/*****
* path3.cc
* John Bowman
*
* Compute information for a three-dimensional path.
*****/

#include <cfloat>

#include "path3.h"
#include "util.h"
#include "camperror.h"
#include "mathop.h"

namespace camp {

using run::operator *;
using vm::array;

path3 nullpath3;

void checkEmpty3(Int n) {
 if(n == 0)
   reportError("nullpath3 has no points");
}

triple path3::point(double t) const
{
 checkEmpty3(n);

 Int i = Floor(t);
 Int iplus;
 t = fmod(t,1);
 if (t < 0) t += 1;

 if (cycles) {
   i = imod(i,n);
   iplus = imod(i+1,n);
 }
 else if (i < 0)
   return nodes[0].point;
 else if (i >= n-1)
   return nodes[n-1].point;
 else
   iplus = i+1;

 double one_t = 1.0-t;

 triple a = nodes[i].point,
   b = nodes[i].post,
   c = nodes[iplus].pre,
   d = nodes[iplus].point,
   ab   = one_t*a   + t*b,
   bc   = one_t*b   + t*c,
   cd   = one_t*c   + t*d,
   abc  = one_t*ab  + t*bc,
   bcd  = one_t*bc  + t*cd,
   abcd = one_t*abc + t*bcd;

 return abcd;
}

triple path3::precontrol(double t) const
{
 checkEmpty3(n);

 Int i = Floor(t);
 Int iplus;
 t = fmod(t,1);
 if (t < 0) t += 1;

 if (cycles) {
   i = imod(i,n);
   iplus = imod(i+1,n);
 }
 else if (i < 0)
   return nodes[0].pre;
 else if (i >= n-1)
   return nodes[n-1].pre;
 else
   iplus = i+1;

 double one_t = 1.0-t;

 triple a = nodes[i].point,
   b = nodes[i].post,
   c = nodes[iplus].pre,
   ab   = one_t*a   + t*b,
   bc   = one_t*b   + t*c,
   abc  = one_t*ab  + t*bc;

 return (abc == a) ? nodes[i].pre : abc;
}


triple path3::postcontrol(double t) const
{
 checkEmpty3(n);

 Int i = Floor(t);
 Int iplus;
 t = fmod(t,1);
 if (t < 0) t += 1;

 if (cycles) {
   i = imod(i,n);
   iplus = imod(i+1,n);
 }
 else if (i < 0)
   return nodes[0].post;
 else if (i >= n-1)
   return nodes[n-1].post;
 else
   iplus = i+1;

 double one_t = 1.0-t;

 triple b = nodes[i].post,
   c = nodes[iplus].pre,
   d = nodes[iplus].point,
   bc   = one_t*b   + t*c,
   cd   = one_t*c   + t*d,
   bcd  = one_t*bc  + t*cd;

 return (bcd == d) ? nodes[iplus].post : bcd;
}

path3 path3::reverse() const
{
 mem::vector<solvedKnot3> nodes(n);
 Int len=length();
 for (Int i = 0, j = len; i < n; i++, j--) {
   nodes[i].pre = postcontrol(j);
   nodes[i].point = point(j);
   nodes[i].post = precontrol(j);
   nodes[i].straight = straight(j-1);
 }
 return path3(nodes, n, cycles);
}

path3 path3::subpath(Int a, Int b) const
{
 if(empty()) return path3();

 if (a > b) {
   const path3 &rp = reverse();
   Int len=length();
   path3 result = rp.subpath(len-a, len-b);
   return result;
 }

 if (!cycles) {
   if (a < 0) {
     a = 0;
     if(b < 0)
       b = 0;
   }
   if (b > n-1) {
     b = n-1;
     if(a > b)
       a = b;
   }
 }

 Int sn = b-a+1;
 mem::vector<solvedKnot3> nodes(sn);

 for (Int i = 0, j = a; j <= b; i++, j++) {
   nodes[i].pre = precontrol(j);
   nodes[i].point = point(j);
   nodes[i].post = postcontrol(j);
   nodes[i].straight = straight(j);
 }
 nodes[0].pre = nodes[0].point;
 nodes[sn-1].post = nodes[sn-1].point;

 return path3(nodes, sn);
}

inline triple split(double t, const triple& x, const triple& y) {
 return x+(y-x)*t;
}

inline void splitCubic(solvedKnot3 sn[], double t, const solvedKnot3& left_,
                      const solvedKnot3& right_)
{
 solvedKnot3 &left=(sn[0]=left_), &mid=sn[1], &right=(sn[2]=right_);
 if(left.straight) {
   mid.point=split(t,left.point,right.point);
   triple deltaL=third*(mid.point-left.point);
   left.post=left.point+deltaL;
   mid.pre=mid.point-deltaL;
   triple deltaR=third*(right.point-mid.point);
   mid.post=mid.point+deltaR;
   right.pre=right.point-deltaR;
   mid.straight=true;
 } else {
   triple x=split(t,left.post,right.pre); // m1
   left.post=split(t,left.point,left.post); // m0
   right.pre=split(t,right.pre,right.point); // m2
   mid.pre=split(t,left.post,x); // m3
   mid.post=split(t,x,right.pre); // m4
   mid.point=split(t,mid.pre,mid.post); // m5
 }
}

path3 path3::subpath(double a, double b) const
{
 if(empty()) return path3();

 if (a > b) {
   const path3 &rp = reverse();
   Int len=length();
   return rp.subpath(len-a, len-b);
 }

 solvedKnot3 aL, aR, bL, bR;
 if (!cycles) {
   if (a < 0) {
     a = 0;
     if (b < 0)
       b = 0;
   }
   if (b > n-1) {
     b = n-1;
     if (a > b)
       a = b;
   }
   aL = nodes[(Int)floor(a)];
   aR = nodes[(Int)ceil(a)];
   bL = nodes[(Int)floor(b)];
   bR = nodes[(Int)ceil(b)];
 } else {
   if(run::validInt(a) && run::validInt(b)) {
     aL = nodes[imod((Int) floor(a),n)];
     aR = nodes[imod((Int) ceil(a),n)];
     bL = nodes[imod((Int) floor(b),n)];
     bR = nodes[imod((Int) ceil(b),n)];
   } else reportError("invalid path3 index");
 }

 if (a == b) return path3(point(a));

 solvedKnot3 sn[3];
 path3 p = subpath(Ceil(a), Floor(b));
 if (a > floor(a)) {
   if (b < ceil(a)) {
     splitCubic(sn,a-floor(a),aL,aR);
     splitCubic(sn,(b-a)/(ceil(b)-a),sn[1],sn[2]);
     return path3(sn[0],sn[1]);
   }
   splitCubic(sn,a-floor(a),aL,aR);
   p=concat(path3(sn[1],sn[2]),p);
 }
 if (ceil(b) > b) {
   splitCubic(sn,b-floor(b),bL,bR);
   p=concat(p,path3(sn[0],sn[1]));
 }
 return p;
}

