This is asymptote.info, produced by makeinfo version 7.2 from
asymptote.texi.

This file documents ‘Asymptote’, version 3.05.

  <https://asymptote.sourceforge.io>

  Copyright © 2004-25 Andy Hammerlindl, John Bowman, and Tom Prince.

    Permission is granted to copy, distribute and/or modify this
    document under the terms of the GNU Lesser General Public License
    (see the file LICENSE in the top-level source directory).

INFO-DIR-SECTION Languages
START-INFO-DIR-ENTRY
* asymptote: (asymptote/asymptote). Vector graphics language.
END-INFO-DIR-ENTRY


File: asymptote.info,  Node: Top,  Next: Description,  Up: (dir)

Asymptote
*********

This file documents ‘Asymptote’, version 3.05.

  <https://asymptote.sourceforge.io>

  Copyright © 2004-25 Andy Hammerlindl, John Bowman, and Tom Prince.

    Permission is granted to copy, distribute and/or modify this
    document under the terms of the GNU Lesser General Public License
    (see the file LICENSE in the top-level source directory).

* Menu:

* Description::                 What is ‘Asymptote’?
* Installation::                Downloading and installing
* Tutorial::                    Getting started
* Drawing commands::            Four primitive graphics commands
* Bezier curves::               Path connectors and direction specifiers
* Programming::                 The ‘Asymptote’ vector graphics language
* LaTeX usage::                 Embedding ‘Asymptote’ commands within ‘LaTeX’
* Base modules::                Base modules shipped with ‘Asymptote’
* Options::                     Command-line options
* Interactive mode::            Typing ‘Asymptote’ commands interactively
* GUI::                         Graphical user interface
* Command-Line Interface::      Remote command-line interface
* Language server protocol::    Help when writing code
* PostScript to Asymptote::     ‘Asymptote’ backend to ‘pstoedit’
* Help::                        Where to get help and submit bug reports
* Debugger::                    Squish those bugs!
* Credits::                     Contributions and acknowledgments
* Index::                       General index

-- The Detailed Node Listing --

Installation

* UNIX binary distributions::   Prebuilt ‘UNIX’ binaries
* MacOS X binary distributions::  Prebuilt ‘MacOS X’ binaries
* Microsoft Windows::           Prebuilt ‘Microsoft Windows’ binary
* Configuring::                 Configuring ‘Asymptote’ for your system
* Search paths::                Where ‘Asymptote’ looks for your files
* Compiling from UNIX source::  Building ‘Asymptote’ from scratch
* Editing modes::               Convenient ‘emacs’ and ‘vim’ modes
* Git::                         Getting the latest development source
* Building the documentation::  Building the documentation
* Uninstall::                   Goodbye, ‘Asymptote’!

Tutorial

* Drawing in batch mode::       Run ‘Asymptote’ on a text file
* Drawing in interactive mode::  Running ‘Asymptote’ interactively
* Figure size::                 Specifying the figure size
* Labels::                      Adding ‘LaTeX’ labels
* Paths::                       Drawing lines and curves

Drawing commands

* draw::                        Draw a path on a picture or frame
* fill::                        Fill a cyclic path on a picture or frame
* clip::                        Clip a picture or frame to a cyclic path
* label::                       Label a point on a picture

Programming

* Data types::                  void, bool, int, real, pair, triple, string
* Paths and guides::            Bezier curves
* Pens::                        Colors, line types, line widths, font sizes
* Transforms::                  Affine transforms
* Frames and pictures::         Canvases for immediate and deferred drawing
* Deferred drawing::            Witholding drawing until all data is available
* Files::                       Reading and writing your data
* Variable initializers::       Initialize your variables
* Structures::                  Organize your data
* Operators::                   Arithmetic and logical operators
* Implicit scaling::            Avoiding those ugly *s
* Functions::                   Traditional and higher-order functions
* Arrays::                      Dynamic vectors
* Casts::                       Implicit and explicit casts
* Import::                      Importing external ‘Asymptote’ modules
* Static::                      Where to allocate your variable?

Operators

* Arithmetic & logical::        Basic mathematical operators
* Self & prefix operators::     Increment and decrement
* User-defined operators::      Overloading operators

Functions

* Default arguments::           Default values can appear anywhere
* Named arguments::             Assigning function arguments by keyword
* Rest arguments::              Functions with a variable number of arguments
* Mathematical functions::      Standard libm functions

Arrays

* Slices::                      Python-style array slices

Import

* Templated imports::

Base modules

* plain::                       Default ‘Asymptote’ base file
* simplex::                     Linear programming: simplex method
* simplex2::                    Two-variable simplex method
* math::                        Extend ‘Asymptote’'s math capabilities
* interpolate::                 Interpolation routines
* geometry::                    Geometry routines
* trembling::                   Wavy lines
* stats::                       Statistics routines and histograms
* patterns::                    Custom fill and draw patterns
* markers::                     Custom path marker routines
* map::                         Map keys to values
* tree::                        Dynamic binary search tree
* binarytree::                  Binary tree drawing module
* drawtree::                    Tree drawing module
* syzygy::                      Syzygy and braid drawing module
* feynman::                     Feynman diagrams
* roundedpath::                 Round the sharp corners of paths
* animation::                   Embedded PDF and MPEG movies
* embed::                       Embedding movies, sounds, and 3D objects
* slide::                       Making presentations with ‘Asymptote’
* MetaPost::                    ‘MetaPost’ compatibility routines
* babel::                       Interface to ‘LaTeX’ ‘babel’ package
* labelpath::                   Drawing curved labels
* labelpath3::                  Drawing curved labels in 3D
* annotate::                    Annotate your PDF files
* CAD::                         2D CAD pen and measurement functions (DIN 15)
* graph::                       2D linear & logarithmic graphs
* palette::                     Color density images and palettes
* three::                       3D vector graphics
* obj::                         3D obj files
* graph3::                      3D linear & logarithmic graphs
* grid3::                       3D grids
* solids::                      3D solid geometry
* tube::                        3D rotation minimizing tubes
* flowchart::                   Flowchart drawing routines
* contour::                     Contour lines
* contour3::                    Contour surfaces
* smoothcontour3::              Smooth implicit surfaces
* slopefield::                  Slope fields
* ode::                         Ordinary differential equations

