/*
* Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
* Copyright (c) 1991-1994 by Xerox Corporation.  All rights reserved.
* Copyright (c) 1998-1999 by Silicon Graphics.  All rights reserved.
* Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
* OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program
* for any purpose,  provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is granted,
* provided the above notices are retained, and a notice that the code was
* modified is included with the above copyright notice.
*/

#include "private/gc_priv.h"

#include <stdio.h>

#ifdef GC_USE_ENTIRE_HEAP
 int GC_use_entire_heap = TRUE;
#else
 int GC_use_entire_heap = FALSE;
#endif

/*
* Free heap blocks are kept on one of several free lists,
* depending on the size of the block.  Each free list is doubly linked.
* Adjacent free blocks are coalesced.
*/


# define MAX_BLACK_LIST_ALLOC (2*HBLKSIZE)
               /* largest block we will allocate starting on a black   */
               /* listed block.  Must be >= HBLKSIZE.                  */


# define UNIQUE_THRESHOLD 32
       /* Sizes up to this many HBLKs each have their own free list    */
# define HUGE_THRESHOLD 256
       /* Sizes of at least this many heap blocks are mapped to a      */
       /* single free list.                                            */
# define FL_COMPRESSION 8
       /* In between sizes map this many distinct sizes to a single    */
       /* bin.                                                         */

# define N_HBLK_FLS ((HUGE_THRESHOLD - UNIQUE_THRESHOLD) / FL_COMPRESSION \
                    + UNIQUE_THRESHOLD)

#ifndef GC_GCJ_SUPPORT
 STATIC
#endif
 struct hblk * GC_hblkfreelist[N_HBLK_FLS+1] = { 0 };
                               /* List of completely empty heap blocks */
                               /* Linked through hb_next field of      */
                               /* header structure associated with     */
                               /* block.  Remains externally visible   */
                               /* as used by GNU GCJ currently.        */

#ifndef GC_GCJ_SUPPORT
 STATIC
#endif
 word GC_free_bytes[N_HBLK_FLS+1] = { 0 };
       /* Number of free bytes on each list.  Remains visible to GCJ.  */

/* Return the largest n such that the number of free bytes on lists     */
/* n .. N_HBLK_FLS is greater or equal to GC_max_large_allocd_bytes     */
/* minus GC_large_allocd_bytes.  If there is no such n, return 0.       */
GC_INLINE int GC_enough_large_bytes_left(void)
{
   int n;
   word bytes = GC_large_allocd_bytes;

   GC_ASSERT(GC_max_large_allocd_bytes <= GC_heapsize);
   for (n = N_HBLK_FLS; n >= 0; --n) {
       bytes += GC_free_bytes[n];
       if (bytes >= GC_max_large_allocd_bytes) return n;
   }
   return 0;
}

/* Map a number of blocks to the appropriate large block free list index. */
STATIC int GC_hblk_fl_from_blocks(word blocks_needed)
{
   if (blocks_needed <= UNIQUE_THRESHOLD) return (int)blocks_needed;
   if (blocks_needed >= HUGE_THRESHOLD) return N_HBLK_FLS;
   return (int)(blocks_needed - UNIQUE_THRESHOLD)/FL_COMPRESSION
                                       + UNIQUE_THRESHOLD;

}

# define PHDR(hhdr) HDR((hhdr) -> hb_prev)
# define NHDR(hhdr) HDR((hhdr) -> hb_next)

# ifdef USE_MUNMAP
#   define IS_MAPPED(hhdr) (((hhdr) -> hb_flags & WAS_UNMAPPED) == 0)
# else
#   define IS_MAPPED(hhdr) TRUE
# endif /* !USE_MUNMAP */

#if !defined(NO_DEBUGGING) || defined(GC_ASSERTIONS)
 /* Should return the same value as GC_large_free_bytes.       */
 GC_INNER word GC_compute_large_free_bytes(void)
 {
     word total_free = 0;
     unsigned i;

     for (i = 0; i <= N_HBLK_FLS; ++i) {
       struct hblk * h;
       hdr * hhdr;

       for (h = GC_hblkfreelist[i]; h != 0; h = hhdr->hb_next) {
         hhdr = HDR(h);
         total_free += hhdr->hb_sz;
       }
     }
     return total_free;
 }
#endif /* !NO_DEBUGGING || GC_ASSERTIONS */

# if !defined(NO_DEBUGGING)
void GC_print_hblkfreelist(void)
{
   unsigned i;
   word total;

   for (i = 0; i <= N_HBLK_FLS; ++i) {
     struct hblk * h = GC_hblkfreelist[i];

     if (0 != h) GC_printf("Free list %u (total size %lu):\n",
                           i, (unsigned long)GC_free_bytes[i]);
     while (h /* != NULL */) { /* CPPCHECK */
       hdr * hhdr = HDR(h);