// Special case of subpath for paths of length 1 used by intersect.
void path3::halve(path3 &first, path3 &second) const
{
 solvedKnot3 sn[3];
 splitCubic(sn,0.5,nodes[0],nodes[1]);
 first=path3(sn[0],sn[1]);
 second=path3(sn[1],sn[2]);
}

// Calculate the coefficients of a Bezier derivative divided by 3.
static inline void derivative(triple& a, triple& b, triple& c,
                             const triple& z0, const triple& c0,
                             const triple& c1, const triple& z1)
{
 a=z1-z0+3.0*(c0-c1);
 b=2.0*(z0+c1)-4.0*c0;
 c=c0-z0;
}

bbox3 path3::bounds() const
{
 if(!box.empty) return box;

 if (empty()) {
   // No bounds
   return bbox3();
 }

 Int len=length();
 box.add(point(len));
 times=bbox3(len,len,len,len,len,len);

 for (Int i = 0; i < len; i++) {
   addpoint(box,i);
   if(straight(i)) continue;

   triple a,b,c;
   derivative(a,b,c,point(i),postcontrol(i),precontrol(i+1),point(i+1));

   // Check x coordinate
   quadraticroots x(a.getx(),b.getx(),c.getx());
   if(x.distinct != quadraticroots::NONE && goodroot(x.t1))
     addpoint(box,i+x.t1);
   if(x.distinct == quadraticroots::TWO && goodroot(x.t2))
     addpoint(box,i+x.t2);

   // Check y coordinate
   quadraticroots y(a.gety(),b.gety(),c.gety());
   if(y.distinct != quadraticroots::NONE && goodroot(y.t1))
     addpoint(box,i+y.t1);
   if(y.distinct == quadraticroots::TWO && goodroot(y.t2))
     addpoint(box,i+y.t2);

   // Check z coordinate
   quadraticroots z(a.getz(),b.getz(),c.getz());
   if(z.distinct != quadraticroots::NONE && goodroot(z.t1))
     addpoint(box,i+z.t1);
   if(z.distinct == quadraticroots::TWO && goodroot(z.t2))
     addpoint(box,i+z.t2);
 }
 return box;
}

// Return f evaluated at controlling vertex of bounding box of convex hull for
// similiar-triangle transform x'=x/z, y'=y/z, where z < 0.
double ratiobound(triple z0, triple c0, triple c1, triple z1,
                 double (*m)(double, double),
                 double (*f)(const triple&))
{
 double MX=m(m(m(-z0.getx(),-c0.getx()),-c1.getx()),-z1.getx());
 double MY=m(m(m(-z0.gety(),-c0.gety()),-c1.gety()),-z1.gety());
 double Z=m(m(m(z0.getz(),c0.getz()),c1.getz()),z1.getz());
 double MZ=m(m(m(-z0.getz(),-c0.getz()),-c1.getz()),-z1.getz());
 return m(f(triple(-MX,-MY,Z)),f(triple(-MX,-MY,-MZ)));
}

double bound(triple z0, triple c0, triple c1, triple z1,
            double (*m)(double, double),
            double (*f)(const triple&), double b, double fuzz, int depth)
{
 b=m(b,m(f(z0),f(z1)));
 if(m(-1.0,1.0)*(b-ratiobound(z0,c0,c1,z1,m,f)) >= -fuzz || depth == 0)
   return b;

 --depth;
 fuzz *= 2;

 triple m0=0.5*(z0+c0);
 triple m1=0.5*(c0+c1);
 triple m2=0.5*(c1+z1);
 triple m3=0.5*(m0+m1);
 triple m4=0.5*(m1+m2);
 triple m5=0.5*(m3+m4);

 // Check both Bezier subpaths.
 b=bound(z0,m0,m3,m5,m,f,b,fuzz,depth);
 return bound(m5,m4,m2,z1,m,f,b,fuzz,depth);
}

pair path3::ratio(double (*m)(double, double)) const
{
 double fuzz=Fuzz*(max()-min()).length();
 checkEmpty3(n);

 triple v=point((Int) 0);
 pair B=pair(xratio(v),yratio(v));

 Int n=length();
 for(Int i=0; i <= n; ++i) {
   if(straight(i)) {
     triple v=point(i);
     B=pair(m(B.getx(),xratio(v)),m(B.gety(),yratio(v)));
   } else {
     triple z0=point(i);
     triple c0=postcontrol(i);
     triple c1=precontrol(i+1);
     triple z1=point(i+1);
     B=pair(bound(z0,c0,c1,z1,m,xratio,B.getx(),fuzz),
            bound(z0,c0,c1,z1,m,yratio,B.gety(),fuzz));
   }
 }
 return B;
}

// {{{ Arclength Calculations

static triple a,b,c;

static double ds(double t)
{
 double dx=quadratic(a.getx(),b.getx(),c.getx(),t);
 double dy=quadratic(a.gety(),b.gety(),c.gety(),t);
 double dz=quadratic(a.getz(),b.getz(),c.getz(),t);
 return sqrt(dx*dx+dy*dy+dz*dz);
}

// Calculates arclength of a cubic Bezier curve using adaptive Simpson
// integration.
double arcLength(const triple& z0, const triple& c0, const triple& c1,
                const triple& z1)
{
 double integral;
 derivative(a,b,c,z0,c0,c1,z1);

 if(!simpson(integral,ds,0.0,1.0,DBL_EPSILON,1.0))
   reportError("nesting capacity exceeded in computing arclength");
 return integral;
}

double path3::cubiclength(Int i, double goal) const
{
 const triple& z0=point(i);
 const triple& z1=point(i+1);
 double L;
 if(straight(i)) {
   L=(z1-z0).length();
   return (goal < 0 || goal >= L) ? L : -goal/L;
 }

 double integral=arcLength(z0,postcontrol(i),precontrol(i+1),z1);