Graphical User Interface

* GUI installation::            Installing ‘xasy’
* GUI usage::                   Using ‘xasy’ to edit objects


File: asymptote.info,  Node: Description,  Next: Installation,  Prev: Top,  Up: Top

1 Description
*************

‘Asymptote’ is a powerful descriptive vector graphics language that
provides a mathematical coordinate-based framework for technical
drawing.  Labels and equations are typeset with ‘LaTeX’, for overall
document consistency, yielding the same high-quality level of
typesetting that ‘LaTeX’ provides for scientific text.  By default it
produces ‘PostScript’ output, but it can also generate ‘OpenGL’, ‘PDF’,
‘SVG’, ‘WebGL’, ‘V3D’, and legacy ‘PRC’ vector graphics, along with any
format that the ‘ImageMagick’ package can produce.  You can even try it
out in your Web browser without installing it, using the ‘Asymptote Web
Application’

  <https://asymptote.ualberta.ca>

  It is also possible to send remote commands to this server via the
curl utility (*note Command-Line Interface::).

  A major advantage of ‘Asymptote’ over other graphics packages is that
it is a high-level programming language, as opposed to just a graphics
program: it can therefore exploit the best features of the script
(command-driven) and graphical-user-interface (GUI) methods for
producing figures.  The rudimentary GUI ‘xasy’ included with the package
allows one to move script-generated objects around.  To make ‘Asymptote’
accessible to the average user, this GUI is currently being developed
into a full-fledged interface that can generate objects directly.
However, the script portion of the language is now ready for general use
by users who are willing to learn a few simple ‘Asymptote’ graphics
commands (*note Drawing commands::).

  ‘Asymptote’ is mathematically oriented (e.g. one can use complex
multiplication to rotate a vector) and uses ‘LaTeX’ to do the
typesetting of labels.  This is an important feature for scientific
applications.  It was inspired by an earlier drawing program (with a
weaker syntax and capabilities) called ‘MetaPost’.

  The ‘Asymptote’ vector graphics language provides:

  • a standard for typesetting mathematical figures, just as
    TeX/‘LaTeX’ is the de-facto standard for typesetting equations.

  • ‘LaTeX’ typesetting of labels, for overall document consistency;

  • the ability to generate and embed 3D vector WebGL graphics within
    HTML files;

  • the ability to generate and embed 3D vector PRC graphics within PDF
    files;

  • a natural coordinate-based framework for technical drawing,
    inspired by ‘MetaPost’, with a much cleaner, powerful C++-like
    programming syntax;

  • compilation of figures into virtual machine code for speed, without
    sacrificing portability;

  • the power of a script-based language coupled to the convenience of
    a GUI;

  • customization using its own C++-like graphics programming language;

  • sensible defaults for graphical features, with the ability to
    override;

  • a high-level mathematically oriented interface to the ‘PostScript’
    language for vector graphics, including affine transforms and
    complex variables;

  • functions that can create new (anonymous) functions;

  • deferred drawing that uses the simplex method to solve overall size
    constraint issues between fixed-sized objects (labels and
    arrowheads) and objects that should scale with figure size;

  Many of the features of ‘Asymptote’ are written in the ‘Asymptote’
language itself.  While the stock version of ‘Asymptote’ is designed for
mathematics typesetting needs, one can write ‘Asymptote’ modules that
tailor it to specific applications; for example, a scientific graphing
module is available (*note graph::).  Examples of ‘Asymptote’ code and
output, including animations, are available at
    <https://asymptote.sourceforge.io/gallery/>
Clicking on an example file name in this manual, like ‘Pythagoras’, will
display the PDF output, whereas clicking on its ‘.asy’ extension will
show the corresponding ‘Asymptote’ code in a separate window.

  Links to many external resources, including an excellent user-written
‘Asymptote’ tutorial can be found at
    <https://asymptote.sourceforge.io/links.html>
  A quick reference card for ‘Asymptote’ is available at
    <https://asymptote.sourceforge.io/asyRefCard.pdf>


File: asymptote.info,  Node: Installation,  Next: Tutorial,  Prev: Description,  Up: Top

2 Installation
**************

* Menu:

* UNIX binary distributions::   Prebuilt ‘UNIX’ binaries
* MacOS X binary distributions::  Prebuilt ‘MacOS X’ binaries
* Microsoft Windows::           Prebuilt ‘Microsoft Windows’ binary
* Configuring::                 Configuring ‘Asymptote’ for your system
* Search paths::                Where ‘Asymptote’ looks for your files
* Compiling from UNIX source::  Building ‘Asymptote’ from scratch
* Editing modes::               Convenient ‘emacs’ and ‘vim’ modes
* Git::                         Getting the latest development source
* Building the documentation::  Building the documentation
* Uninstall::                   Goodbye, ‘Asymptote’!

After following the instructions for your specific distribution, please
see also *note Configuring::.

We recommend subscribing to new release announcements at
    <https://sourceforge.net/projects/asymptote>
Users may also wish to monitor the ‘Asymptote’ forum:
    <https://sourceforge.net/p/asymptote/discussion/409349>


File: asymptote.info,  Node: UNIX binary distributions,  Next: MacOS X binary distributions,  Up: Installation

2.1 UNIX binary distributions
=============================

We release both ‘tgz’ and RPM binary distributions of ‘Asymptote’.  The
root user can install the ‘Linux x86_64’ ‘tgz’ distribution of version
‘x.xx’ of ‘Asymptote’ with the commands:
tar -C / -zxf asymptote-x.xx.x86_64.tgz
texhash
The ‘texhash’ command, which installs LaTeX style files, is optional.
The executable file will be ‘/usr/local/bin/asy’) and example code will
be installed by default in ‘/usr/local/share/doc/asymptote/examples’.