       GC_printf("\t%p size %lu %s black listed\n",
               (void *)h, (unsigned long) hhdr -> hb_sz,
               GC_is_black_listed(h, HBLKSIZE) != 0 ? "start" :
               GC_is_black_listed(h, hhdr -> hb_sz) != 0 ? "partially" :
                                                       "not");
       h = hhdr -> hb_next;
     }
   }
   GC_printf("GC_large_free_bytes: %lu\n",
             (unsigned long)GC_large_free_bytes);

   if ((total = GC_compute_large_free_bytes()) != GC_large_free_bytes)
         GC_err_printf("GC_large_free_bytes INCONSISTENT!! Should be: %lu\n",
                       (unsigned long)total);
}

/* Return the free list index on which the block described by the header */
/* appears, or -1 if it appears nowhere.                                 */
static int free_list_index_of(hdr *wanted)
{
   int i;

   for (i = 0; i <= N_HBLK_FLS; ++i) {
     struct hblk * h;
     hdr * hhdr;

     for (h = GC_hblkfreelist[i]; h != 0; h = hhdr -> hb_next) {
       hhdr = HDR(h);
       if (hhdr == wanted) return i;
     }
   }
   return -1;
}

GC_API void GC_CALL GC_dump_regions(void)
{
   unsigned i;

   for (i = 0; i < GC_n_heap_sects; ++i) {
       ptr_t start = GC_heap_sects[i].hs_start;
       size_t bytes = GC_heap_sects[i].hs_bytes;
       ptr_t end = start + bytes;
       ptr_t p;

       /* Merge in contiguous sections.        */
         while (i+1 < GC_n_heap_sects && GC_heap_sects[i+1].hs_start == end) {
           ++i;
           end = GC_heap_sects[i].hs_start + GC_heap_sects[i].hs_bytes;
         }
       GC_printf("***Section from %p to %p\n", (void *)start, (void *)end);
       for (p = start; (word)p < (word)end; ) {
           hdr *hhdr = HDR(p);

           if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) {
               GC_printf("\t%p Missing header!!(%p)\n",
                         (void *)p, (void *)hhdr);
               p += HBLKSIZE;
               continue;
           }
           if (HBLK_IS_FREE(hhdr)) {
               int correct_index = GC_hblk_fl_from_blocks(
                                       divHBLKSZ(hhdr -> hb_sz));
               int actual_index;

               GC_printf("\t%p\tfree block of size 0x%lx bytes%s\n",
                         (void *)p, (unsigned long)(hhdr -> hb_sz),
                         IS_MAPPED(hhdr) ? "" : " (unmapped)");
               actual_index = free_list_index_of(hhdr);
               if (-1 == actual_index) {
                   GC_printf("\t\tBlock not on free list %d!!\n",
                             correct_index);
               } else if (correct_index != actual_index) {
                   GC_printf("\t\tBlock on list %d, should be on %d!!\n",
                             actual_index, correct_index);
               }
               p += hhdr -> hb_sz;
           } else {
               GC_printf("\t%p\tused for blocks of size 0x%lx bytes\n",
                         (void *)p, (unsigned long)(hhdr -> hb_sz));
               p += HBLKSIZE * OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
           }
       }
   }
}

# endif /* NO_DEBUGGING */

/* Initialize hdr for a block containing the indicated size and         */
/* kind of objects.                                                     */
/* Return FALSE on failure.                                             */
static GC_bool setup_header(hdr * hhdr, struct hblk *block, size_t byte_sz,
                           int kind, unsigned flags)
{
   word descr;

#   ifdef MARK_BIT_PER_GRANULE
     if (byte_sz > MAXOBJBYTES)
       flags |= LARGE_BLOCK;
#   endif
#   ifdef ENABLE_DISCLAIM
     if (GC_obj_kinds[kind].ok_disclaim_proc)
       flags |= HAS_DISCLAIM;
     if (GC_obj_kinds[kind].ok_mark_unconditionally)
       flags |= MARK_UNCONDITIONALLY;
#   endif

   /* Set size, kind and mark proc fields */
     hhdr -> hb_sz = byte_sz;
     hhdr -> hb_obj_kind = (unsigned char)kind;
     hhdr -> hb_flags = (unsigned char)flags;
     hhdr -> hb_block = block;
     descr = GC_obj_kinds[kind].ok_descriptor;
     if (GC_obj_kinds[kind].ok_relocate_descr) descr += byte_sz;
     hhdr -> hb_descr = descr;

#   ifdef MARK_BIT_PER_OBJ
    /* Set hb_inv_sz as portably as possible.                          */
    /* We set it to the smallest value such that sz * inv_sz >= 2**32  */
    /* This may be more precision than necessary.                      */
     if (byte_sz > MAXOBJBYTES) {
        hhdr -> hb_inv_sz = LARGE_INV_SZ;
     } else {
       word inv_sz;