 L=3.0*integral;
 if(goal < 0 || goal >= L) return L;

 double t=goal/L;
 goal *= third;
 static double dxmin=sqrt(DBL_EPSILON);
 if(!unsimpson(goal,ds,0.0,t,100.0*DBL_EPSILON,integral,1.0,dxmin))
   reportError("nesting capacity exceeded in computing arctime");
 return -t;
}

double path3::arclength() const
{
 if (cached_length != -1) return cached_length;

 double L=0.0;
 for (Int i = 0; i < n-1; i++) {
   L += cubiclength(i);
 }
 if(cycles) L += cubiclength(n-1);
 cached_length = L;
 return cached_length;
}

double path3::arctime(double goal) const
{
 if (cycles) {
   if (goal == 0 || cached_length == 0) return 0;
   if (goal < 0)  {
     const path3 &rp = this->reverse();
     double result = -rp.arctime(-goal);
     return result;
   }
   if (cached_length > 0 && goal >= cached_length) {
     Int loops = (Int)(goal / cached_length);
     goal -= loops*cached_length;
     return loops*n+arctime(goal);
   }
 } else {
   if (goal <= 0)
     return 0;
   if (cached_length > 0 && goal >= cached_length)
     return n-1;
 }

 double l,L=0;
 for (Int i = 0; i < n-1; i++) {
   l = cubiclength(i,goal);
   if (l < 0)
     return (-l+i);
   else {
     L += l;
     goal -= l;
     if (goal <= 0)
       return i+1;
   }
 }
 if (cycles) {
   l = cubiclength(n-1,goal);
   if (l < 0)
     return -l+n-1;
   if (cached_length > 0 && cached_length != L+l) {
     reportError("arclength != length.\n"
                 "path3::arclength(double) must have broken semantics.\n"
                 "Please report this error.");
   }
   cached_length = L += l;
   goal -= l;
   return arctime(goal)+n;
 }
 else {
   cached_length = L;
   return length();
 }
}

// }}}

// {{{ Path3 Intersection Calculations

// Return all intersection times of path3 g with the triple v.
void intersections(std::vector<double>& T, const path3& g, const triple& v,
                  double fuzz)
{
 double fuzz2=fuzz*fuzz;
 Int n=g.length();
 bool cycles=g.cyclic();
 for(Int i=0; i < n; ++i) {
   // Check all directions to circumvent degeneracy.
   std::vector<double> r;
   roots(r,g.point(i).getx(),g.postcontrol(i).getx(),
         g.precontrol(i+1).getx(),g.point(i+1).getx(),v.getx());
   roots(r,g.point(i).gety(),g.postcontrol(i).gety(),
         g.precontrol(i+1).gety(),g.point(i+1).gety(),v.gety());
   roots(r,g.point(i).getz(),g.postcontrol(i).getz(),
         g.precontrol(i+1).getz(),g.point(i+1).getz(),v.getz());

   size_t m=r.size();
   for(size_t j=0 ; j < m; ++j) {
     double t=r[j];
     if(t >= -Fuzz2 && t <= 1.0+Fuzz2) {
       double s=i+t;
       if((g.point(s)-v).abs2() <= fuzz2) {
         if(cycles && s >= n-Fuzz2) s=0;
         T.push_back(s);
       }
     }
   }
 }
}

// An optimized implementation of intersections(g,p--q);
// if there are an infinite number of intersection points, the returned list is
// only guaranteed to include the endpoint times of the intersection.
void intersections(std::vector<double>& S, std::vector<double>& T,
                  const path3& g, const triple& p, double fuzz)
{
 std::vector<double> S1;
 intersections(S1,g,p,fuzz);
 size_t n=S1.size();
 for(size_t i=0; i < n; ++i) {
   S.push_back(S1[i]);
   T.push_back(0.0);
 }
}

void add(std::vector<double>& S, std::vector<double>& T, double s, double t,
        const path3& p, const path3& q, double fuzz2)
{
 triple P=p.point(s);
 for(size_t i=0; i < S.size(); ++i)
   if((p.point(S[i])-P).abs2() <= fuzz2) return;
 S.push_back(s);
 T.push_back(t);
}

void add(double& s, double& t, std::vector<double>& S, std::vector<double>& T,
        std::vector<double>& S1, std::vector<double>& T1,
        double pscale, double qscale, double poffset, double qoffset,
        const path3& p, const path3& q, double fuzz2, bool single)
{
 if(single) {
   s=s*pscale+poffset;
   t=t*qscale+qoffset;
 } else {
   size_t n=S1.size();
   for(size_t i=0; i < n; ++i)
     add(S,T,pscale*S1[i]+poffset,qscale*T1[i]+qoffset,p,q,fuzz2);
 }
}

void add(double& s, double& t, std::vector<double>& S, std::vector<double>& T,
        std::vector<double>& S1, std::vector<double>& T1,
        const path3& p, const path3& q, double fuzz2, bool single)
{
 size_t n=S1.size();
 if(single) {
   if(n > 0) {
     s=S1[0];
     t=T1[0];
   }
 } else {
   for(size_t i=0; i < n; ++i)
     add(S,T,S1[i],T1[i],p,q,fuzz2);
 }
}

bool intersections(double &s, double &t, std::vector<double>& S,
                  std::vector<double>& T, path3& p, path3& q,
                  double fuzz, bool single, bool exact, unsigned depth)
{
 if(errorstream::interrupt) throw interrupted();

 double fuzz2=max(fuzzFactor*fuzz*fuzz,Fuzz2);

 Int lp=p.length();
 if(lp == 0 && exact) {
   std::vector<double> T1,S1;
   intersections(T1,S1,q,p.point(lp),fuzz);
   add(s,t,S,T,S1,T1,p,q,fuzz2,single);
   return S1.size() > 0;
 }

 Int lq=q.length();
 if(lq == 0 && exact) {
   std::vector<double> S1,T1;
   intersections(S1,T1,p,q.point(lq),fuzz);
   add(s,t,S,T,S1,T1,p,q,fuzz2,single);
   return S1.size() > 0;
 }

 triple maxp=p.max();
 triple minp=p.min();
 triple maxq=q.max();
 triple minq=q.min();

 if(maxp.getx()+fuzz >= minq.getx() &&
    maxp.gety()+fuzz >= minq.gety() &&
    maxp.getz()+fuzz >= minq.getz() &&
    maxq.getx()+fuzz >= minp.getx() &&
    maxq.gety()+fuzz >= minp.gety() &&
    maxq.getz()+fuzz >= minp.getz()) {
   // Overlapping bounding boxes

   --depth;
//    fuzz *= 2;

   if((maxp-minp).length()+(maxq-minq).length() <= fuzz || depth == 0) {
     if(single) {
       s=0.5;
       t=0.5;
     } else {
       S.push_back(0.5);
       T.push_back(0.5);
     }
     return true;
   }

   path3 p1,p2;
   double pscale,poffset;

   std::vector<double> S1,T1;