Fedora users can easily install a recent version of ‘Asymptote’ with the
command
dnf --enablerepo=rawhide install asymptote

To install the latest version of ‘Asymptote’ on a Debian-based
distribution (e.g. Ubuntu, Mepis, Linspire) follow the instructions for
compiling from ‘UNIX’ source (*note Compiling from UNIX source::).
Alternatively, Debian users can install one of Hubert Chan's prebuilt
‘Asymptote’ binaries from
    <https://ftp.debian.org/debian/pool/main/a/asymptote>


File: asymptote.info,  Node: MacOS X binary distributions,  Next: Microsoft Windows,  Prev: UNIX binary distributions,  Up: Installation

2.2 MacOS X binary distributions
================================

‘MacOS X’ users can either compile the ‘UNIX’ source code (*note
Compiling from UNIX source::) or install the ‘Asymptote’ binary
available at

  <https://www.macports.org/>

  or at

  <https://brew.sh/>

Note that many ‘MacOS X’ (and FreeBSD) systems lack the GNU ‘readline’
library.  For full interactive functionality, GNU ‘readline’ version 4.3
or later must be installed.


File: asymptote.info,  Node: Microsoft Windows,  Next: Configuring,  Prev: MacOS X binary distributions,  Up: Installation

2.3 Microsoft Windows
=====================

Users of the ‘Microsoft Windows’ operating system can install the
self-extracting ‘Asymptote’ executable ‘asymptote-x.xx-setup.exe’, where
‘x.xx’ denotes the latest version.

  A working TeX implementation (we recommend
<https://www.tug.org/texlive> or <https://miktex.org>) will be required
to typeset labels.  You will also need to install ‘GPL Ghostscript’
version 9.56 or later from <https://www.ghostscript.com/>.

  To view ‘PostScript’ output, you can install the program ‘Sumatra
PDF’ available from <https://www.sumatrapdfreader.org/>.

  The ‘ImageMagick’ package from
<https://www.imagemagick.org/script/binary-releases.php>

is required to support output formats other than HTML, PDF, SVG, and PNG
(*note magick::).  The ‘Python 3’ interpreter from
<https://www.python.org> is only required if you wish to try out the
graphical user interface (*note GUI::).

Example code will be installed by default in the ‘examples’ subdirectory
of the installation directory (by default, ‘C:\Program
Files\Asymptote’).


File: asymptote.info,  Node: Configuring,  Next: Search paths,  Prev: Microsoft Windows,  Up: Installation

2.4 Configuring
===============

In interactive mode, or when given the ‘-V’ option (the default when
running ‘Asymptote’ on a single file under ‘MSDOS’), ‘Asymptote’ will
automatically invoke your ‘PostScript’ viewer (‘evince’ under ‘UNIX’) to
display graphical output.  The ‘PostScript’ viewer should be capable of
automatically redrawing whenever the output file is updated.  The ‘UNIX’
‘PostScript’ viewer ‘gv’ supports this (via a ‘SIGHUP’ signal).  Users
of ‘ggv’ will need to enable ‘Watch file’ under ‘Edit/PostScript Viewer
Preferences’.

  Configuration variables are most easily set as ‘Asymptote’ variables
in an optional configuration file ‘config.asy’ (*note configuration
file::).  For example, the setting ‘pdfviewer’ specifies the location of
the PDF viewer.  Here are the default values of several important
configuration variables under ‘UNIX’:

import settings;
pdfviewer="acroread";
htmlviewer="google-chrome";
psviewer="evince";
display="display";
animate="animate";
gs="gs";
libgs="";

Under ‘MSDOS’, the viewer settings ‘htmlviewer’, ‘pdfviewer’,
‘psviewer’, ‘display’, and ‘animate’ default to the string ‘cmd’,
requesting the application normally associated with each file type.  The
(installation-dependent) default values of ‘gs’ and ‘libgs’ are
determined automatically from the ‘Microsoft Windows’ registry.  The
‘gs’ setting specifies the location of the ‘PostScript’ processor
‘Ghostscript’, available from <https://www.ghostscript.com/>.

The configuration variable ‘htmlviewer’ specifies the browser to use to
display 3D ‘WebGL’ output.  The default setting is ‘google-chrome’ under
‘UNIX’ and ‘cmd’ under ‘Microsoft Windows’.  Note that ‘Internet
Explorer’ does not support ‘WebGL’; ‘Microsoft Windows’ users should set
their default html browser to ‘chrome’ or ‘microsoft-edge’.  By default,
2D and 3D ‘HTML’ images expand to the enclosing canvas; this can be
disabled by setting the configuration variable ‘absolute’ to ‘true’.

  On ‘UNIX’ systems, to support automatic document reloading of ‘PDF’
files in ‘Adobe Reader’, we recommend copying the file ‘reload.js’ from
the ‘Asymptote’ system directory (by default,
‘/usr/local/share/asymptote’ under ‘UNIX’ to
‘~/.adobe/Acrobat/x.x/JavaScripts/’, where ‘x.x’ represents the
appropriate ‘Adobe Reader’ version number.  The automatic document
reload feature must then be explicitly enabled by putting
import settings;
pdfreload=true;
pdfreloadOptions="-tempFile";
in the ‘Asymptote’ configuration file.  This reload feature is not
useful under ‘MSDOS’ since the document cannot be updated anyway on that
operating system until it is first closed by ‘Adobe Reader’.

  The configuration variable ‘dir’ can be used to adjust the search
path (*note Search paths::).

  By default, ‘Asymptote’ attempts to center the figure on the page,
assuming that the paper type is ‘letter’.  The default paper type may be
changed to ‘a4’ with the configuration variable ‘papertype’.  Alignment
to other paper sizes can be obtained by setting the configuration
variables ‘paperwidth’ and ‘paperheight’.

  These additional configuration variables normally do not require
adjustment:
config
texpath
texcommand
dvips
dvisvgm
convert
asygl

  Warnings (such as "unbounded" and "offaxis") may be enabled or
disabled with the functions
warn(string s);
nowarn(string s);
or by directly modifying the string array ‘settings.suppress’, which
lists all disabled warnings.