#       if CPP_WORDSZ == 64
         inv_sz = ((word)1 << 32)/byte_sz;
         if (((inv_sz*byte_sz) >> 32) == 0) ++inv_sz;
#       else  /* 32 bit words */
         GC_ASSERT(byte_sz >= 4);
         inv_sz = ((unsigned)1 << 31)/byte_sz;
         inv_sz *= 2;
         while (inv_sz*byte_sz > byte_sz) ++inv_sz;
#       endif
#       ifdef INV_SZ_COMPUTATION_CHECK
         GC_ASSERT(((1ULL << 32) + byte_sz - 1) / byte_sz == inv_sz);
#       endif
       hhdr -> hb_inv_sz = inv_sz;
     }
#   endif
#   ifdef MARK_BIT_PER_GRANULE
   {
     size_t granules = BYTES_TO_GRANULES(byte_sz);

     if (EXPECT(!GC_add_map_entry(granules), FALSE)) {
       /* Make it look like a valid block. */
       hhdr -> hb_sz = HBLKSIZE;
       hhdr -> hb_descr = 0;
       hhdr -> hb_flags |= LARGE_BLOCK;
       hhdr -> hb_map = 0;
       return FALSE;
     }
     hhdr -> hb_map = GC_obj_map[(hhdr -> hb_flags & LARGE_BLOCK) != 0 ?
                                   0 : granules];
   }
#   endif /* MARK_BIT_PER_GRANULE */

   /* Clear mark bits */
   GC_clear_hdr_marks(hhdr);

   hhdr -> hb_last_reclaimed = (unsigned short)GC_gc_no;
   return(TRUE);
}

/* Remove hhdr from the free list (it is assumed to specified by index). */
STATIC void GC_remove_from_fl_at(hdr *hhdr, int index)
{
   GC_ASSERT(((hhdr -> hb_sz) & (HBLKSIZE-1)) == 0);
   if (hhdr -> hb_prev == 0) {
       GC_ASSERT(HDR(GC_hblkfreelist[index]) == hhdr);
       GC_hblkfreelist[index] = hhdr -> hb_next;
   } else {
       hdr *phdr;
       GET_HDR(hhdr -> hb_prev, phdr);
       phdr -> hb_next = hhdr -> hb_next;
   }
   /* We always need index to maintain free counts.    */
   GC_ASSERT(GC_free_bytes[index] >= hhdr -> hb_sz);
   GC_free_bytes[index] -= hhdr -> hb_sz;
   if (0 != hhdr -> hb_next) {
       hdr * nhdr;
       GC_ASSERT(!IS_FORWARDING_ADDR_OR_NIL(NHDR(hhdr)));
       GET_HDR(hhdr -> hb_next, nhdr);
       nhdr -> hb_prev = hhdr -> hb_prev;
   }
}

/* Remove hhdr from the appropriate free list (we assume it is on the   */
/* size-appropriate free list).                                         */
GC_INLINE void GC_remove_from_fl(hdr *hhdr)
{
 GC_remove_from_fl_at(hhdr, GC_hblk_fl_from_blocks(divHBLKSZ(hhdr->hb_sz)));
}

/* Return a pointer to the block ending just before h, if any.  */
static struct hblk * get_block_ending_at(struct hblk *h)
{
   struct hblk * p = h - 1;
   hdr * phdr;

   GET_HDR(p, phdr);
   while (0 != phdr && IS_FORWARDING_ADDR_OR_NIL(phdr)) {
       p = FORWARDED_ADDR(p,phdr);
       phdr = HDR(p);
   }
   if (0 != phdr) {
       return p;
   }
   p = GC_prev_block(h - 1);
   if (p) {
       phdr = HDR(p);
       if ((ptr_t)p + phdr -> hb_sz == (ptr_t)h) {
           return p;
       }
   }
   return NULL;
}

/* Return a pointer to the free block ending just before h, if any.     */
STATIC struct hblk * GC_free_block_ending_at(struct hblk *h)
{
   struct hblk * p = get_block_ending_at(h);

   if (p /* != NULL */) { /* CPPCHECK */
     hdr * phdr = HDR(p);

     if (HBLK_IS_FREE(phdr)) {
       return p;
     }
   }
   return 0;
}

/* Add hhdr to the appropriate free list.               */
/* We maintain individual free lists sorted by address. */
STATIC void GC_add_to_fl(struct hblk *h, hdr *hhdr)
{
   int index = GC_hblk_fl_from_blocks(divHBLKSZ(hhdr -> hb_sz));
   struct hblk *second = GC_hblkfreelist[index];
#   if defined(GC_ASSERTIONS) && !defined(USE_MUNMAP)
     struct hblk *next = (struct hblk *)((word)h + hhdr -> hb_sz);
     hdr * nexthdr = HDR(next);
     struct hblk *prev = GC_free_block_ending_at(h);
     hdr * prevhdr = HDR(prev);

     GC_ASSERT(nexthdr == 0 || !HBLK_IS_FREE(nexthdr)
               || (GC_heapsize & SIGNB) != 0);
               /* In the last case, blocks may be too large to merge. */
     GC_ASSERT(prev == 0 || !HBLK_IS_FREE(prevhdr)
               || (GC_heapsize & SIGNB) != 0);
#   endif
   GC_ASSERT(((hhdr -> hb_sz) & (HBLKSIZE-1)) == 0);
   GC_hblkfreelist[index] = h;
   GC_free_bytes[index] += hhdr -> hb_sz;
   GC_ASSERT(GC_free_bytes[index] <= GC_large_free_bytes);
   hhdr -> hb_next = second;
   hhdr -> hb_prev = 0;
   if (second /* != NULL */) { /* CPPCHECK */
     hdr * second_hdr;

