->triangulated_index.push_back(3*NI[i][2]);
if(textured)
tess->triangulated_index.push_back(2*TI[i][2]);
tess->triangulated_index.push_back(3*PI[i][2]);
if(has_normals)
tess->triangulated_index.push_back(3*NI[i][3]);
if(textured)
tess->triangulated_index.push_back(2*TI[i][3]);
tess->triangulated_index.push_back(3*PI[i][3]);
}
tessFace->sizes_triangulated.push_back(2*nI);
if(triangle_color)
{
tessFace->line_attributes.reserve(2*nI);
for(uint32_t i=0; i<nI; i++)
{
tessFace->line_attributes.push_back(SI[i]);
tessFace->line_attributes.push_back(SI[i]);
}
}
else
{
tessFace->line_attributes.push_back(style_index);
}
if(vertex_color)
{
tessFace->is_rgba=false;
for(uint32_t i=0; i<nI; i++)
if(1.0 != C[CI[i][0]].A || 1.0 != C[CI[i][1]].A || 1.0 != C[CI[i][2]].A)
{
tessFace->is_rgba=true;
break;
}
tessFace->rgba_vertices.reserve(2*(tessFace->is_rgba?4:3)*3*nI);
for(uint32_t i=0; i<nI; i++)
{
// first triangle
tessFace->rgba_vertices.push_back(byte(C[CI[i][0]].R));
tessFace->rgba_vertices.push_back(byte(C[CI[i][0]].G));
tessFace->rgba_vertices.push_back(byte(C[CI[i][0]].B));
if(tessFace->is_rgba)
tessFace->rgba_vertices.push_back(byte(C[CI[i][0]].A));
tessFace->rgba_vertices.push_back(byte(C[CI[i][1]].R));
tessFace->rgba_vertices.push_back(byte(C[CI[i][1]].G));
tessFace->rgba_vertices.push_back(byte(C[CI[i][1]].B));
if(tessFace->is_rgba)
tessFace->rgba_vertices.push_back(byte(C[CI[i][1]].A));
tessFace->rgba_vertices.push_back(byte(C[CI[i][3]].R));
tessFace->rgba_vertices.push_back(byte(C[CI[i][3]].G));
tessFace->rgba_vertices.push_back(byte(C[CI[i][3]].B));
if(tessFace->is_rgba)
tessFace->rgba_vertices.push_back(byte(C[CI[i][3]].A));
// second triangle
tessFace->rgba_vertices.push_back(byte(C[CI[i][1]].R));
tessFace->rgba_vertices.push_back(byte(C[CI[i][1]].G));
tessFace->rgba_vertices.push_back(byte(C[CI[i][1]].B));
if(tessFace->is_rgba)
tessFace->rgba_vertices.push_back(byte(C[CI[i][1]].A));
tessFace->rgba_vertices.push_back(byte(C[CI[i][2]].R));
tessFace->rgba_vertices.push_back(byte(C[CI[i][2]].G));
tessFace->rgba_vertices.push_back(byte(C[CI[i][2]].B));
if(tessFace->is_rgba)
tessFace->rgba_vertices.push_back(byte(C[CI[i][2]].A));
tessFace->rgba_vertices.push_back(byte(C[CI[i][3]].R));
tessFace->rgba_vertices.push_back(byte(C[CI[i][3]].G));
tessFace->rgba_vertices.push_back(byte(C[CI[i][3]].B));
if(tessFace->is_rgba)
tessFace->rgba_vertices.push_back(byte(C[CI[i][3]].A));
}
}
tess->addTessFace(tessFace);
const uint32_t tess_index = add3DTess(tess);
return tess_index;
}
/*
void oPRCFile::addTriangle(const double P[][3], const double T[][2], uint32_t style_index)
{
PRCgroup &group = findGroup();
group.triangles.push_back(PRCtesstriangle());
PRCtesstriangle &triangle = group.triangles.back();
for(size_t i = 0; i < 3; i++)
{
triangle.vertices[i].x = P[i][0];
triangle.vertices[i].y = P[i][1];
triangle.vertices[i].z = P[i][2];
triangle.texcoords[i].x = T[i][0];
triangle.texcoords[i].y = T[i][1];
}
triangle.style = style_index;
}
*/
void oPRCFile::addLines(uint32_t nP, const double P[][3], uint32_t nI, const uint32_t PI[],
const RGBAColour& c, double w,
bool segment_color, uint32_t nC, const RGBAColour C[], uint32_t nCI, const uint32_t CI[])
{
if(nP==0 || P==NULL || nI==0 || PI==NULL)
return;