  Configuration variables may also be set or overwritten with a
command-line option:
asy -psviewer=evince -V venn

  Alternatively, system environment versions of the above configuration
variables may be set in the conventional way.  The corresponding
environment variable name is obtained by converting the configuration
variable name to upper case and prepending ‘ASYMPTOTE_’: for example, to
set the environment variable
ASYMPTOTE_PAPERTYPE="a4";
under ‘Microsoft Windows XP’:
 1. Click on the ‘Start’ button;
 2. Right-click on ‘My Computer’;
 3. Choose ‘View system information’;
 4. Click the ‘Advanced’ tab;
 5. Click the ‘Environment Variables’ button.


File: asymptote.info,  Node: Search paths,  Next: Compiling from UNIX source,  Prev: Configuring,  Up: Installation

2.5 Search paths
================

In looking for ‘Asymptote’ files, ‘asy’ will search the following paths,
in the order listed:
 1. The current directory;
 2. A list of one or more directories specified by the configuration
    variable ‘dir’ or environment variable ‘ASYMPTOTE_DIR’ (separated
    by ‘:’ under UNIX and ‘;’ under ‘MSDOS’);
 3. The directory specified by the environment variable
    ‘ASYMPTOTE_HOME’; if this variable is not set, the directory ‘.asy’
    in the user's home directory (‘%USERPROFILE%\.asy’ under ‘MSDOS’)
    is used;
 4. The ‘Asymptote’ system directory (by default,
    ‘/usr/local/share/asymptote’ under ‘UNIX’ and ‘C:\Program
    Files\Asymptote’ under ‘MSDOS’).
 5. The ‘Asymptote’ examples directory (by default,
    ‘/usr/local/share/doc/asymptote/examples’ under ‘UNIX’ and
    ‘C:\Program Files\Asymptote\examples’ under ‘MSDOS’).


File: asymptote.info,  Node: Compiling from UNIX source,  Next: Editing modes,  Prev: Search paths,  Up: Installation

2.6 Compiling from UNIX source
==============================

To compile and install a ‘UNIX’ executable from the source release
‘asymptote-x.xx.src.tgz’ in the subdirectory ‘x.xx’ under

  <https://sourceforge.net/projects/asymptote/files/>

  execute the commands:
gunzip asymptote-x.xx.src.tgz
tar -xf asymptote-x.xx.src.tar
cd asymptote-x.xx

  Then compile ‘Asymptote’ with the commands
/configure
make all
make install
Be sure to use GNU ‘make’ (on non-GNU systems this command may be called
‘gmake’).  To build the documentation, you may need to install the
‘texinfo-tex’ package.  If you get errors from a broken ‘texinfo’ or
‘pdftex’ installation, simply put
    <https://asymptote.sourceforge.io/asymptote.pdf>
in the directory ‘doc’ and repeat the command ‘make all’.

For a (default) system-wide installation, the last command should be
done as the root user.  To install without root privileges, change the
‘./configure’ command to
/configure --prefix=$HOME/asymptote
  One can disable use of the Boehm garbage collector by configuring
with ‘./configure --disable-gc’.  For a list of other configuration
options, say ‘./configure --help’.  For example, under ‘MacOS X’, one
can tell configure to use the ‘clang’ compilers and look for header
files and libraries in nonstandard locations:
/configure CC=clang CXX=clang++ CPPFLAGS=-I/opt/local/include LDFLAGS=-L/opt/local/lib

  If you are compiling ‘Asymptote’ with ‘gcc’, you will need a
relatively recent version (e.g. 3.4.4 or later).  For full interactive
functionality, you will need version 4.3 or later of the GNU ‘readline’
library.  The file ‘gcc3.3.2curses.patch’ in the ‘patches’ directory can
be used to patch the broken curses.h header file (or a local copy
thereof in the current directory) on some ‘AIX’ and ‘IRIX’ systems.

  The ‘FFTW’ library is only required if you want ‘Asymptote’ to be
able to take Fourier transforms of data (say, to compute an audio power
spectrum).  The ‘GSL’ library is only required if you require the
special functions that it supports.

  If you don't want to install ‘Asymptote’ system wide, just make sure
the compiled binary ‘asy’ and GUI script ‘xasy’ are in your path and set
the configuration variable ‘dir’ to point to the directory ‘base’ (in
the top level directory of the ‘Asymptote’ source code).


File: asymptote.info,  Node: Editing modes,  Next: Git,  Prev: Compiling from UNIX source,  Up: Installation

2.7 Editing modes
=================

Users of ‘emacs’ can edit ‘Asymptote’ code with the mode ‘asy-mode’,
after enabling it by putting the following lines in their ‘.emacs’
initialization file, replacing ‘ASYDIR’ with the location of the
‘Asymptote’ system directory (by default, ‘/usr/local/share/asymptote’
or ‘C:\Program Files\Asymptote’ under ‘MSDOS’):
(add-to-list 'load-path "ASYDIR")
(autoload 'asy-mode "asy-mode.el" "Asymptote major mode." t)
(autoload 'lasy-mode "asy-mode.el" "hybrid Asymptote/Latex major mode." t)
(autoload 'asy-insinuate-latex "asy-mode.el" "Asymptote insinuate LaTeX." t)
(add-to-list 'auto-mode-alist '("\\.asy$" . asy-mode))

Particularly useful key bindings in this mode are ‘C-c C-c’, which
compiles and displays the current buffer, and the key binding ‘C-c ?’,
which shows the available function prototypes for the command at the
cursor.  For full functionality you should also install the Apache
Software Foundation package ‘two-mode-mode’:
    <https://github.com/erlyaws/yaws/blob/master/two-mode-mode.el>
The hybrid mode ‘lasy-mode’ can be used to edit a LaTeX file containing
embedded ‘Asymptote’ code (*note LaTeX usage::).  This mode can be
enabled within ‘latex-mode’ with the key sequence ‘M-x lasy-mode <RET>’.
On ‘UNIX’ systems, additional keywords will be generated from all ‘asy’
files in the space-separated list of directories specified by the
environment variable ‘ASYMPTOTE_SITEDIR’.  Further documentation of
‘asy-mode’ is available within ‘emacs’ by pressing the sequence keys
‘C-h f asy-mode <RET>’.