     GET_HDR(second, second_hdr);
     second_hdr -> hb_prev = h;
   }
   hhdr -> hb_flags |= FREE_BLK;
}

#ifdef USE_MUNMAP

#   ifndef MUNMAP_THRESHOLD
#     define MUNMAP_THRESHOLD 6
#   endif

GC_INNER int GC_unmap_threshold = MUNMAP_THRESHOLD;

#ifdef COUNT_UNMAPPED_REGIONS
 /* GC_unmap_old will avoid creating more than this many unmapped regions, */
 /* but an unmapped region may be split again so exceeding the limit.      */

 /* Return the change in number of unmapped regions if the block h swaps   */
 /* from its current state of mapped/unmapped to the opposite state.       */
 static int calc_num_unmapped_regions_delta(struct hblk *h, hdr *hhdr)
 {
   struct hblk * prev = get_block_ending_at(h);
   struct hblk * next;
   GC_bool prev_unmapped = FALSE;
   GC_bool next_unmapped = FALSE;

   next = GC_next_block((struct hblk *)((ptr_t)h + hhdr->hb_sz), TRUE);
   /* Ensure next is contiguous with h.        */
   if ((ptr_t)next != GC_unmap_end((ptr_t)h, (size_t)hhdr->hb_sz)) {
     next = NULL;
   }
   if (prev != NULL) {
     hdr * prevhdr = HDR(prev);
     prev_unmapped = !IS_MAPPED(prevhdr);
   }
   if (next != NULL) {
     hdr * nexthdr = HDR(next);
     next_unmapped = !IS_MAPPED(nexthdr);
   }

   if (prev_unmapped && next_unmapped) {
     /* If h unmapped, merge two unmapped regions into one.    */
     /* If h remapped, split one unmapped region into two.     */
     return IS_MAPPED(hhdr) ? -1 : 1;
   }
   if (!prev_unmapped && !next_unmapped) {
     /* If h unmapped, create an isolated unmapped region.     */
     /* If h remapped, remove it.                              */
     return IS_MAPPED(hhdr) ? 1 : -1;
   }
   /* If h unmapped, merge it with previous or next unmapped region.   */
   /* If h remapped, reduce either previous or next unmapped region.   */
   /* In either way, no change to the number of unmapped regions.      */
   return 0;
 }
#endif /* COUNT_UNMAPPED_REGIONS */

/* Update GC_num_unmapped_regions assuming the block h changes      */
/* from its current state of mapped/unmapped to the opposite state. */
GC_INLINE void GC_adjust_num_unmapped(struct hblk *h GC_ATTR_UNUSED,
                                     hdr *hhdr GC_ATTR_UNUSED)
{
# ifdef COUNT_UNMAPPED_REGIONS
   GC_num_unmapped_regions += calc_num_unmapped_regions_delta(h, hhdr);
# endif
}

/* Unmap blocks that haven't been recently touched.  This is the only   */
/* way blocks are ever unmapped.                                        */
GC_INNER void GC_unmap_old(void)
{
   int i;

   if (GC_unmap_threshold == 0)
     return; /* unmapping disabled */
# ifdef COUNT_UNMAPPED_REGIONS
   /* Skip unmapping if we have already exceeded the soft limit.       */
   /* This forgoes any opportunities to merge unmapped regions though. */
   if (GC_num_unmapped_regions >= GC_UNMAPPED_REGIONS_SOFT_LIMIT)
     return;
# endif

   for (i = 0; i <= N_HBLK_FLS; ++i) {
     struct hblk * h;
     hdr * hhdr;

     for (h = GC_hblkfreelist[i]; 0 != h; h = hhdr -> hb_next) {
       hhdr = HDR(h);
       if (!IS_MAPPED(hhdr)) continue;

       /* Check that the interval is larger than the threshold (the    */
       /* truncated counter value wrapping is handled correctly).      */
       if ((unsigned short)(GC_gc_no - hhdr->hb_last_reclaimed) >
               (unsigned short)GC_unmap_threshold) {
#         ifdef COUNT_UNMAPPED_REGIONS
           /* Continue with unmapping the block only if it will not    */
           /* create too many unmapped regions, or if unmapping        */
           /* reduces the number of regions.                           */
           int delta = calc_num_unmapped_regions_delta(h, hhdr);
           signed_word regions = GC_num_unmapped_regions + delta;

           if (delta >= 0 && regions >= GC_UNMAPPED_REGIONS_SOFT_LIMIT) {
             GC_COND_LOG_PRINTF("Unmapped regions limit reached!\n");
             return;
           }
           GC_num_unmapped_regions = regions;
#         endif
         GC_unmap((ptr_t)h, (size_t)hhdr->hb_sz);
         hhdr -> hb_flags |= WAS_UNMAPPED;
       }
     }
   }
}