//    fuzz2=max(fuzzFactor*fuzz*fuzz,Fuzz2);

   if(lp <= 1) {
     if(lp == 1) p.halve(p1,p2);
     if(lp == 0 || p1 == p || p2 == p) {
       intersections(T1,S1,q,p.point((Int) 0),fuzz);
       add(s,t,S,T,S1,T1,p,q,fuzz2,single);
       return S1.size() > 0;
     }
     pscale=poffset=0.5;
   } else {
     Int tp=lp/2;
     p1=p.subpath(0,tp);
     p2=p.subpath(tp,lp);
     poffset=tp;
     pscale=1.0;
   }

   path3 q1,q2;
   double qscale,qoffset;

   if(lq <= 1) {
     if(lq == 1) q.halve(q1,q2);
     if(lq == 0 || q1 == q || q2 == q) {
       intersections(S1,T1,p,q.point((Int) 0),fuzz);
       add(s,t,S,T,S1,T1,p,q,fuzz2,single);
       return S1.size() > 0;
     }
     qscale=qoffset=0.5;
   } else {
     Int tq=lq/2;
     q1=q.subpath(0,tq);
     q2=q.subpath(tq,lq);
     qoffset=tq;
     qscale=1.0;
   }

   bool Short=lp == 1 && lq == 1;

   static size_t maxcount=9;
   size_t count=0;

   if(intersections(s,t,S1,T1,p1,q1,fuzz,single,exact,depth)) {
     add(s,t,S,T,S1,T1,pscale,qscale,0.0,0.0,p,q,fuzz2,single);
     if(single || depth <= mindepth)
       return true;
     count += S1.size();
     if(Short && count > maxcount) return true;
   }

   S1.clear();
   T1.clear();
   if(intersections(s,t,S1,T1,p1,q2,fuzz,single,exact,depth)) {
     add(s,t,S,T,S1,T1,pscale,qscale,0.0,qoffset,p,q,fuzz2,single);
     if(single || depth <= mindepth)
       return true;
     count += S1.size();
     if(Short && count > maxcount) return true;
   }

   S1.clear();
   T1.clear();
   if(intersections(s,t,S1,T1,p2,q1,fuzz,single,exact,depth)) {
     add(s,t,S,T,S1,T1,pscale,qscale,poffset,0.0,p,q,fuzz2,single);
     if(single || depth <= mindepth)
       return true;
     count += S1.size();
     if(Short && count > maxcount) return true;
   }

   S1.clear();
   T1.clear();
   if(intersections(s,t,S1,T1,p2,q2,fuzz,single,exact,depth)) {
     add(s,t,S,T,S1,T1,pscale,qscale,poffset,qoffset,p,q,fuzz2,single);
     if(single || depth <= mindepth)
       return true;
     count += S1.size();
     if(Short && count > maxcount) return true;
   }

   return S.size() > 0;
 }
 return false;
}

// }}}

path3 concat(const path3& p1, const path3& p2)
{
 Int n1 = p1.length(), n2 = p2.length();

 if (n1 == -1) return p2;
 if (n2 == -1) return p1;
 triple a=p1.point(n1);
 triple b=p2.point((Int) 0);

 mem::vector<solvedKnot3> nodes(n1+n2+1);

 Int i = 0;
 nodes[0].pre = p1.point((Int) 0);
 for (Int j = 0; j < n1; j++) {
   nodes[i].point = p1.point(j);
   nodes[i].straight = p1.straight(j);
   nodes[i].post = p1.postcontrol(j);
   nodes[i+1].pre = p1.precontrol(j+1);
   i++;
 }
 for (Int j = 0; j < n2; j++) {
   nodes[i].point = p2.point(j);
   nodes[i].straight = p2.straight(j);
   nodes[i].post = p2.postcontrol(j);
   nodes[i+1].pre = p2.precontrol(j+1);
   i++;
 }
 nodes[i].point = nodes[i].post = p2.point(n2);

 return path3(nodes, i+1);
}

path3 transformed(const array& t, const path3& p)
{
 Int n = p.size();
 mem::vector<solvedKnot3> nodes(n);

 for (Int i = 0; i < n; ++i) {
   nodes[i].pre = t * p.precontrol(i);
   nodes[i].point = t * p.point(i);
   nodes[i].post = t * p.postcontrol(i);
   nodes[i].straight = p.straight(i);
 }

 return path3(nodes, n, p.cyclic());
}

path3 transformed(const double* t, const path3& p)
{
 Int n = p.size();
 mem::vector<solvedKnot3> nodes(n);

 for(Int i=0; i < n; ++i) {
   nodes[i].pre=t*p.precontrol(i);
   nodes[i].point=t*p.point(i);
   nodes[i].post=t*p.postcontrol(i);
   nodes[i].straight=p.straight(i);
 }

 return path3(nodes, n, p.cyclic());
}

template<class T>
struct Split {
 T m0,m1,m2,m3,m4,m5;
 Split(T z0, T c0, T c1, T z1) {
   m0=0.5*(z0+c0);
   m1=0.5*(c0+c1);
   m2=0.5*(c1+z1);
   m3=0.5*(m0+m1);
   m4=0.5*(m1+m2);
   m5=0.5*(m3+m4);
 }
};

double cornerbound(double *P, double (*m)(double, double))
{
 double b=m(P[0],P[3]);
 b=m(b,P[12]);
 return m(b,P[15]);
}

double controlbound(double *P, double (*m)(double, double))
{
 double b=m(P[1],P[2]);
 b=m(b,P[4]);
 b=m(b,P[5]);
 b=m(b,P[6]);
 b=m(b,P[7]);
 b=m(b,P[8]);
 b=m(b,P[9]);
 b=m(b,P[10]);
 b=m(b,P[11]);
 b=m(b,P[13]);
 return m(b,P[14]);
}

double bound(double *P, double (*m)(double, double), double b,
            double fuzz, int depth)
{
 b=m(b,cornerbound(P,m));
 if(m(-1.0,1.0)*(b-controlbound(P,m)) >= -fuzz || depth == 0)
   return b;

 --depth;
 fuzz *= 2;

 Split<double> c0(P[0],P[1],P[2],P[3]);
 Split<double> c1(P[4],P[5],P[6],P[7]);
 Split<double> c2(P[8],P[9],P[10],P[11]);
 Split<double> c3(P[12],P[13],P[14],P[15]);