  Fans of ‘vim’ can customize ‘vim’ for ‘Asymptote’ with

‘cp /usr/local/share/asymptote/asy.vim ~/.vim/syntax/asy.vim’

and add the following to their ‘~/.vimrc’ file:
augroup filetypedetect
au BufNewFile,BufRead *.asy     setf asy
augroup END
filetype plugin on

  If any of these directories or files don't exist, just create them.
To set ‘vim’ up to run the current asymptote script using ‘:make’ just
add to ‘~/.vim/ftplugin/asy.vim’:
setlocal makeprg=asy\ %
setlocal errorformat=%f:\ %l.%c:\ %m

  Syntax highlighting support for the KDE editor ‘Kate’ can be enabled
by running ‘asy-kate.sh’ in the ‘/usr/local/share/asymptote’ directory
and putting the generated ‘asymptote.xml’ file in
‘~/.local/share/org.kde.syntax-highlighting/syntax/’.


File: asymptote.info,  Node: Git,  Next: Building the documentation,  Prev: Editing modes,  Up: Installation

2.8 Git
=======

The following commands are needed to install the latest development
version of ‘Asymptote’ using ‘git’:
git clone https://github.com/vectorgraphics/asymptote

cd asymptote
/autogen.sh
/configure
make all
make install

To compile without optimization On ‘Ubuntu’ systems, you may need to
first install the required dependencies:
apt-get build-dep asymptote


File: asymptote.info,  Node: Building the documentation,  Next: Uninstall,  Prev: Git,  Up: Installation

2.9 Building the documentation
==============================

Here are instructions for building the documentation:
cd doc
make  # for both the PDF version doc/asymptote.pdf and the HTML version
cd png
make  # for the HTML version only: doc/png/index.html
  Note that the ‘HTML’ version cannot be built without executing ‘make’
from ‘doc’ folder first.

  The ‘asy’ executable is required for compiling the diagrams in the
documentation.


File: asymptote.info,  Node: Uninstall,  Prev: Building the documentation,  Up: Installation

2.10 Uninstall
==============

To uninstall a ‘Linux x86_64’ binary distribution
tar -zxvf asymptote-x.xx.x86_64.tgz | xargs --replace=% rm /%
texhash

To uninstall all ‘Asymptote’ files installed from a source distribution,
use the command
make uninstall


File: asymptote.info,  Node: Tutorial,  Next: Drawing commands,  Prev: Installation,  Up: Top

3 Tutorial
**********

* Menu:

* Drawing in batch mode::       Run ‘Asymptote’ on a text file
* Drawing in interactive mode::  Running ‘Asymptote’ interactively
* Figure size::                 Specifying the figure size
* Labels::                      Adding ‘LaTeX’ labels
* Paths::                       Drawing lines and curves

A concise introduction to ‘Asymptote’ is given here.  For a more
thorough introduction, see the excellent ‘Asymptote’ tutorial written by
Charles Staats:

  <https://asymptote.sourceforge.io/asymptote_tutorial.pdf>

  Another ‘Asymptote’ tutorial is available as a wiki, with images
rendered by an online Asymptote engine:

  <https://www.artofproblemsolving.com/wiki/?title=Asymptote_(Vector_Graphics_Language)>


File: asymptote.info,  Node: Drawing in batch mode,  Next: Drawing in interactive mode,  Up: Tutorial

3.1 Drawing in batch mode
=========================

To draw a line from coordinate (0,0) to coordinate (100,100), create a
text file ‘test.asy’ containing
draw((0,0)--(100,100));

Then execute the command
asy -V test
Alternatively, ‘MSDOS’ users can drag and drop ‘test.asy’ onto the
Desktop ‘asy’ icon (or make ‘Asymptote’ the default application for the
extension ‘asy’).

This method, known as _batch mode_, outputs a ‘PostScript’ file
‘test.eps’.  If you prefer PDF output, use the command line
asy -V -f pdf test
  In either case, the ‘-V’ option opens up a viewer window so you can
immediately view the result:

                            [./diagonal]
Here, the ‘--’ connector joins the two points ‘(0,0)’ and ‘(100,100)’
with a line segment.


File: asymptote.info,  Node: Drawing in interactive mode,  Next: Figure size,  Prev: Drawing in batch mode,  Up: Tutorial

3.2 Drawing in interactive mode
===============================

Another method is _interactive mode_, where ‘Asymptote’ reads individual
commands as they are entered by the user.  To try this out, enter
‘Asymptote’'s interactive mode by clicking on the ‘Asymptote’ icon or
typing the command ‘asy’.  Then type
draw((0,0)--(100,100));
followed by ‘Enter’, to obtain the above image.

  At this point you can type further ‘draw’ commands, which will be
added to the displayed figure, ‘erase’ to clear the canvas,
input test;
to execute all of the commands contained in the file ‘test.asy’, or
‘quit’ to exit interactive mode.  You can use the arrow keys in
interactive mode to edit previous lines.  The tab key will automatically
complete unambiguous words; otherwise, hitting tab again will show the
possible choices.  Further commands specific to interactive mode are
described in *note Interactive mode::.