const uint32_t tess_index = createLines(nP, P, nI, PI, segment_color, nC, C, nCI, CI);
useLines(tess_index, c, w);
}
uint32_t oPRCFile::createLines(uint32_t nP, const double P[][3], uint32_t nI, const uint32_t PI[],
bool segment_color, uint32_t nC, const RGBAColour C[], uint32_t nCI, const uint32_t CI[])
{
if(nP==0 || P==NULL || nI==0 || PI==NULL)
return m1;
const bool vertex_color = (nC != 0 && C != NULL && CI != NULL);
PRC3DWireTess *tess = new PRC3DWireTess();
tess->coordinates.reserve(3*nP);
for(uint32_t i=0; i<nP; i++)
{
tess->coordinates.push_back(P[i][0]);
tess->coordinates.push_back(P[i][1]);
tess->coordinates.push_back(P[i][2]);
}
tess->wire_indexes.reserve(nI);
for(uint32_t i=0; i<nI;)
{
tess->wire_indexes.push_back(PI[i]);
const uint32_t ni = i+PI[i]+1;
for(i++; i<ni; i++)
tess->wire_indexes.push_back(3*PI[i]);
}
if(vertex_color)
{
tess->is_segment_color = segment_color;
tess->is_rgba=false;
for(uint32_t i=0; i<nCI; i++)
if(1.0 != C[CI[i]].A)
{
tess->is_rgba=true;
break;
}
tess->rgba_vertices.reserve((tess->is_rgba?4:3)*nCI);
for(uint32_t i=0; i<nCI; i++)
{
tess->rgba_vertices.push_back(byte(C[CI[i]].R));
tess->rgba_vertices.push_back(byte(C[CI[i]].G));
tess->rgba_vertices.push_back(byte(C[CI[i]].B));
if(tess->is_rgba)
tess->rgba_vertices.push_back(byte(C[CI[i]].A));
}
}
const uint32_t tess_index = add3DWireTess(tess);
return tess_index;
}
#define PRCFACETRANSFORM const double origin[3], const double x_axis[3], const double y_axis[3], double scale, const double* t
void oPRCFile::addHemisphere(double radius, const PRCmaterial &m, PRCFACETRANSFORM)
{
ADDFACE(PRCSphere)
SETTRANSF
surface->uv_domain.min.x = 0;
surface->uv_domain.max.x = 2*pi;
surface->uv_domain.min.y = 0;
surface->uv_domain.max.y = 0.5*pi;
surface->radius = radius;
}
void oPRCFile::addSphere(double radius, const PRCmaterial &m, PRCFACETRANSFORM)
{
ADDFACE(PRCSphere)
SETTRANSF
surface->uv_domain.min.x = 0;
surface->uv_domain.max.x = 2*pi;
surface->uv_domain.min.y =-0.5*pi;
surface->uv_domain.max.y = 0.5*pi;
surface->radius = radius;
}
void oPRCFile::addDisk(double radius, const PRCmaterial &m, PRCFACETRANSFORM)
{
ADDFACE(PRCRuled)
SETTRANSF
PRCCircle *first_curve = new PRCCircle;
first_curve->radius = radius;
surface->first_curve = first_curve;
PRCCircle *second_curve = new PRCCircle;
second_curve->radius = 0;
surface->second_curve = second_curve;
surface->uv_domain.min.x = 0;
surface->uv_domain.max.x = 1;
surface->uv_domain.min.y = 0;
surface->uv_domain.max.y = 2*pi;
surface->parameterization_on_v_coeff_a = -1;
surface->parameterization_on_v_coeff_b = 2*pi;
}
void oPRCFile::addCylinder(double radius, double height, const PRCmaterial &m, PRCFACETRANSFORM)
{
ADDFACE(PRCCylinder)
SETTRANSF
surface->uv_domain.min.x = 0;
surface->uv_domain.max.x = 2*pi;
surface->uv_domain.min.y = (height>0)?0:height;
surface->uv_domain.max.y = (height>0)?height:0;
surface->radius = radius;
}
void oPRCFile::addCone(double radius, double height, const PRCmaterial &m, PRCFACETRANSFORM)
{
ADDFACE(PRCCone)
SETTRANSF
surface->uv_domain.min.x = 0;
surface->uv_domain.max.x = 2*pi;
surface->uv_domain.min.y = (height>0)?0:height;
surface->uv_domain.max.y = (height>0)?height:0;
surface->bottom_radius = radius;
surface->semi_angle = -atan(radius/height);;
}