 Split<double> c4(P[12],P[8],P[4],P[0]);
 Split<double> c5(c3.m0,c2.m0,c1.m0,c0.m0);
 Split<double> c6(c3.m3,c2.m3,c1.m3,c0.m3);
 Split<double> c7(c3.m5,c2.m5,c1.m5,c0.m5);
 Split<double> c8(c3.m4,c2.m4,c1.m4,c0.m4);
 Split<double> c9(c3.m2,c2.m2,c1.m2,c0.m2);
 Split<double> c10(P[15],P[11],P[7],P[3]);

 // Check all 4 Bezier subpatches.
 double s0[]={c4.m5,c5.m5,c6.m5,c7.m5,c4.m3,c5.m3,c6.m3,c7.m3,
              c4.m0,c5.m0,c6.m0,c7.m0,P[12],c3.m0,c3.m3,c3.m5};
 b=bound(s0,m,b,fuzz,depth);
 double s1[]={P[0],c0.m0,c0.m3,c0.m5,c4.m2,c5.m2,c6.m2,c7.m2,
              c4.m4,c5.m4,c6.m4,c7.m4,c4.m5,c5.m5,c6.m5,c7.m5};
 b=bound(s1,m,b,fuzz,depth);
 double s2[]={c0.m5,c0.m4,c0.m2,P[3],c7.m2,c8.m2,c9.m2,c10.m2,
              c7.m4,c8.m4,c9.m4,c10.m4,c7.m5,c8.m5,c9.m5,c10.m5};
 b=bound(s2,m,b,fuzz,depth);
 double s3[]={c7.m5,c8.m5,c9.m5,c10.m5,c7.m3,c8.m3,c9.m3,c10.m3,
              c7.m0,c8.m0,c9.m0,c10.m0,c3.m5,c3.m4,c3.m2,P[15]};
 return bound(s3,m,b,fuzz,depth);
}

double cornerbound(triple *P, double (*m)(double, double),
                  double (*f)(const triple&))
{
 double b=m(f(P[0]),f(P[3]));
 b=m(b,f(P[12]));
 return m(b,f(P[15]));
}

// Return f evaluated at controlling vertex of bounding box of n control
// net points for similiar-triangle transform x'=x/z, y'=y/z, where z < 0.
double ratiobound(triple *P, double (*m)(double, double),
                 double (*f)(const triple&), int n)
{
 double MX=-P[0].getx();
 double MY=-P[0].gety();
 double Z=P[0].getz();
 double MZ=-Z;
 for(int i=1; i < n; ++i) {
   triple v=P[i];
   MX=m(MX,-v.getx());
   MY=m(MY,-v.gety());
   Z=m(Z,v.getz());
   MZ=m(MZ,-v.getz());
 }
 return m(f(triple(-MX,-MY,Z)),f(triple(-MX,-MY,-MZ)));
}

double controlbound(triple *P, double (*m)(double, double),
                   double (*f)(const triple&))
{
 double b=m(f(P[1]),f(P[2]));
 b=m(b,f(P[4]));
 b=m(b,f(P[5]));
 b=m(b,f(P[6]));
 b=m(b,f(P[7]));
 b=m(b,f(P[8]));
 b=m(b,f(P[9]));
 b=m(b,f(P[10]));
 b=m(b,f(P[11]));
 b=m(b,f(P[13]));
 return m(b,f(P[14]));
}

double bound(triple *P, double (*m)(double, double),
            double (*f)(const triple&), double b, double fuzz, int depth)
{
 b=m(b,cornerbound(P,m,f));
 if(m(-1.0,1.0)*(b-ratiobound(P,m,f,16)) >= -fuzz || depth == 0)
   return b;

 --depth;
 fuzz *= 2;

 Split<triple> c0(P[0],P[1],P[2],P[3]);
 Split<triple> c1(P[4],P[5],P[6],P[7]);
 Split<triple> c2(P[8],P[9],P[10],P[11]);
 Split<triple> c3(P[12],P[13],P[14],P[15]);

 Split<triple> c4(P[12],P[8],P[4],P[0]);
 Split<triple> c5(c3.m0,c2.m0,c1.m0,c0.m0);
 Split<triple> c6(c3.m3,c2.m3,c1.m3,c0.m3);
 Split<triple> c7(c3.m5,c2.m5,c1.m5,c0.m5);
 Split<triple> c8(c3.m4,c2.m4,c1.m4,c0.m4);
 Split<triple> c9(c3.m2,c2.m2,c1.m2,c0.m2);
 Split<triple> c10(P[15],P[11],P[7],P[3]);

 // Check all 4 Bezier subpatches.
 triple s0[]={c4.m5,c5.m5,c6.m5,c7.m5,c4.m3,c5.m3,c6.m3,c7.m3,
              c4.m0,c5.m0,c6.m0,c7.m0,P[12],c3.m0,c3.m3,c3.m5};
 b=bound(s0,m,f,b,fuzz,depth);
 triple s1[]={P[0],c0.m0,c0.m3,c0.m5,c4.m2,c5.m2,c6.m2,c7.m2,
              c4.m4,c5.m4,c6.m4,c7.m4,c4.m5,c5.m5,c6.m5,c7.m5};
 b=bound(s1,m,f,b,fuzz,depth);
 triple s2[]={c0.m5,c0.m4,c0.m2,P[3],c7.m2,c8.m2,c9.m2,c10.m2,
              c7.m4,c8.m4,c9.m4,c10.m4,c7.m5,c8.m5,c9.m5,c10.m5};
 b=bound(s2,m,f,b,fuzz,depth);
 triple s3[]={c7.m5,c8.m5,c9.m5,c10.m5,c7.m3,c8.m3,c9.m3,c10.m3,
              c7.m0,c8.m0,c9.m0,c10.m0,c3.m5,c3.m4,c3.m2,P[15]};
 return bound(s3,m,f,b,fuzz,depth);
}

template<class T>
struct Splittri {
 T l003,p102,p012,p201,p111,p021,r300,p210,p120,u030;
 T u021,u120;
 T p033,p231,p330;
 T p123;
 T l012,p312,r210,l102,p303,r201;
 T u012,u210,l021,p4xx,r120,px4x,pxx4,l201,r102;
 T l210,r012,l300;
 T r021,u201,r030;
 T u102,l120,l030;
 T l111,r111,u111,c111;

