import graph3;
size(400);
currentlight.background=palegreen;
settings.digits=15;

real c=(1+sqrt(5))/2;

triple[] z={(c,1,0),(-c,1,0),(-c,-1,0),(c,-1,0)};
triple[] x={(0,c,1),(0,-c,1),(0,-c,-1),(0,c,-1)};
triple[] y={(1,0,c),(1,0,-c),(-1,0,-c),(-1,0,c)};

triple[][] Q=
 {
  {z[0],y[1],x[3],x[0],y[0],z[3]},
  {z[1],x[0],x[3],y[2],z[2],y[3]},
  {z[2],z[1],y[2],x[2],x[1],y[3]},
  {z[3],z[0],y[0],x[1],x[2],y[1]},
  {x[0],x[3],z[1],y[3],y[0],z[0]},
  {x[1],x[2],z[2],y[3],y[0],z[3]},
  {x[2],x[1],z[3],y[1],y[2],z[2]},
  {x[3],x[0],z[0],y[1],y[2],z[1]},
  {y[0],y[3],x[1],z[3],z[0],x[0]},
  {y[1],y[2],x[2],z[3],z[0],x[3]},
  {y[2],y[1],x[3],z[1],z[2],x[2]},
  {y[3],y[0],x[0],z[1],z[2],x[1]}
 };

int nArc=4;

path3 p=Arc(O,Q[0][0],Q[0][1],nArc);
real R=abs(point(p,reltime(p,1/3)));

triple[][] P;
for(int i=0;i < Q.length;++i){
 P[i]=new triple[] ;
 for(int j=0;j < Q[i].length;++j){
   P[i][j]=Q[i][j]/R;
 }
}

// FIXME: Use a baryicentric coordinate mesh
surface sphericaltriangle(triple center, triple A, triple B, triple C,
                         int nu=3, int nv=nu) {
 path3 tri1=Arc(center,A,B,nArc);
 path3 tri2=Arc(center,A,C,nArc);
 path3 tri3=Arc(center,B,C,nArc);
 triple tri(pair p) {
   path3 cr=Arc(O,relpoint(tri2,p.x),relpoint(tri3,p.x),nArc);
   return relpoint(cr,p.y);
 };

 return surface(tri,(0,0),(1-sqrtEpsilon,1),nu,nv,Spline);
}

for(int i=0;i < P.length;++i){
 triple[] pentagon=sequence(new triple(int k) {
     path3 p=Arc(O,P[i][0],P[i][k+1],nArc);
     return point(p,reltime(p,1/3));
   },5);
 pentagon.cyclic=true;
 draw(sequence(new path3(int k) {
       return Arc(O,pentagon[k],pentagon[k+1],nArc);},5),linewidth(2pt));
 triple M=unit(sum(pentagon)/5);
 for(int i=0;i < 5;++i){
   surface sf=sphericaltriangle(O,pentagon[i],M,pentagon[i+1]);
   draw(sf,black);
 }
}

for(int i=0;i < P.length;++i) {
 for(int j=1;j <= 5;++j) {
   triple K=P[i][0];
   triple A=P[i][j];
   triple B=P[i][(j % 5)+1];
   path3[] p={Arc(O,K,A,nArc),Arc(O,A,B,nArc),Arc(O,B,K,nArc)};
   draw(subpath(p[0],reltime(p[0],1/3),reltime(p[0],2/3)),linewidth(4pt));
   triple[] hexagon={point(p[0],reltime(p[0],1/3)),
                     point(p[0],reltime(p[0],2/3)),
                     point(p[1],reltime(p[1],1/3)),
                     point(p[1],reltime(p[1],2/3)),
                     point(p[2],reltime(p[2],1/3)),
                     point(p[2],reltime(p[2],2/3))};
   hexagon.cyclic=true;
   triple M=unit(sum(hexagon)/6);
   for(int i=0;i < 6;++i) {
     surface sf=sphericaltriangle(O,hexagon[i],M,hexagon[i+1]);
     draw(sf,white);
   }
 }
}