/*
* Copyright (c) 2003 by Hewlett-Packard Company.  All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/

/* The following is useful primarily for debugging and documentation.   */
/* We define various atomic operations by acquiring a global pthread    */
/* lock.  The resulting implementation will perform poorly, but should  */
/* be correct unless it is used from signal handlers.                   */
/* We assume that all pthread operations act like full memory barriers. */
/* (We believe that is the intent of the specification.)                */

#include <pthread.h>

#include "test_and_set_t_is_ao_t.h"
       /* This is not necessarily compatible with the native           */
       /* implementation.  But those can't be safely mixed anyway.     */

#ifdef __cplusplus
 extern "C" {
#endif

/* We define only the full barrier variants, and count on the           */
/* generalization section below to fill in the rest.                    */
AO_API pthread_mutex_t AO_pt_lock;

#ifdef __cplusplus
 } /* extern "C" */
#endif

AO_INLINE void
AO_nop_full(void)
{
 pthread_mutex_lock(&AO_pt_lock);
 pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_nop_full

AO_INLINE AO_t
AO_load_full(const volatile AO_t *addr)
{
 AO_t result;
 pthread_mutex_lock(&AO_pt_lock);
 result = *addr;
 pthread_mutex_unlock(&AO_pt_lock);
 return result;
}
#define AO_HAVE_load_full

AO_INLINE void
AO_store_full(volatile AO_t *addr, AO_t val)
{
 pthread_mutex_lock(&AO_pt_lock);
 *addr = val;
 pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_store_full

AO_INLINE unsigned char
AO_char_load_full(const volatile unsigned char *addr)
{
 unsigned char result;
 pthread_mutex_lock(&AO_pt_lock);
 result = *addr;
 pthread_mutex_unlock(&AO_pt_lock);
 return result;
}
#define AO_HAVE_char_load_full

AO_INLINE void
AO_char_store_full(volatile unsigned char *addr, unsigned char val)
{
 pthread_mutex_lock(&AO_pt_lock);
 *addr = val;
 pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_char_store_full

AO_INLINE unsigned short
AO_short_load_full(const volatile unsigned short *addr)
{
 unsigned short result;
 pthread_mutex_lock(&AO_pt_lock);
 result = *addr;
 pthread_mutex_unlock(&AO_pt_lock);
 return result;
}
#define AO_HAVE_short_load_full

AO_INLINE void
AO_short_store_full(volatile unsigned short *addr, unsigned short val)
{
 pthread_mutex_lock(&AO_pt_lock);
 *addr = val;
 pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_short_store_full

AO_INLINE unsigned int
AO_int_load_full(const volatile unsigned int *addr)
{
 unsigned int result;
 pthread_mutex_lock(&AO_pt_lock);
 result = *addr;
 pthread_mutex_unlock(&AO_pt_lock);
 return result;
}
#define AO_HAVE_int_load_full

AO_INLINE void
AO_int_store_full(volatile unsigned int *addr, unsigned int val)
{
 pthread_mutex_lock(&AO_pt_lock);
 *addr = val;
 pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_int_store_full

AO_INLINE AO_TS_VAL_t
AO_test_and_set_full(volatile AO_TS_t *addr)
{
 AO_TS_VAL_t result;
 pthread_mutex_lock(&AO_pt_lock);
 result = (AO_TS_VAL_t)(*addr);
 *addr = AO_TS_SET;
 pthread_mutex_unlock(&AO_pt_lock);
 assert(result == AO_TS_SET || result == AO_TS_CLEAR);
 return result;
}
#define AO_HAVE_test_and_set_full

AO_INLINE AO_t
AO_fetch_and_add_full(volatile AO_t *p, AO_t incr)
{
 AO_t old_val;

 pthread_mutex_lock(&AO_pt_lock);
 old_val = *p;
 *p = old_val + incr;
 pthread_mutex_unlock(&AO_pt_lock);
 return old_val;
}
#define AO_HAVE_fetch_and_add_full