/* Merge all unmapped blocks that are adjacent to other free            */
/* blocks.  This may involve remapping, since all blocks are either     */
/* fully mapped or fully unmapped.                                      */
GC_INNER void GC_merge_unmapped(void)
{
   int i;

   for (i = 0; i <= N_HBLK_FLS; ++i) {
     struct hblk *h = GC_hblkfreelist[i];

     while (h != 0) {
       struct hblk *next;
       hdr *hhdr, *nexthdr;
       word size, nextsize;

       GET_HDR(h, hhdr);
       size = hhdr->hb_sz;
       next = (struct hblk *)((word)h + size);
       GET_HDR(next, nexthdr);
       /* Coalesce with successor, if possible */
         if (0 != nexthdr && HBLK_IS_FREE(nexthdr)
             && (signed_word) (size + (nextsize = nexthdr->hb_sz)) > 0
                /* no pot. overflow */) {
           /* Note that we usually try to avoid adjacent free blocks   */
           /* that are either both mapped or both unmapped.  But that  */
           /* isn't guaranteed to hold since we remap blocks when we   */
           /* split them, and don't merge at that point.  It may also  */
           /* not hold if the merged block would be too big.           */
           if (IS_MAPPED(hhdr) && !IS_MAPPED(nexthdr)) {
             /* make both consistent, so that we can merge */
               if (size > nextsize) {
                 GC_adjust_num_unmapped(next, nexthdr);
                 GC_remap((ptr_t)next, nextsize);
               } else {
                 GC_adjust_num_unmapped(h, hhdr);
                 GC_unmap((ptr_t)h, size);
                 GC_unmap_gap((ptr_t)h, size, (ptr_t)next, nextsize);
                 hhdr -> hb_flags |= WAS_UNMAPPED;
               }
           } else if (IS_MAPPED(nexthdr) && !IS_MAPPED(hhdr)) {
             if (size > nextsize) {
               GC_adjust_num_unmapped(next, nexthdr);
               GC_unmap((ptr_t)next, nextsize);
               GC_unmap_gap((ptr_t)h, size, (ptr_t)next, nextsize);
             } else {
               GC_adjust_num_unmapped(h, hhdr);
               GC_remap((ptr_t)h, size);
               hhdr -> hb_flags &= ~WAS_UNMAPPED;
               hhdr -> hb_last_reclaimed = nexthdr -> hb_last_reclaimed;
             }
           } else if (!IS_MAPPED(hhdr) && !IS_MAPPED(nexthdr)) {
             /* Unmap any gap in the middle */
               GC_unmap_gap((ptr_t)h, size, (ptr_t)next, nextsize);
           }
           /* If they are both unmapped, we merge, but leave unmapped. */
           GC_remove_from_fl_at(hhdr, i);
           GC_remove_from_fl(nexthdr);
           hhdr -> hb_sz += nexthdr -> hb_sz;
           GC_remove_header(next);
           GC_add_to_fl(h, hhdr);
           /* Start over at beginning of list */
           h = GC_hblkfreelist[i];
         } else /* not mergeable with successor */ {
           h = hhdr -> hb_next;
         }
     } /* while (h != 0) ... */
   } /* for ... */
}

#endif /* USE_MUNMAP */

/*
* Return a pointer to a block starting at h of length bytes.
* Memory for the block is mapped.
* Remove the block from its free list, and return the remainder (if any)
* to its appropriate free list.
* May fail by returning 0.
* The header for the returned block must be set up by the caller.
* If the return value is not 0, then hhdr is the header for it.
*/
STATIC struct hblk * GC_get_first_part(struct hblk *h, hdr *hhdr,
                                      size_t bytes, int index)
{
   word total_size = hhdr -> hb_sz;
   struct hblk * rest;
   hdr * rest_hdr;

   GC_ASSERT((total_size & (HBLKSIZE-1)) == 0);
   GC_remove_from_fl_at(hhdr, index);
   if (total_size == bytes) return h;
   rest = (struct hblk *)((word)h + bytes);
   rest_hdr = GC_install_header(rest);
   if (0 == rest_hdr) {
       /* FIXME: This is likely to be very bad news ... */
       WARN("Header allocation failed: dropping block\n", 0);
       return(0);
   }
   rest_hdr -> hb_sz = total_size - bytes;
   rest_hdr -> hb_flags = 0;
#   ifdef GC_ASSERTIONS
     /* Mark h not free, to avoid assertion about adjacent free blocks. */
       hhdr -> hb_flags &= ~FREE_BLK;
#   endif
   GC_add_to_fl(rest, rest_hdr);
   return h;
}