File: asymptote.info,  Node: Figure size,  Next: Labels,  Prev: Drawing in interactive mode,  Up: Tutorial

3.3 Figure size
===============

In ‘Asymptote’, coordinates like ‘(0,0)’ and ‘(100,100)’, called
_pairs_, are expressed in ‘PostScript’ "big points" (1 ‘bp’ = 1/72
‘inch’) and the default line width is ‘0.5bp’.  However, it is often
inconvenient to work directly in ‘PostScript’ coordinates.  The next
example produces identical output to the previous example, by scaling
the line ‘(0,0)--(1,1)’ to fit a rectangle of width ‘100.5 bp’ and
height ‘100.5 bp’ (the extra ‘0.5bp’ accounts for the line width):
size(100.5,100.5);
draw((0,0)--(1,1));

                            [./diagonal]

  One can also specify the size in ‘pt’ (1 ‘pt’ = 1/72.27 ‘inch’),
‘cm’, ‘mm’, or ‘inches’.  Two nonzero size arguments (or a single size
argument) restrict the size in both directions, preserving the aspect
ratio.  If 0 is given as a size argument, no restriction is made in that
direction; the overall scaling will be determined by the other direction
(*note size::):
size(0,100.5);
draw((0,0)--(2,1),Arrow);

                           [./bigdiagonal]

  To connect several points and create a cyclic path, use the ‘cycle’
keyword:
size(3cm);
draw((0,0)--(1,0)--(1,1)--(0,1)--cycle);

                             [./square]
For convenience, the path ‘(0,0)--(1,0)--(1,1)--(0,1)--cycle’ may be
replaced with the predefined variable ‘unitsquare’, or equivalently,
‘box((0,0),(1,1))’.

  To make the user coordinates represent multiples of exactly ‘1cm’:
unitsize(1cm);
draw(unitsquare);


File: asymptote.info,  Node: Labels,  Next: Paths,  Prev: Figure size,  Up: Tutorial

3.4 Labels
==========

Adding labels is easy in ‘Asymptote’; one specifies the label as a
double-quoted ‘LaTeX’ string, a coordinate, and an optional alignment
direction:
size(3cm);
draw(unitsquare);
label("$A$",(0,0),SW);
label("$B$",(1,0),SE);
label("$C$",(1,1),NE);
label("$D$",(0,1),NW);

                           [./labelsquare]

  ‘Asymptote’ uses the standard compass directions ‘E=(1,0)’,
‘N=(0,1)’, ‘NE=unit(N+E)’, and ‘ENE=unit(E+NE)’, etc., which along with
the directions ‘up’, ‘down’, ‘right’, and ‘left’ are defined as pairs in
the ‘Asymptote’ base module ‘plain’ (a user who has a local variable
named ‘E’ may access the compass direction ‘E’ by prefixing it with the
name of the module where it is defined: ‘plain.E’).


File: asymptote.info,  Node: Paths,  Prev: Labels,  Up: Tutorial

3.5 Paths
=========

This example draws a path that approximates a quarter circle, terminated
with an arrowhead:
size(100,0);
draw((1,0){up}..{left}(0,1),Arrow);

                          [./quartercircle]
Here the directions ‘up’ and ‘left’ in braces specify the outgoing and
incoming directions at the points ‘(1,0)’ and ‘(0,1)’, respectively.

  In general, a path is specified as a list of points (or other paths)
interconnected with ‘--’, which denotes a straight line segment, or
‘..’, which denotes a cubic spline (*note Bezier curves::).  Specifying
a final ‘..cycle’ creates a cyclic path that connects smoothly back to
the initial node, as in this approximation (accurate to within 0.06%) of
a unit circle:
path unitcircle=E..N..W..S..cycle;

An ‘Asymptote’ path, being connected, is equivalent to a ‘PostScript
subpath’.  The ‘^^’ binary operator, which requests that the pen be
moved (without drawing or affecting endpoint curvatures) from the final
point of the left-hand path to the initial point of the right-hand path,
may be used to group several ‘Asymptote’ paths into a ‘path[]’ array
(equivalent to a ‘PostScript’ path):
size(0,100);
path unitcircle=E..N..W..S..cycle;
path g=scale(2)*unitcircle;
filldraw(unitcircle^^g,evenodd+yellow,black);


                            [./superpath]

The ‘PostScript’ even-odd fill rule here specifies that only the region
bounded between the two unit circles is filled (*note fillrule::).  In
this example, the same effect can be achieved by using the default zero
winding number fill rule, if one is careful to alternate the orientation
of the paths:
filldraw(unitcircle^^reverse(g),yellow,black);

  The ‘^^’ operator is used by the ‘box(triple, triple)’ function in
the module ‘three’ to construct the edges of a cube ‘unitbox’ without
retracing steps (*note three::):
import three;

currentprojection=orthographic(5,4,2,center=true);

size(5cm);
size3(3cm,5cm,8cm);

draw(unitbox);

dot(unitbox,red);

label("$O$",(0,0,0),NW);
label("(1,0,0)",(1,0,0),S);
label("(0,1,0)",(0,1,0),E);
label("(0,0,1)",(0,0,1),Z);

                              [./cube]

  See section *note graph:: (or the online ‘Asymptote’ gallery and
external links posted at <https://asymptote.sourceforge.io>) for further
examples, including two-dimensional and interactive three-dimensional
scientific graphs.  Additional examples have been posted by Philippe
Ivaldi at <https://blog.piprime.fr/asymptote/>.


File: asymptote.info,  Node: Drawing commands,  Next: Bezier curves,  Prev: Tutorial,  Up: Top

4 Drawing commands
******************

All of ‘Asymptote’'s graphical capabilities are based on four primitive
commands.  The three ‘PostScript’ drawing commands ‘draw’, ‘fill’, and
‘clip’ add objects to a picture in the order in which they are executed,
with the most recently drawn object appearing on top.  The labeling
command ‘label’ can be used to add text labels and external EPS images,
which will appear on top of the ‘PostScript’ objects (since this is
normally what one wants), but again in the relative order in which they
were executed.  After drawing objects on a picture, the picture can be
output with the ‘shipout’ function (*note shipout::).

  If you wish to draw ‘PostScript’ objects on top of labels (or
verbatim ‘tex’ commands; *note tex::), the ‘layer’ command may be used
to start a new ‘PostScript/LaTeX’ layer:
void layer(picture pic=currentpicture);

  The ‘layer’ function gives one full control over the order in which
objects are drawn.  Layers are drawn sequentially, with the most recent
layer appearing on top.  Within each layer, labels, images, and verbatim
‘tex’ commands are always drawn after the ‘PostScript’ objects in that
layer.

  A page break can be generated with the command
void newpage(picture pic=currentpicture);

  While some of these drawing commands take many options, they all have
sensible default values (for example, the picture argument defaults to
currentpicture).