AO_INLINE unsigned char
AO_char_fetch_and_add_full(volatile unsigned char *p, unsigned char incr)
{
 unsigned char old_val;

 pthread_mutex_lock(&AO_pt_lock);
 old_val = *p;
 *p = old_val + incr;
 pthread_mutex_unlock(&AO_pt_lock);
 return old_val;
}
#define AO_HAVE_char_fetch_and_add_full

AO_INLINE unsigned short
AO_short_fetch_and_add_full(volatile unsigned short *p, unsigned short incr)
{
 unsigned short old_val;

 pthread_mutex_lock(&AO_pt_lock);
 old_val = *p;
 *p = old_val + incr;
 pthread_mutex_unlock(&AO_pt_lock);
 return old_val;
}
#define AO_HAVE_short_fetch_and_add_full

AO_INLINE unsigned int
AO_int_fetch_and_add_full(volatile unsigned int *p, unsigned int incr)
{
 unsigned int old_val;

 pthread_mutex_lock(&AO_pt_lock);
 old_val = *p;
 *p = old_val + incr;
 pthread_mutex_unlock(&AO_pt_lock);
 return old_val;
}
#define AO_HAVE_int_fetch_and_add_full

AO_INLINE void
AO_and_full(volatile AO_t *p, AO_t value)
{
 pthread_mutex_lock(&AO_pt_lock);
 *p &= value;
 pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_and_full

AO_INLINE void
AO_or_full(volatile AO_t *p, AO_t value)
{
 pthread_mutex_lock(&AO_pt_lock);
 *p |= value;
 pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_or_full

AO_INLINE void
AO_xor_full(volatile AO_t *p, AO_t value)
{
 pthread_mutex_lock(&AO_pt_lock);
 *p ^= value;
 pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_xor_full

AO_INLINE void
AO_char_and_full(volatile unsigned char *p, unsigned char value)
{
 pthread_mutex_lock(&AO_pt_lock);
 *p &= value;
 pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_char_and_full

AO_INLINE void
AO_char_or_full(volatile unsigned char *p, unsigned char value)
{
 pthread_mutex_lock(&AO_pt_lock);
 *p |= value;
 pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_char_or_full

AO_INLINE void
AO_char_xor_full(volatile unsigned char *p, unsigned char value)
{
 pthread_mutex_lock(&AO_pt_lock);
 *p ^= value;
 pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_char_xor_full

AO_INLINE void
AO_short_and_full(volatile unsigned short *p, unsigned short value)
{
 pthread_mutex_lock(&AO_pt_lock);
 *p &= value;
 pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_short_and_full

AO_INLINE void
AO_short_or_full(volatile unsigned short *p, unsigned short value)
{
 pthread_mutex_lock(&AO_pt_lock);
 *p |= value;
 pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_short_or_full

AO_INLINE void
AO_short_xor_full(volatile unsigned short *p, unsigned short value)
{
 pthread_mutex_lock(&AO_pt_lock);
 *p ^= value;
 pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_short_xor_full

AO_INLINE void
AO_int_and_full(volatile unsigned *p, unsigned value)
{
 pthread_mutex_lock(&AO_pt_lock);
 *p &= value;
 pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_int_and_full

AO_INLINE void
AO_int_or_full(volatile unsigned *p, unsigned value)
{
 pthread_mutex_lock(&AO_pt_lock);
 *p |= value;
 pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_int_or_full

AO_INLINE void
AO_int_xor_full(volatile unsigned *p, unsigned value)
{
 pthread_mutex_lock(&AO_pt_lock);
 *p ^= value;
 pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_int_xor_full

AO_INLINE AO_t
AO_fetch_compare_and_swap_full(volatile AO_t *addr, AO_t old_val,
                              AO_t new_val)
{
 AO_t fetched_val;

 pthread_mutex_lock(&AO_pt_lock);
 fetched_val = *addr;
 if (fetched_val == old_val)
   *addr = new_val;
 pthread_mutex_unlock(&AO_pt_lock);
 return fetched_val;
}
#define AO_HAVE_fetch_compare_and_swap_full