/*
* H is a free block.  N points at an address inside it.
* A new header for n has already been set up.  Fix up h's header
* to reflect the fact that it is being split, move it to the
* appropriate free list.
* N replaces h in the original free list.
*
* Nhdr is not completely filled in, since it is about to be allocated.
* It may in fact end up on the wrong free list for its size.
* That's not a disaster, since n is about to be allocated
* by our caller.
* (Hence adding it to a free list is silly.  But this path is hopefully
* rare enough that it doesn't matter.  The code is cleaner this way.)
*/
STATIC void GC_split_block(struct hblk *h, hdr *hhdr, struct hblk *n,
                          hdr *nhdr, int index /* Index of free list */)
{
   word total_size = hhdr -> hb_sz;
   word h_size = (word)n - (word)h;
   struct hblk *prev = hhdr -> hb_prev;
   struct hblk *next = hhdr -> hb_next;

   /* Replace h with n on its freelist */
     nhdr -> hb_prev = prev;
     nhdr -> hb_next = next;
     nhdr -> hb_sz = total_size - h_size;
     nhdr -> hb_flags = 0;
     if (prev /* != NULL */) { /* CPPCHECK */
       HDR(prev) -> hb_next = n;
     } else {
       GC_hblkfreelist[index] = n;
     }
     if (next /* != NULL */) {
       HDR(next) -> hb_prev = n;
     }
     GC_ASSERT(GC_free_bytes[index] > h_size);
     GC_free_bytes[index] -= h_size;
#   ifdef USE_MUNMAP
     hhdr -> hb_last_reclaimed = (unsigned short)GC_gc_no;
#   endif
   hhdr -> hb_sz = h_size;
   GC_add_to_fl(h, hhdr);
   nhdr -> hb_flags |= FREE_BLK;
}

STATIC struct hblk *
GC_allochblk_nth(size_t sz /* bytes */, int kind, unsigned flags, int n,
                int may_split);
#define AVOID_SPLIT_REMAPPED 2

/*
* Allocate (and return pointer to) a heap block
*   for objects of size sz bytes, searching the nth free list.
*
* NOTE: We set obj_map field in header correctly.
*       Caller is responsible for building an object freelist in block.
*
* The client is responsible for clearing the block, if necessary.
*/
GC_INNER struct hblk *
GC_allochblk(size_t sz, int kind, unsigned flags/* IGNORE_OFF_PAGE or 0 */)
{
   word blocks;
   int start_list;
   struct hblk *result;
   int may_split;
   int split_limit; /* Highest index of free list whose blocks we      */
                    /* split.                                          */

   GC_ASSERT(I_HOLD_LOCK());
   GC_ASSERT((sz & (GRANULE_BYTES - 1)) == 0);
   blocks = OBJ_SZ_TO_BLOCKS_CHECKED(sz);
   if ((signed_word)(blocks * HBLKSIZE) < 0) {
     return 0;
   }
   start_list = GC_hblk_fl_from_blocks(blocks);
   /* Try for an exact match first. */
   result = GC_allochblk_nth(sz, kind, flags, start_list, FALSE);
   if (0 != result) return result;

   may_split = TRUE;
   if (GC_use_entire_heap || GC_dont_gc
       || USED_HEAP_SIZE < GC_requested_heapsize
       || GC_incremental || !GC_should_collect()) {
       /* Should use more of the heap, even if it requires splitting. */
       split_limit = N_HBLK_FLS;
   } else if (GC_finalizer_bytes_freed > (GC_heapsize >> 4)) {
         /* If we are deallocating lots of memory from         */
         /* finalizers, fail and collect sooner rather         */
         /* than later.                                        */
         split_limit = 0;
   } else {
         /* If we have enough large blocks left to cover any   */
         /* previous request for large blocks, we go ahead     */
         /* and split.  Assuming a steady state, that should   */
         /* be safe.  It means that we can use the full        */
         /* heap if we allocate only small objects.            */
         split_limit = GC_enough_large_bytes_left();
#         ifdef USE_MUNMAP
           if (split_limit > 0)
             may_split = AVOID_SPLIT_REMAPPED;
#         endif
   }
   if (start_list < UNIQUE_THRESHOLD) {
     /* No reason to try start_list again, since all blocks are exact  */
     /* matches.                                                       */
     ++start_list;
   }
   for (; start_list <= split_limit; ++start_list) {
       result = GC_allochblk_nth(sz, kind, flags, start_list, may_split);
       if (0 != result)
           break;
   }
   return result;
}

STATIC long GC_large_alloc_warn_suppressed = 0;
                       /* Number of warnings suppressed so far.        */

/* The same, but with search restricted to nth free list.  Flags is     */
/* IGNORE_OFF_PAGE or zero.  sz is in bytes.  The may_split flag        */
/* indicates whether it is OK to split larger blocks (if set to         */
/* AVOID_SPLIT_REMAPPED then memory remapping followed by splitting     */
/* should be generally avoided).                                        */
STATIC struct hblk *
GC_allochblk_nth(size_t sz, int kind, unsigned flags, int n, int may_split)
{
   struct hblk *hbp;
   hdr * hhdr;                 /* Header corr. to hbp */
   struct hblk *thishbp;
   hdr * thishdr;              /* Header corr. to thishbp */
   signed_word size_needed = HBLKSIZE * OBJ_SZ_TO_BLOCKS_CHECKED(sz);
                               /* number of bytes in requested objects */