* Menu:

* draw::                        Draw a path on a picture or frame
* fill::                        Fill a cyclic path on a picture or frame
* clip::                        Clip a picture or frame to a cyclic path
* label::                       Label a point on a picture


File: asymptote.info,  Node: draw,  Next: fill,  Up: Drawing commands

4.1 draw
========

void draw(picture pic=currentpicture, Label L="", path g,
         align align=NoAlign, pen p=currentpen,
         arrowbar arrow=None, arrowbar bar=None, margin margin=NoMargin,
         Label legend="", marker marker=nomarker);

  Draw the path ‘g’ on the picture ‘pic’ using pen ‘p’ for drawing,
with optional drawing attributes (Label ‘L’, explicit label alignment
‘align’, arrows and bars ‘arrow’ and ‘bar’, margins ‘margin’, legend,
and markers ‘marker’).  Only one parameter, the path, is required.  For
convenience, the arguments ‘arrow’ and ‘bar’ may be specified in either
order.  The argument ‘legend’ is a Label to use in constructing an
optional legend entry.

  Bars ‘bar’ are useful for indicating dimensions.  The possible values
of ‘bar’ are ‘None’, ‘BeginBar’, ‘EndBar’ (or equivalently ‘Bar’), and
‘Bars’ (which draws a bar at both ends of the path).  Each of these bar
specifiers (except for ‘None’) will accept an optional real argument
that denotes the length of the bar in ‘PostScript’ coordinates.  The
default bar length is ‘barsize(pen)’.

  The possible values of ‘arrow’ are ‘None’, ‘Blank’ (which draws no
arrows or path), ‘BeginArrow’, ‘MidArrow’, ‘EndArrow’ (or equivalently
‘Arrow’), and ‘Arrows’ (which draws an arrow at both ends of the path).

  There are also arrow versions with slightly modified default values
of ‘size’ and ‘angle’ suitable for curved arrows: ‘BeginArcArrow’,
‘EndArcArrow’ (or equivalently ‘ArcArrow’), ‘MidArcArrow’, and
‘ArcArrows’.

  For example:
draw((0,0)--(1,1),arrow=Arrows);

  All of the arrow specifiers except for ‘None’ and ‘Blank’ may be
given optional arguments, for example:
draw((0,0)--(1,1),arrow=Arrow(
    arrowhead=HookHead,size=3mm,angle=20,filltype=Draw,position=0.9));

  The function ‘Arrow’ has the signature
arrowbar Arrow(arrowhead arrowhead=DefaultHead,
              real size=0, real angle=arrowangle,
              filltype filltype=null, position position=EndPoint)
Calling ‘Arrow()’ returns ‘Arrow’, which is an ‘arrowbar’ object.  The
parameters are:

  • ‘arrowhead’ can be one of the predefined arrowhead styles
    ‘DefaultHead’, ‘SimpleHead’, ‘HookHead’, ‘TeXHead’.
  • real ‘size’ is the arrowhead size in ‘PostScript’ coordinates.

    The default arrowhead size when drawn with a pen ‘p’ is
    ‘arrowsize(p)’.
  • real ‘angle’ is the arrowhead angle in degrees.

  • filltype ‘filltype’ (*note filltype::),
  • (except for ‘MidArrow’ and ‘Arrows’) real ‘position’ (in the sense
    of ‘point(path p, real t)’) along the path where the tip of the
    arrow should be placed.

  Margins ‘margin’ can be used to shrink the visible portion of a path
by ‘labelmargin(p)’ to avoid overlap with other drawn objects.

  Typical values of ‘margin’ are:
‘NoMargin’
‘BeginMargin’
‘EndMargin’
    (equivalently ‘Margin’)
‘Margins’
    leaves a margin at both ends of the path.
‘Margin(real begin, real end=begin)’
    specify the size of the beginning and ending margin, respectively,
    in multiples of the units ‘labelmargin(p)’ used for aligning
    labels.
‘BeginPenMargin’
‘EndPenMargin’
    (equivalently ‘PenMargin’)
‘PenMargins’
‘PenMargin(real begin, real end=begin)’
    specify a margin in units of the pen line width, taking account of
    the pen line width when drawing the path or arrow.
‘DotMargin’
    an abbreviation for ‘PenMargin(-0.5*dotfactor,0.5*dotfactor)’, used
    to draw from the usual beginning point just up to the boundary of
    an end dot of width ‘dotfactor*linewidth(p)’.
‘BeginDotMargin’
‘DotMargins’
    work similarly.
‘TrueMargin(real begin, real end=begin)’
    specify a margin directly in ‘PostScript’ units, independent of the
    pen line width.

  The use of arrows, bars, and margins is illustrated by the examples
‘Pythagoras.asy’ and ‘sqrtx01.asy’.

  The legend for a picture ‘pic’ can be fit and aligned to a frame with
the routine:
frame legend(picture pic=currentpicture, int perline=1,
            real xmargin=legendmargin, real ymargin=xmargin,
            real linelength=legendlinelength,
            real hskip=legendhskip, real vskip=legendvskip,
            real maxwidth=0, real maxheight=0,
            bool hstretch=false, bool vstretch=false, pen p=currentpen);
Here ‘xmargin’ and ‘ymargin’ specify the surrounding x and y margins,
‘perline’ specifies the number of entries per line (default 1; 0 means
choose this number automatically), ‘linelength’ specifies the length of
the path lines, ‘hskip’ and ‘vskip’ specify the line skip (as a multiple
of the legend entry size), ‘maxwidth’ and ‘maxheight’ specify optional
upper limits on the width and height of the resulting legend (0 means
unlimited), ‘hstretch’ and ‘vstretch’ allow the legend to stretch
horizontally or vertically, and ‘p’ specifies the pen used to draw the
bounding box.  The legend frame can then be added and aligned about a
point on a picture ‘dest’ using ‘add’ or ‘attach’ (*note add about::).

