/*****
* path.h
* Andy Hammerlindl 2002/05/16
*
* Stores a piecewise cubic spline with known control points.
*
* When changing the path algorithms, also update the corresponding
* three-dimensional algorithms in path3.cc and three.asy.
*****/

#ifndef PATH_H
#define PATH_H

#include <cfloat>

#include "mod.h"
#include "pair.h"
#include "transform.h"
#include "bbox.h"

inline double Intcap(double t) {
 if(t <= (double) Int_MIN) return (double) Int_MIN;
 if(t >= (double) Int_MAX) return (double) Int_MAX;
 return t;
}

// The are like floor and ceil, except they return an integer;
// if the argument cannot be converted to a valid integer, they return
// Int_MAX (for positive arguments) or Int_MIN (for negative arguments).

inline Int Floor(double t) {return (Int) floor(Intcap(t));}
inline Int Ceil(double t) {return (Int) ceil(Intcap(t));}

bool simpson(double& integral, double (*)(double), double a, double b,
            double acc, double dxmax);

bool unsimpson(double integral, double (*)(double), double a, double& b,
              double acc, double& area, double dxmax, double dxmin=0);

namespace camp {

void checkEmpty(Int n);

inline Int adjustedIndex(Int i, Int n, bool cycles)
{
 checkEmpty(n);
 if(cycles)
   return imod(i,n);
 else if(i < 0)
   return 0;
 else if(i >= n)
   return n-1;
 else
   return i;
}

// Used in the storage of solved path knots.
struct solvedKnot : public gc {
 pair pre;
 pair point;
 pair post;
 bool straight;
 solvedKnot() : straight(false) {}

 friend bool operator== (const solvedKnot& p, const solvedKnot& q)
 {
   return p.pre == q.pre && p.point == q.point && p.post == q.post;
 }
};

extern const double Fuzz;
extern const double Fuzz2;
extern const double Fuzz4;
extern const double sqrtFuzz;
extern const double BigFuzz;
extern const double fuzzFactor;

class path : public gc {
 bool cycles;  // If the path is closed in a loop

 Int n; // The number of knots

 mem::vector<solvedKnot> nodes;
 mutable double cached_length; // Cache length since path is immutable.

 mutable bbox box;
 mutable bbox times; // Times where minimum and maximum extents are attained.

public:
 path()
   : cycles(false), n(0), nodes(), cached_length(-1) {}

 // Create a path of a single point
 path(pair z, bool = false)
   : cycles(false), n(1), nodes(1), cached_length(-1)
 {
   nodes[0].pre = nodes[0].point = nodes[0].post = z;
   nodes[0].straight = false;
 }

 // Creates path from a list of knots.  This will be used by camp
 // methods such as the guide solver, but should probably not be used by a
 // user of the system unless he knows what he is doing.
 path(mem::vector<solvedKnot>& nodes, Int n, bool cycles = false)
   : cycles(cycles), n(n), nodes(nodes), cached_length(-1)
 {
 }

 friend bool operator== (const path& p, const path& q)
 {
   return p.cycles == q.cycles && p.nodes == q.nodes;
 }

public:
 path(solvedKnot n1, solvedKnot n2)
   : cycles(false), n(2), nodes(2), cached_length(-1)
 {
   nodes[0] = n1;
   nodes[1] = n2;
   nodes[0].pre = nodes[0].point;
   nodes[1].post = nodes[1].point;
 }

 // Copy constructor
 path(const path& p)
   : cycles(p.cycles), n(p.n), nodes(p.nodes), cached_length(p.cached_length),
     box(p.box), times(p.times)
 {}

 path unstraighten() const
 {
   path P=path(*this);
   for(int i=0; i < n; ++i)
     P.nodes[i].straight=false;
   return P;
 }

 virtual ~path()
 {
 }

 // Getting control points
 Int size() const
 {
   return n;
 }

 bool empty() const
 {
   return n == 0;
 }

 Int length() const
 {
   return cycles ? n : n-1;
 }

 bool cyclic() const
 {
   return cycles;
 }

 mem::vector<solvedKnot>& Nodes() {
   return nodes;
 }

 bool straight(Int t) const
 {
   if (cycles) return nodes[imod(t,n)].straight;
   return (t >= 0 && t < n) ? nodes[t].straight : false;
 }

 bool piecewisestraight() const
 {
   Int L=length();
   for(Int i=0; i < L; ++i)
     if(!straight(i)) return false;
   return true;
 }