void oPRCFile::addTorus(double major_radius, double minor_radius, double angle1, double angle2, const PRCmaterial &m, PRCFACETRANSFORM)
{
ADDFACE(PRCTorus)
SETTRANSF
surface->uv_domain.min.x = (angle1/180)*pi;
surface->uv_domain.max.x = (angle2/180)*pi;
surface->uv_domain.min.y = 0;
surface->uv_domain.max.y = 2*pi;
surface->major_radius = major_radius;
surface->minor_radius = minor_radius;
}
#undef ADDWIRE
#undef SETTRANSF
uint32_t PRCFileStructure::addMaterialGeneric(PRCMaterialGeneric*& pMaterialGeneric)
{
materials.push_back(pMaterialGeneric);
pMaterialGeneric = NULL;
return static_cast<uint32_t>(materials.size()-1);
}
uint32_t PRCFileStructure::addTextureApplication(PRCTextureApplication*& pTextureApplication)
{
materials.push_back(pTextureApplication);
pTextureApplication = NULL;
return static_cast<uint32_t>(materials.size()-1);
}
uint32_t PRCFileStructure::addStyle(PRCStyle*& pStyle)
{
styles.push_back(pStyle);
pStyle = NULL;
return static_cast<uint32_t>(styles.size()-1);
}
uint32_t PRCFileStructure::addPartDefinition(PRCPartDefinition*& pPartDefinition)
{
part_definitions.push_back(pPartDefinition);
pPartDefinition = NULL;
return static_cast<uint32_t>(part_definitions.size()-1);
}
uint32_t PRCFileStructure::addProductOccurrence(PRCProductOccurrence*& pProductOccurrence)
{
product_occurrences.push_back(pProductOccurrence);
pProductOccurrence = NULL;
return static_cast<uint32_t>(product_occurrences.size()-1);
}
uint32_t PRCFileStructure::addTopoContext(PRCTopoContext*& pTopoContext)
{
contexts.push_back(pTopoContext);
pTopoContext = NULL;
return static_cast<uint32_t>(contexts.size()-1);
}
uint32_t PRCFileStructure::getTopoContext(PRCTopoContext*& pTopoContext)
{
pTopoContext = new PRCTopoContext;
contexts.push_back(pTopoContext);
return static_cast<uint32_t>(contexts.size()-1);
}
uint32_t PRCFileStructure::add3DTess(PRC3DTess*& p3DTess)
{
tessellations.push_back(p3DTess);
p3DTess = NULL;
return static_cast<uint32_t>(tessellations.size()-1);
}
uint32_t PRCFileStructure::add3DWireTess(PRC3DWireTess*& p3DWireTess)
{
tessellations.push_back(p3DWireTess);
p3DWireTess = NULL;
return static_cast<uint32_t>(tessellations.size()-1);
}
/*
uint32_t PRCFileStructure::addMarkupTess(PRCMarkupTess*& pMarkupTess)
{
tessellations.push_back(pMarkupTess);
pMarkupTess = NULL;
return tessellations.size()-1;
}
uint32_t PRCFileStructure::addMarkup(PRCMarkup*& pMarkup)
{
markups.push_back(pMarkup);
pMarkup = NULL;
return markups.size()-1;
}
uint32_t PRCFileStructure::addAnnotationItem(PRCAnnotationItem*& pAnnotationItem)
{
annotation_entities.push_back(pAnnotationItem);
pAnnotationItem = NULL;
return annotation_entities.size()-1;
}
*/
uint32_t PRCFileStructure::addCoordinateSystem(PRCCoordinateSystem*& pCoordinateSystem)
{
reference_coordinate_systems.push_back(pCoordinateSystem);
pCoordinateSystem = NULL;
return static_cast<uint32_t>(reference_coordinate_systems.size()-1);
}
uint32_t PRCFileStructure::addCoordinateSystemUnique(PRCCoordinateSystem*& pCoordinateSystem)
{
for(uint32_t i = 0; i < reference_coordinate_systems.size(); ++i)
{
if(*(reference_coordinate_systems[i])==*pCoordinateSystem) {
pCoordinateSystem = NULL;
return i;
}
}
reference_coordinate_systems.push_back(pCoordinateSystem);
pCoordinateSystem = NULL;
return static_cast<uint32_t>(reference_coordinate_systems.size()-1);
}
}