 Splittri(const T *p) {
   l003=p[0];
   p102=p[1];
   p012=p[2];
   p201=p[3];
   p111=p[4];
   p021=p[5];
   r300=p[6];
   p210=p[7];
   p120=p[8];
   u030=p[9];

   u021=0.5*(u030+p021);
   u120=0.5*(u030+p120);

   p033=0.5*(p021+p012);
   p231=0.5*(p120+p111);
   p330=0.5*(p120+p210);

   p123=0.5*(p012+p111);

   l012=0.5*(p012+l003);
   p312=0.5*(p111+p201);
   r210=0.5*(p210+r300);

   l102=0.5*(l003+p102);
   p303=0.5*(p102+p201);
   r201=0.5*(p201+r300);

   u012=0.5*(u021+p033);
   u210=0.5*(u120+p330);
   l021=0.5*(p033+l012);
   p4xx=0.5*p231+0.25*(p111+p102);
   r120=0.5*(p330+r210);
   px4x=0.5*p123+0.25*(p111+p210);
   pxx4=0.25*(p021+p111)+0.5*p312;
   l201=0.5*(l102+p303);
   r102=0.5*(p303+r201);

   l210=0.5*(px4x+l201); // = m120
   r012=0.5*(px4x+r102); // = m021
   l300=0.5*(l201+r102); // = r003 = m030

   r021=0.5*(pxx4+r120); // = m012
   u201=0.5*(u210+pxx4); // = m102
   r030=0.5*(u210+r120); // = u300 = m003

   u102=0.5*(u012+p4xx); // = m201
   l120=0.5*(l021+p4xx); // = m210
   l030=0.5*(u012+l021); // = u003 = m300

   l111=0.5*(p123+l102);
   r111=0.5*(p312+r210);
   u111=0.5*(u021+p231);
   c111=0.25*(p033+p330+p303+p111);
 }
};

// Return the extremum of the vertices of a Bezier triangle.
double cornerboundtri(double *P, double (*m)(double, double))
{
 double b=m(P[0],P[6]);
 return m(b,P[9]);
}

double cornerboundtri(triple *P, double (*m)(double, double),
                     double (*f)(const triple&))
{
 double b=m(f(P[0]),f(P[6]));
 return m(b,f(P[9]));
}

// Return the extremum of the non-vertex control points of a Bezier triangle.
double controlboundtri(double *P, double (*m)(double, double))
{
 double b=m(P[1],P[2]);
 b=m(b,P[3]);
 b=m(b,P[4]);
 b=m(b,P[5]);
 b=m(b,P[7]);
 return m(b,P[8]);
}

double controlboundtri(triple *P, double (*m)(double, double),
                      double (*f)(const triple&))
{
 double b=m(f(P[1]),f(P[2]));
 b=m(b,f(P[3]));
 b=m(b,f(P[4]));
 b=m(b,f(P[5]));
 b=m(b,f(P[7]));
 return m(b,f(P[8]));
}

// Return the global bound of a Bezier triangle.
double boundtri(double *P, double (*m)(double, double), double b,
               double fuzz, int depth)
{
 b=m(b,cornerboundtri(P,m));
 if(m(-1.0,1.0)*(b-controlboundtri(P,m)) >= -fuzz || depth == 0)
   return b;

 --depth;
 fuzz *= 2;

 Splittri<double> s(P);

 double l[]={s.l003,s.l102,s.l012,s.l201,s.l111,
             s.l021,s.l300,s.l210,s.l120,s.l030}; // left
 b=boundtri(l,m,b,fuzz,depth);

 double r[]={s.l300,s.r102,s.r012,s.r201,s.r111,
             s.r021,s.r300,s.r210,s.r120,s.r030}; // right
 b=boundtri(r,m,b,fuzz,depth);

 double u[]={s.l030,s.u102,s.u012,s.u201,s.u111,
             s.u021,s.r030,s.u210,s.u120,s.u030}; // up
 b=boundtri(u,m,b,fuzz,depth);

 double c[]={s.r030,s.u201,s.r021,s.u102,s.c111,
             s.r012,s.l030,s.l120,s.l210,s.l300}; // center
 return boundtri(c,m,b,fuzz,depth);
}

double boundtri(triple *P, double (*m)(double, double),
               double (*f)(const triple&), double b, double fuzz, int depth)
{
 b=m(b,cornerboundtri(P,m,f));
 if(m(-1.0,1.0)*(b-ratiobound(P,m,f,10)) >= -fuzz || depth == 0)
   return b;

 --depth;
 fuzz *= 2;

 Splittri<triple> s(P);

 triple l[]={s.l003,s.l102,s.l012,s.l201,s.l111,
             s.l021,s.l300,s.l210,s.l120,s.l030}; // left
 b=boundtri(l,m,f,b,fuzz,depth);

 triple r[]={s.l300,s.r102,s.r012,s.r201,s.r111,
             s.r021,s.r300,s.r210,s.r120,s.r030}; // right
 b=boundtri(r,m,f,b,fuzz,depth);

 triple u[]={s.l030,s.u102,s.u012,s.u201,s.u111,
             s.u021,s.r030,s.u210,s.u120,s.u030}; // up
 b=boundtri(u,m,f,b,fuzz,depth);

 triple c[]={s.r030,s.u201,s.r021,s.u102,s.c111,
             s.r012,s.l030,s.l120,s.l210,s.l300}; // center
 return boundtri(c,m,f,b,fuzz,depth);
}

inline void add(std::vector<double>& T, std::vector<double>& U,
               std::vector<double>& V, double t, double u, double v,
               const path3& p, double fuzz2)
{
 triple z=p.point(t);
 size_t n=T.size();
 for(size_t i=0; i < n; ++i)
   if((p.point(T[i])-z).abs2() <= fuzz2) return;
 T.push_back(t);
 U.push_back(u);
 V.push_back(v);
}

void add(std::vector<double>& T, std::vector<double>& U,
        std::vector<double>& V, std::vector<double>& T1,
        std::vector<double>& U1, std::vector<double>& V1,
        const path3& p, double tscale, double toffset,
        double uoffset, double voffset, double fuzz2)
{
 size_t n=T1.size();
 for(size_t i=0; i < n; ++i)
   add(T,U,V,tscale*T1[i]+toffset,0.5*U1[i]+uoffset,0.5*V1[i]+voffset,p,
       fuzz2);
}