 pair point(Int t) const
 {
   return nodes[adjustedIndex(t,n,cycles)].point;
 }

 pair point(double t) const;

 pair precontrol(Int t) const
 {
   return nodes[adjustedIndex(t,n,cycles)].pre;
 }

 pair precontrol(double t) const;

 pair postcontrol(Int t) const
 {
   return nodes[adjustedIndex(t,n,cycles)].post;
 }

 pair postcontrol(double t) const;

 inline double norm(const pair& z0, const pair& c0, const pair& c1,
                    const pair& z1) const {
   return Fuzz2*camp::max((c0-z0).abs2(),
                          camp::max((c1-z0).abs2(),(z1-z0).abs2()));
 }

 pair predir(Int t, bool normalize=true) const {
   if(!cycles && t <= 0) return pair(0,0);
   pair z1=point(t);
   pair c1=precontrol(t);
   pair dir=3.0*(z1-c1);
   if(!normalize) return dir;
   pair z0=point(t-1);
   pair c0=postcontrol(t-1);
   double epsilon=norm(z0,c0,c1,z1);
   if(dir.abs2() > epsilon) return unit(dir);
   dir=2.0*c1-c0-z1;
   if(dir.abs2() > epsilon) return unit(dir);
   return unit(z1-z0+3.0*(c0-c1));
 }

 pair postdir(Int t, bool normalize=true) const {
   if(!cycles && t >= n-1) return pair(0,0);
   pair c0=postcontrol(t);
   pair z0=point(t);
   pair dir=3.0*(c0-z0);
   if(!normalize) return dir;
   pair z1=point(t+1);
   pair c1=precontrol(t+1);
   double epsilon=norm(z0,c0,c1,z1);
   if(dir.abs2() > epsilon) return unit(dir);
   dir=z0-2.0*c0+c1;
   if(dir.abs2() > epsilon) return unit(dir);
   return unit(z1-z0+3.0*(c0-c1));
 }

 pair dir(Int t, Int sign, bool normalize=true) const {
   if(sign == 0) {
     pair v=predir(t,normalize)+postdir(t,normalize);
     return normalize ? unit(v) : 0.5*v;
   }
   if(sign > 0) return postdir(t,normalize);
   return predir(t,normalize);
 }

 pair dir(double t, bool normalize=true) const {
   if(!cycles) {
     if(t <= 0) return postdir((Int) 0,normalize);
     if(t >= n-1) return predir(n-1,normalize);
   }
   Int i=Floor(t);
   t -= i;
   if(t == 0) return dir(i,0,normalize);
   pair z0=point(i);
   pair c0=postcontrol(i);
   pair c1=precontrol(i+1);
   pair z1=point(i+1);
   pair a=3.0*(z1-z0)+9.0*(c0-c1);
   pair b=6.0*(z0+c1)-12.0*c0;
   pair c=3.0*(c0-z0);
   pair dir=a*t*t+b*t+c;
   if(!normalize) return dir;
   double epsilon=norm(z0,c0,c1,z1);
   if(dir.abs2() > epsilon) return unit(dir);
   dir=2.0*a*t+b;
   if(dir.abs2() > epsilon) return unit(dir);
   return unit(a);
 }

 pair postaccel(Int t) const {
   if(!cycles && t >= n-1) return pair(0,0);
   pair z0=point(t);
   pair c0=postcontrol(t);
   pair c1=precontrol(t+1);
   return 6.0*(z0+c1)-12.0*c0;
 }

 pair preaccel(Int t) const {
   if(!cycles && t <= 0) return pair(0,0);
   pair c0=postcontrol(t-1);
   pair c1=precontrol(t);
   pair z1=point(t);
   return 6.0*(z1+c0)-12.0*c1;
 }

 pair accel(Int t, Int sign) const {
   if(sign == 0) return 0.5*(preaccel(t)+postaccel(t));
   if(sign > 0) return postaccel(t);
   return preaccel(t);
 }

 pair accel(double t) const {
   if(!cycles) {
     if(t <= 0) return postaccel((Int) 0);
     if(t >= n-1) return preaccel(n-1);
   }
   Int i=Floor(t);
   t -= i;
   if(t == 0) return 0.5*(postaccel(i)+preaccel(i));
   pair z0=point(i);
   pair c0=postcontrol(i);
   pair c1=precontrol(i+1);
   pair z1=point(i+1);
   return 6.0*t*(z1-z0+3.0*(c0-c1))+6.0*(z0+c1)-12.0*c0;
 }