   /* search for a big enough block in free list */
       for (hbp = GC_hblkfreelist[n];; hbp = hhdr -> hb_next) {
           signed_word size_avail; /* bytes available in this block */

           if (hbp /* != NULL */) {
             /* CPPCHECK */
           } else {
             return NULL;
           }
           GET_HDR(hbp, hhdr); /* set hhdr value */
           size_avail = (signed_word)hhdr->hb_sz;
           if (size_avail < size_needed) continue;
           if (size_avail != size_needed) {
             if (!may_split) continue;
             /* If the next heap block is obviously better, go on.     */
             /* This prevents us from disassembling a single large     */
             /* block to get tiny blocks.                              */
             thishbp = hhdr -> hb_next;
             if (thishbp /* != NULL */) { /* CPPCHECK */
               signed_word next_size;

               GET_HDR(thishbp, thishdr);
               next_size = (signed_word)(thishdr -> hb_sz);
               if (next_size < size_avail
                   && next_size >= size_needed
                   && !GC_is_black_listed(thishbp, (word)size_needed)) {
                   continue;
               }
             }
           }
           if (!IS_UNCOLLECTABLE(kind) && (kind != PTRFREE
                       || size_needed > (signed_word)MAX_BLACK_LIST_ALLOC)) {
             struct hblk * lasthbp = hbp;
             ptr_t search_end = (ptr_t)hbp + size_avail - size_needed;
             signed_word orig_avail = size_avail;
             signed_word eff_size_needed = (flags & IGNORE_OFF_PAGE) != 0 ?
                                               (signed_word)HBLKSIZE
                                               : size_needed;

             while ((word)lasthbp <= (word)search_end
                    && (thishbp = GC_is_black_listed(lasthbp,
                                           (word)eff_size_needed)) != 0) {
               lasthbp = thishbp;
             }
             size_avail -= (ptr_t)lasthbp - (ptr_t)hbp;
             thishbp = lasthbp;
             if (size_avail >= size_needed) {
               if (thishbp != hbp) {
#                 ifdef USE_MUNMAP
                   /* Avoid remapping followed by splitting.   */
                   if (may_split == AVOID_SPLIT_REMAPPED && !IS_MAPPED(hhdr))
                     continue;
#                 endif
                 thishdr = GC_install_header(thishbp);
                 if (0 != thishdr) {
                 /* Make sure it's mapped before we mangle it. */
#                   ifdef USE_MUNMAP
                     if (!IS_MAPPED(hhdr)) {
                       GC_adjust_num_unmapped(hbp, hhdr);
                       GC_remap((ptr_t)hbp, (size_t)hhdr->hb_sz);
                       hhdr -> hb_flags &= ~WAS_UNMAPPED;
                     }
#                   endif
                 /* Split the block at thishbp */
                     GC_split_block(hbp, hhdr, thishbp, thishdr, n);
                 /* Advance to thishbp */
                     hbp = thishbp;
                     hhdr = thishdr;
                     /* We must now allocate thishbp, since it may     */
                     /* be on the wrong free list.                     */
                 }
               }
             } else if (size_needed > (signed_word)BL_LIMIT
                        && orig_avail - size_needed
                           > (signed_word)BL_LIMIT) {
               /* Punt, since anything else risks unreasonable heap growth. */
               if (++GC_large_alloc_warn_suppressed
                   >= GC_large_alloc_warn_interval) {
                 WARN("Repeated allocation of very large block "
                      "(appr. size %" WARN_PRIuPTR " KiB):\n"
                      "\tMay lead to memory leak and poor performance\n",
                      (word)size_needed >> 10);
                 GC_large_alloc_warn_suppressed = 0;
               }
               size_avail = orig_avail;
             } else if (size_avail == 0
                        && size_needed == (signed_word)HBLKSIZE
                        && IS_MAPPED(hhdr)) {
               if (!GC_find_leak) {
                 static unsigned count = 0;

                 /* The block is completely blacklisted.  We need      */
                 /* to drop some such blocks, since otherwise we spend */
                 /* all our time traversing them if pointer-free       */
                 /* blocks are unpopular.                              */
                 /* A dropped block will be reconsidered at next GC.   */
                 if ((++count & 3) == 0) {
                   /* Allocate and drop the block in small chunks, to  */
                   /* maximize the chance that we will recover some    */
                   /* later.                                           */
                     word total_size = hhdr -> hb_sz;
                     struct hblk * limit = hbp + divHBLKSZ(total_size);
                     struct hblk * h;
                     struct hblk * prev = hhdr -> hb_prev;