AO_INLINE unsigned char
AO_char_fetch_compare_and_swap_full(volatile unsigned char *addr,
                                   unsigned char old_val,
                                   unsigned char new_val)
{
 unsigned char fetched_val;

 pthread_mutex_lock(&AO_pt_lock);
 fetched_val = *addr;
 if (fetched_val == old_val)
   *addr = new_val;
 pthread_mutex_unlock(&AO_pt_lock);
 return fetched_val;
}
#define AO_HAVE_char_fetch_compare_and_swap_full

AO_INLINE unsigned short
AO_short_fetch_compare_and_swap_full(volatile unsigned short *addr,
                                    unsigned short old_val,
                                    unsigned short new_val)
{
 unsigned short fetched_val;

 pthread_mutex_lock(&AO_pt_lock);
 fetched_val = *addr;
 if (fetched_val == old_val)
   *addr = new_val;
 pthread_mutex_unlock(&AO_pt_lock);
 return fetched_val;
}
#define AO_HAVE_short_fetch_compare_and_swap_full

AO_INLINE unsigned
AO_int_fetch_compare_and_swap_full(volatile unsigned *addr, unsigned old_val,
                                  unsigned new_val)
{
 unsigned fetched_val;

 pthread_mutex_lock(&AO_pt_lock);
 fetched_val = *addr;
 if (fetched_val == old_val)
   *addr = new_val;
 pthread_mutex_unlock(&AO_pt_lock);
 return fetched_val;
}
#define AO_HAVE_int_fetch_compare_and_swap_full

/* Unlike real architectures, we define both double-width CAS variants. */

typedef struct {
       AO_t AO_val1;
       AO_t AO_val2;
} AO_double_t;
#define AO_HAVE_double_t

#define AO_DOUBLE_T_INITIALIZER { (AO_t)0, (AO_t)0 }

AO_INLINE AO_double_t
AO_double_load_full(const volatile AO_double_t *addr)
{
 AO_double_t result;

 pthread_mutex_lock(&AO_pt_lock);
 result.AO_val1 = addr->AO_val1;
 result.AO_val2 = addr->AO_val2;
 pthread_mutex_unlock(&AO_pt_lock);
 return result;
}
#define AO_HAVE_double_load_full

AO_INLINE void
AO_double_store_full(volatile AO_double_t *addr, AO_double_t value)
{
 pthread_mutex_lock(&AO_pt_lock);
 addr->AO_val1 = value.AO_val1;
 addr->AO_val2 = value.AO_val2;
 pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_double_store_full

AO_INLINE int
AO_compare_double_and_swap_double_full(volatile AO_double_t *addr,
                                      AO_t old1, AO_t old2,
                                      AO_t new1, AO_t new2)
{
 pthread_mutex_lock(&AO_pt_lock);
 if (addr -> AO_val1 == old1 && addr -> AO_val2 == old2)
   {
     addr -> AO_val1 = new1;
     addr -> AO_val2 = new2;
     pthread_mutex_unlock(&AO_pt_lock);
     return 1;
   }
 else
   pthread_mutex_unlock(&AO_pt_lock);
 return 0;
}
#define AO_HAVE_compare_double_and_swap_double_full

AO_INLINE int
AO_compare_and_swap_double_full(volatile AO_double_t *addr,
                               AO_t old1, AO_t new1, AO_t new2)
{
 pthread_mutex_lock(&AO_pt_lock);
 if (addr -> AO_val1 == old1)
   {
     addr -> AO_val1 = new1;
     addr -> AO_val2 = new2;
     pthread_mutex_unlock(&AO_pt_lock);
     return 1;
   }
 else
   pthread_mutex_unlock(&AO_pt_lock);
 return 0;
}
#define AO_HAVE_compare_and_swap_double_full

/* We can't use hardware loads and stores, since they don't     */
/* interact correctly with atomic updates.                      */