 // Returns the path traced out in reverse.
 path reverse() const;

 // Generates a path that is a section of the old path, using the time
 // interval given.
 path subpath(Int start, Int end) const;
 path subpath(double start, double end) const;

 // Special case of subpath used by intersect.
 void halve(path &first, path &second) const;

 // Used by picture to determine bounding box.
 bbox bounds() const;

 pair mintimes() const {
   checkEmpty(n);
   bounds();
   return camp::pair(times.left,times.bottom);
 }

 pair maxtimes() const {
   checkEmpty(n);
   bounds();
   return camp::pair(times.right,times.top);
 }

 template<class T>
 void addpoint(bbox& box, T i) const {
   box.addnonempty(point(i),times,(double) i);
 }

 template<class T>
 void addpoint(bbox& box, T i, double min, double max) const {
   static const pair I(0,1);
   pair v=I*dir(i);
   pair z=point(i);
   box.add(z+min*v);
   box.addnonempty(z+max*v);
 }

 // Return bounding box accounting for padding perpendicular to path.
 bbox bounds(double min, double max) const;

 // Return bounding box accounting for internal pen padding (but not pencap).
 bbox internalbounds(const bbox &padding) const;

 double cubiclength(Int i, double goal=-1) const;
 double arclength () const;
 double arctime (double l) const;
 double directiontime(const pair& z) const;

 pair max() const {
   checkEmpty(n);
   return bounds().Max();
 }

 pair min() const {
   checkEmpty(n);
   return bounds().Min();
 }

 // Debugging output
 friend std::ostream& operator<< (std::ostream& out, const path& p);

// Increment count if the path has a vertical component at t.
 bool Count(Int& count, double t) const;

// Count if t is in (begin,end] and z lies to the left of point(i+t).
 void countleft(Int& count, double x, Int i, double t,
                double begin, double end, double& mint, double& maxt) const;

// Return the winding number of the region bounded by the (cyclic) path
// relative to the point z.
 Int windingnumber(const pair& z) const;

 // Transformation
 path transformed(const transform& t) const;

};

double arcLength(const pair& z0, const pair& c0, const pair& c1,
                const pair& z1);

extern path nullpath;
extern const unsigned maxdepth;
extern const unsigned mindepth;
extern const char *nopoints;

bool intersect(double& S, double& T, path& p, path& q, double fuzz,
              unsigned depth=maxdepth);
bool intersections(double& s, double& t, std::vector<double>& S,
                  std::vector<double>& T, path& p, path& q,
                  double fuzz, bool single, bool exact,
                  unsigned depth=maxdepth);
void intersections(std::vector<double>& S, path& g,
                  const pair& p, const pair& q, double fuzz);


// Concatenates two paths into a new one.
path concat(const path& p1, const path& p2);

// Applies a transformation to the path
path transformed(const transform& t, const path& p);

inline double quadratic(double a, double b, double c, double x)
{
 return a*x*x+b*x+c;
}

class quadraticroots {
public:
 enum {NONE=0, ONE=1, TWO=2, MANY} distinct; // Number of distinct real roots.
 unsigned roots; // Total number of real roots.
 double t1,t2;   // Real roots

 quadraticroots(double a, double b, double c);
};

class Quadraticroots {
public:
 unsigned roots; // Total number of roots.
 pair z1,z2;     // Complex roots
 Quadraticroots(pair a, pair b, pair c);
};

class cubicroots {
public:
 unsigned roots; // Total number of real roots.
 double t1,t2,t3;
 cubicroots(double a, double b, double c, double d);
};

path nurb(pair z0, pair z1, pair z2, pair z3,
         double w0, double w1, double w2, double w3, Int m);

double orient2d(const pair& a, const pair& b, const pair& c);

void roots(std::vector<double> &roots, double a, double b, double c, double d);
void roots(std::vector<double> &r, double x0, double c0, double c1, double x1,
          double x);

inline bool goodroot(double t)
{
 return 0.0 <= t && t <= 1.0;
}

extern const double third;

}

#ifndef BROKEN_COMPILER
// Delete the following line to work around problems with old broken compilers.
GC_DECLARE_PTRFREE(camp::solvedKnot);
#endif

#endif