void bounds(triple& Pmin, triple& Pmax, triple *P, double fuzz)
{
 double Px[]={P[0].getx(),P[1].getx(),P[2].getx(),P[3].getx(),
              P[4].getx(),P[5].getx(),P[6].getx(),P[7].getx(),
              P[8].getx(),P[9].getx(),P[10].getx(),P[11].getx(),
              P[12].getx(),P[13].getx(),P[14].getx(),P[15].getx()};
 double bx=Px[0];
 double xmin=bound(Px,min,bx,fuzz,maxdepth);
 double xmax=bound(Px,max,bx,fuzz,maxdepth);

 double Py[]={P[0].gety(),P[1].gety(),P[2].gety(),P[3].gety(),
              P[4].gety(),P[5].gety(),P[6].gety(),P[7].gety(),
              P[8].gety(),P[9].gety(),P[10].gety(),P[11].gety(),
              P[12].gety(),P[13].gety(),P[14].gety(),P[15].gety()};
 double by=Py[0];
 double ymin=bound(Py,min,by,fuzz,maxdepth);
 double ymax=bound(Py,max,by,fuzz,maxdepth);

 double Pz[]={P[0].getz(),P[1].getz(),P[2].getz(),P[3].getz(),
              P[4].getz(),P[5].getz(),P[6].getz(),P[7].getz(),
              P[8].getz(),P[9].getz(),P[10].getz(),P[11].getz(),
              P[12].getz(),P[13].getz(),P[14].getz(),P[15].getz()};
 double bz=Pz[0];
 double zmin=bound(Pz,min,bz,fuzz,maxdepth);
 double zmax=bound(Pz,max,bz,fuzz,maxdepth);
 Pmin=triple(xmin,ymin,zmin);
 Pmax=triple(xmax,ymax,zmax);
}

inline double abs2(double x, double y, double z)
{
 return x*x+y*y+z*z;
}

bool intersections(double& U, double& V, const triple& v, triple *P,
                  double fuzz, unsigned depth)
{
 if(errorstream::interrupt) throw interrupted();

 triple Pmin,Pmax;
 bounds(Pmin,Pmax,P,fuzz);

 double x=P[0].getx();
 double y=P[0].gety();
 double z=P[0].getz();
 double X=x, Y=y, Z=z;
 for(int i=1; i < 16; ++i) {
   triple v=P[i];
   double vx=v.getx();
   x=min(x,vx);
   X=max(X,vx);
   double vy=v.gety();
   y=min(y,vy);
   Y=max(Y,vy);
   double vz=v.getz();
   z=min(z,vz);
   Z=max(Z,vz);
 }

 if(X+fuzz >= v.getx() &&
    Y+fuzz >= v.gety() &&
    Z+fuzz >= v.getz() &&
    v.getx()+fuzz >= x &&
    v.gety()+fuzz >= y &&
    v.getz()+fuzz >= z) { // Overlapping bounding boxes

   --depth;
//    fuzz *= 2;

   if(abs2(X-x,Y-y,Z-z) <= fuzz*fuzz || depth == 0) {
     U=0.5;
     V=0.5;
     return true;
   }

// Compute the control points of the four subpatches obtained by splitting
// the patch with control points P at u=v=1/2.
   Split<triple> c0(P[0],P[1],P[2],P[3]);
   Split<triple> c1(P[4],P[5],P[6],P[7]);
   Split<triple> c2(P[8],P[9],P[10],P[11]);
   Split<triple> c3(P[12],P[13],P[14],P[15]);

   Split<triple> c4(P[12],P[8],P[4],P[0]);
   Split<triple> c5(c3.m0,c2.m0,c1.m0,c0.m0);
   Split<triple> c6(c3.m3,c2.m3,c1.m3,c0.m3);
   Split<triple> c7(c3.m5,c2.m5,c1.m5,c0.m5);
   Split<triple> c8(c3.m4,c2.m4,c1.m4,c0.m4);
   Split<triple> c9(c3.m2,c2.m2,c1.m2,c0.m2);
   Split<triple> c10(P[15],P[11],P[7],P[3]);

   // Check all 4 Bezier subpatches.

   double U1,V1;
   triple Q0[]={P[0],c0.m0,c0.m3,c0.m5,c4.m2,c5.m2,c6.m2,c7.m2,
                c4.m4,c5.m4,c6.m4,c7.m4,c4.m5,c5.m5,c6.m5,c7.m5};
   if(intersections(U1,V1,v,Q0,fuzz,depth)) {
     U=0.5*U1;
     V=0.5*V1;
     return true;
   }

   triple Q1[]={c0.m5,c0.m4,c0.m2,P[3],c7.m2,c8.m2,c9.m2,c10.m2,
                c7.m4,c8.m4,c9.m4,c10.m4,c7.m5,c8.m5,c9.m5,c10.m5};
   if(intersections(U1,V1,v,Q1,fuzz,depth)) {
     U=0.5*U1;
     V=0.5*V1+0.5;
     return true;
   }

   triple Q2[]={c7.m5,c8.m5,c9.m5,c10.m5,c7.m3,c8.m3,c9.m3,c10.m3,
                c7.m0,c8.m0,c9.m0,c10.m0,c3.m5,c3.m4,c3.m2,P[15]};
   if(intersections(U1,V1,v,Q2,fuzz,depth)) {
     U=0.5*U1+0.5;
     V=0.5*V1+0.5;
     return true;
   }

   triple Q3[]={c4.m5,c5.m5,c6.m5,c7.m5,c4.m3,c5.m3,c6.m3,c7.m3,
                c4.m0,c5.m0,c6.m0,c7.m0,P[12],c3.m0,c3.m3,c3.m5};
   if(intersections(U1,V1,v,Q3,fuzz,depth)) {
     U=0.5*U1+0.5;
     V=0.5*V1;
     return true;
   }
 }
 return false;
}

bool intersections(std::vector<double>& T, std::vector<double>& U,
                  std::vector<double>& V, path3& p, triple *P,
                  double fuzz, bool single, unsigned depth)
{
 if(errorstream::interrupt) throw interrupted();

 double fuzz2=max(fuzzFactor*fuzz*fuzz,Fuzz2);

 triple pmin=p.min();
 triple pmax=p.max();

 double x=P[0].getx();
 double y=P[0].gety();
 double z=P[0].getz();
 double X=x, Y=y, Z=z;
 for(int i=1; i < 16; ++i) {
   triple v=P[i];
   double vx=v.getx();
   x=min(x,vx);
   X=max(X,vx);
   double vy=v.gety();
   y=min(y,vy);
   Y=max(Y,vy);
   double vz=v.getz();
   z=min(z,vz);
   Z=max(Z,vz);
 }

 if(X+fuzz >= pmin.getx() &&
    Y+fuzz >= pmin.gety() &&
    Z+fuzz >= pmin.getz() &&
    pmax.getx()+fuzz >= x &&
    pmax.gety()+fuzz >= y &&
    pmax.getz()+fuzz >= z) { // Overlapping bounding boxes