                     GC_large_free_bytes -= total_size;
                     GC_bytes_dropped += total_size;
                     GC_remove_from_fl_at(hhdr, n);
                     for (h = hbp; (word)h < (word)limit; h++) {
                       if (h != hbp) {
                         hhdr = GC_install_header(h);
                       }
                       if (NULL != hhdr) {
                         (void)setup_header(hhdr, h, HBLKSIZE, PTRFREE, 0);
                                                   /* Can't fail. */
                         if (GC_debugging_started) {
                           BZERO(h, HBLKSIZE);
                         }
                       }
                     }
                   /* Restore hbp to point at free block */
                     hbp = prev;
                     if (0 == hbp) {
                       return GC_allochblk_nth(sz, kind, flags, n, may_split);
                     }
                     hhdr = HDR(hbp);
                 }
               }
             }
           }
           if( size_avail >= size_needed ) {
#               ifdef USE_MUNMAP
                 if (!IS_MAPPED(hhdr)) {
                   GC_adjust_num_unmapped(hbp, hhdr);
                   GC_remap((ptr_t)hbp, (size_t)hhdr->hb_sz);
                   hhdr -> hb_flags &= ~WAS_UNMAPPED;
                   /* Note: This may leave adjacent, mapped free blocks. */
                 }
#               endif
               /* hbp may be on the wrong freelist; the parameter n    */
               /* is important.                                        */
               hbp = GC_get_first_part(hbp, hhdr, size_needed, n);
               break;
           }
       }

   if (0 == hbp) return 0;

   /* Add it to map of valid blocks */
       if (!GC_install_counts(hbp, (word)size_needed)) return(0);
       /* This leaks memory under very rare conditions. */

   /* Set up header */
       if (!setup_header(hhdr, hbp, sz, kind, flags)) {
           GC_remove_counts(hbp, (word)size_needed);
           return(0); /* ditto */
       }
#   ifndef GC_DISABLE_INCREMENTAL
       /* Notify virtual dirty bit implementation that we are about to */
       /* write.  Ensure that pointer-free objects are not protected   */
       /* if it is avoidable.  This also ensures that newly allocated  */
       /* blocks are treated as dirty.  Necessary since we don't       */
       /* protect free blocks.                                         */
       GC_ASSERT((size_needed & (HBLKSIZE-1)) == 0);
       GC_remove_protection(hbp, divHBLKSZ(size_needed),
                            (hhdr -> hb_descr == 0) /* pointer-free */);
#   endif
   /* We just successfully allocated a block.  Restart count of        */
   /* consecutive failures.                                            */
   GC_fail_count = 0;

   GC_large_free_bytes -= size_needed;
   GC_ASSERT(IS_MAPPED(hhdr));
   return( hbp );
}

/*
* Free a heap block.
*
* Coalesce the block with its neighbors if possible.
*
* All mark words are assumed to be cleared.
*/
GC_INNER void GC_freehblk(struct hblk *hbp)
{
   struct hblk *next, *prev;
   hdr *hhdr, *prevhdr, *nexthdr;
   word size;

   GET_HDR(hbp, hhdr);
   size = HBLKSIZE * OBJ_SZ_TO_BLOCKS(hhdr->hb_sz);
   if ((size & SIGNB) != 0)
     ABORT("Deallocating excessively large block.  Too large an allocation?");
     /* Probably possible if we try to allocate more than half the address */
     /* space at once.  If we don't catch it here, strange things happen   */
     /* later.                                                             */
   GC_remove_counts(hbp, size);
   hhdr->hb_sz = size;
#   ifdef USE_MUNMAP
     hhdr -> hb_last_reclaimed = (unsigned short)GC_gc_no;
#   endif

   /* Check for duplicate deallocation in the easy case */
     if (HBLK_IS_FREE(hhdr)) {
       ABORT_ARG1("Duplicate large block deallocation",
                  " of %p", (void *)hbp);
     }

   GC_ASSERT(IS_MAPPED(hhdr));
   hhdr -> hb_flags |= FREE_BLK;
   next = (struct hblk *)((ptr_t)hbp + size);
   GET_HDR(next, nexthdr);
   prev = GC_free_block_ending_at(hbp);
   /* Coalesce with successor, if possible */
     if(0 != nexthdr && HBLK_IS_FREE(nexthdr) && IS_MAPPED(nexthdr)
        && (signed_word)(hhdr -> hb_sz + nexthdr -> hb_sz) > 0
        /* no overflow */) {
       GC_remove_from_fl(nexthdr);
       hhdr -> hb_sz += nexthdr -> hb_sz;
       GC_remove_header(next);
     }
   /* Coalesce with predecessor, if possible. */
     if (prev /* != NULL */) { /* CPPCHECK */
       prevhdr = HDR(prev);
       if (IS_MAPPED(prevhdr)
           && (signed_word)(hhdr -> hb_sz + prevhdr -> hb_sz) > 0) {
         GC_remove_from_fl(prevhdr);
         prevhdr -> hb_sz += hhdr -> hb_sz;
#         ifdef USE_MUNMAP
           prevhdr -> hb_last_reclaimed = (unsigned short)GC_gc_no;
#         endif
         GC_remove_header(hbp);
         hbp = prev;
         hhdr = prevhdr;
       }
     }
   /* FIXME: It is not clear we really always want to do these merges  */
   /* with USE_MUNMAP, since it updates ages and hence prevents        */
   /* unmapping.                                                       */

   GC_large_free_bytes += size;
   GC_add_to_fl(hbp, hhdr);
}