   --depth;
//    fuzz *= 2;

   if(((pmax-pmin).length()+sqrt(abs2(X-x,Y-y,Z-z)) <= fuzz) || depth == 0) {
     T.push_back(0.5);
     U.push_back(0.5);
     V.push_back(0.5);
     return true;
   }

   Int lp=p.length();

   path3 p0,p1;
   p.halve(p0,p1);

   std::vector<double> T1,U1,V1;
   double tscale,toffset;

   if(lp <= 1) {
     if(lp == 1) p.halve(p0,p1);
     if(lp == 0 || p0 == p || p1 == p) {
       double u,v;
       if(intersections(u,v,p.point((Int) 0),P,fuzz,depth)) {
         T1.push_back(0.0);
         U1.push_back(u);
         V1.push_back(v);
         add(T,U,V,T1,U1,V1,p,1.0,0.0,0.0,0.0,fuzz2);
       }
       return T1.size() > 0;
     }
     tscale=toffset=0.5;
   } else {
     Int tp=lp/2;
     p0=p.subpath(0,tp);
     p1=p.subpath(tp,lp);
     toffset=tp;
     tscale=1.0;
   }

   Split<triple> c0(P[0],P[1],P[2],P[3]);
   Split<triple> c1(P[4],P[5],P[6],P[7]);
   Split<triple> c2(P[8],P[9],P[10],P[11]);
   Split<triple> c3(P[12],P[13],P[14],P[15]);

   Split<triple> c4(P[12],P[8],P[4],P[0]);
   Split<triple> c5(c3.m0,c2.m0,c1.m0,c0.m0);
   Split<triple> c6(c3.m3,c2.m3,c1.m3,c0.m3);
   Split<triple> c7(c3.m5,c2.m5,c1.m5,c0.m5);
   Split<triple> c8(c3.m4,c2.m4,c1.m4,c0.m4);
   Split<triple> c9(c3.m2,c2.m2,c1.m2,c0.m2);
   Split<triple> c10(P[15],P[11],P[7],P[3]);

   static size_t maxcount=9;
   size_t count=0;

   bool Short=lp == 1;

   // Check all 4 Bezier subpatches against p0.
   triple Q0[]={P[0],c0.m0,c0.m3,c0.m5,c4.m2,c5.m2,c6.m2,c7.m2,
                c4.m4,c5.m4,c6.m4,c7.m4,c4.m5,c5.m5,c6.m5,c7.m5};
   if(intersections(T1,U1,V1,p0,Q0,fuzz,single,depth)) {
     add(T,U,V,T1,U1,V1,p,tscale,0.0,0.0,0.0,fuzz2);
     if(single || depth <= mindepth)
       return true;
     count += T1.size();
     if(Short && count > maxcount) return true;
   }

   T1.clear();
   U1.clear();
   V1.clear();
   triple Q1[]={c0.m5,c0.m4,c0.m2,P[3],c7.m2,c8.m2,c9.m2,c10.m2,
                c7.m4,c8.m4,c9.m4,c10.m4,c7.m5,c8.m5,c9.m5,c10.m5};
   if(intersections(T1,U1,V1,p0,Q1,fuzz,single,depth)) {
     add(T,U,V,T1,U1,V1,p,tscale,0.0,0.0,0.5,fuzz2);
     if(single || depth <= mindepth)
       return true;
     count += T1.size();
     if(Short && count > maxcount) return true;
   }

   T1.clear();
   U1.clear();
   V1.clear();
   triple Q2[]={c7.m5,c8.m5,c9.m5,c10.m5,c7.m3,c8.m3,c9.m3,c10.m3,
                c7.m0,c8.m0,c9.m0,c10.m0,c3.m5,c3.m4,c3.m2,P[15]};
   if(intersections(T1,U1,V1,p0,Q2,fuzz,single,depth)) {
     add(T,U,V,T1,U1,V1,p,tscale,0.0,0.5,0.5,fuzz2);
     if(single || depth <= mindepth)
       return true;
     count += T1.size();
     if(Short && count > maxcount) return true;
   }

   T1.clear();
   U1.clear();
   V1.clear();
   triple Q3[]={c4.m5,c5.m5,c6.m5,c7.m5,c4.m3,c5.m3,c6.m3,c7.m3,
                c4.m0,c5.m0,c6.m0,c7.m0,P[12],c3.m0,c3.m3,c3.m5};
   if(intersections(T1,U1,V1,p0,Q3,fuzz,single,depth)) {
     add(T,U,V,T1,U1,V1,p,tscale,0.0,0.5,0.0,fuzz2);
     if(single || depth <= mindepth)
       return true;
     count += T1.size();
     if(Short && count > maxcount) return true;
   }

   // Check all 4 Bezier subpatches against p1.
   T1.clear();
   U1.clear();
   V1.clear();
   if(intersections(T1,U1,V1,p1,Q0,fuzz,single,depth)) {
     add(T,U,V,T1,U1,V1,p,tscale,toffset,0.0,0.0,fuzz2);
     if(single || depth <= mindepth)
       return true;
     count += T1.size();
     if(Short && count > maxcount) return true;
   }

   T1.clear();
   U1.clear();
   V1.clear();
   if(intersections(T1,U1,V1,p1,Q1,fuzz,single,depth)) {
     add(T,U,V,T1,U1,V1,p,tscale,toffset,0.0,0.5,fuzz2);
     if(single || depth <= mindepth)
       return true;
     count += T1.size();
     if(Short && count > maxcount) return true;
   }

   T1.clear();
   U1.clear();
   V1.clear();
   if(intersections(T1,U1,V1,p1,Q2,fuzz,single,depth)) {
     add(T,U,V,T1,U1,V1,p,tscale,toffset,0.5,0.5,fuzz2);
     if(single || depth <= mindepth)
       return true;
     count += T1.size();
     if(Short && count > maxcount) return true;
   }

   T1.clear();
   U1.clear();
   V1.clear();
   if(intersections(T1,U1,V1,p1,Q3,fuzz,single,depth)) {
     add(T,U,V,T1,U1,V1,p,tscale,toffset,0.5,0.0,fuzz2);
     if(single || depth <= mindepth)
       return true;
     count += T1.size();
     if(Short && count > maxcount) return true;
   }

   return T.size() > 0;
 }
 return false;
}

} //namespace camp