  To draw a dot, simply draw a path containing a single point.  The
‘dot’ command defined in the module ‘plain’ draws a dot having a
diameter equal to an explicit pen line width or the default line width
magnified by ‘dotfactor’ (6 by default), using the specified filltype
(*note filltype::) or ‘dotfilltype’ (‘Fill’ by default):
void dot(frame f, pair z, pen p=currentpen, filltype filltype=dotfilltype);
void dot(picture pic=currentpicture, pair z, pen p=currentpen,
        filltype filltype=dotfilltype);
void dot(picture pic=currentpicture, Label L, pair z, align align=NoAlign,
        string format=defaultformat, pen p=currentpen, filltype filltype=dotfilltype);
void dot(picture pic=currentpicture, Label[] L=new Label[], pair[] z,
        align align=NoAlign, string format=defaultformat, pen p=currentpen,
        filltype filltype=dotfilltype);
void dot(picture pic=currentpicture, path[] g, pen p=currentpen,
        filltype filltype=dotfilltype);
void dot(picture pic=currentpicture, Label L, pen p=currentpen,
        filltype filltype=dotfilltype);

  If the variable ‘Label’ is given as the ‘Label’ argument to the third
routine, the ‘format’ argument will be used to format a string based on
the dot location (here ‘defaultformat’ is ‘"$%.4g$"’).  The fourth
routine draws a dot at every point of a pair array ‘z’.  One can also
draw a dot at every node of a path:
void dot(picture pic=currentpicture, Label[] L=new Label[],
        explicit path g, align align=RightSide, string format=defaultformat,
        pen p=currentpen, filltype filltype=dotfilltype);
  See *note pathmarkers:: and *note markers:: for more general methods
for marking path nodes.

  To draw a fixed-sized object (in ‘PostScript’ coordinates) about the
user coordinate ‘origin’, use the routine
void draw(pair origin, picture pic=currentpicture, Label L="", path g,
         align align=NoAlign, pen p=currentpen, arrowbar arrow=None,
         arrowbar bar=None, margin margin=NoMargin, Label legend="",
         marker marker=nomarker);


File: asymptote.info,  Node: fill,  Next: clip,  Prev: draw,  Up: Drawing commands

4.2 fill
========

void fill(picture pic=currentpicture, path g, pen p=currentpen);

  Fill the interior region bounded by the cyclic path ‘g’ on the
picture ‘pic’, using the pen ‘p’.

  There is also a convenient ‘filldraw’ command, which fills the path
and then draws in the boundary.  One can specify separate pens for each
operation:
void filldraw(picture pic=currentpicture, path g, pen fillpen=currentpen,
             pen drawpen=currentpen);

  This fixed-size version of ‘fill’ allows one to fill an object
described in ‘PostScript’ coordinates about the user coordinate
‘origin’:
void fill(pair origin, picture pic=currentpicture, path g, pen p=currentpen);

This is just a convenient abbreviation for the commands:
picture opic;
fill(opic,g,p);
add(pic,opic,origin);

  The routine
void filloutside(picture pic=currentpicture, path g, pen p=currentpen);
fills the region exterior to the path ‘g’, out to the current boundary
of picture ‘pic’.

  Lattice gradient shading varying smoothly over a two-dimensional
array of pens ‘p’, using fill rule ‘fillrule’, can be produced with
void latticeshade(picture pic=currentpicture, path g, bool stroke=false,
                 pen fillrule=currentpen, pen[][] p)
  If ‘stroke=true’, the region filled is the same as the region that
would be drawn by ‘draw(pic,g,zerowinding)’; in this case the path ‘g’
need not be cyclic.  The pens in ‘p’ must belong to the same color
space.  One can use the functions ‘rgb(pen)’ or ‘cmyk(pen)’ to promote
pens to a higher color space, as illustrated in the example file
‘latticeshading.asy’.

  Axial gradient shading varying smoothly from ‘pena’ to ‘penb’ in the
direction of the line segment ‘a--b’ can be achieved with
void axialshade(picture pic=currentpicture, path g, bool stroke=false,
               pen pena, pair a, bool extenda=true,
               pen penb, pair b, bool extendb=true);
The boolean parameters ‘extenda’ and ‘extendb’ indicate whether the
shading should extend beyond the axis endpoints ‘a’ and ‘b’.  An example
of axial shading is provided in the example file ‘axialshade.asy’.

  Radial gradient shading varying smoothly from ‘pena’ on the circle
with center ‘a’ and radius ‘ra’ to ‘penb’ on the circle with center ‘b’
and radius ‘rb’ is similar:
void radialshade(picture pic=currentpicture, path g, bool stroke=false,
                pen pena, pair a, real ra, bool extenda=true,
                pen penb, pair b, real rb, bool extendb=true);
The boolean parameters ‘extenda’ and ‘extendb’ indicate whether the
shading should extend beyond the radii ‘a’ and ‘b’.  Illustrations of
radial shading are provided in the example files ‘shade.asy’,
‘ring.asy’, and ‘shadestroke.asy’.

  Gouraud shading using fill rule ‘fillrule’ and the vertex colors in
the pen array ‘p’ on a triangular lattice defined by the vertices ‘z’
and edge flags ‘edges’ is implemented with
void gouraudshade(picture pic=currentpicture, path g, bool stroke=false,
                 pen fillrule=currentpen, pen[] p, pair[] z,
                 int[] edges);
void gouraudshade(picture pic=currentpicture, path g, bool stroke=false,
                 pen fillrule=currentpen, pen[] p, int[] edges);
In the second form, the elements of ‘z’ are taken to be successive nodes
of path ‘g’.  The pens in ‘p’ must belong to the same color space.
Illustrations of Gouraud shading are provided in the example file
‘Gouraud.asy’.  The edge flags used in Gouraud shading are documented on
pages 270-274 of the PostScript Language Reference (3rd edition):
    <https://www.adobe.com/jp/print/postscript/pdfs/PLRM.pdf>

  Tensor product shading using clipping path ‘g’, fill rule ‘fillrule’
on patches bounded by the n cyclic paths of length 4 in path array ‘b’,
using the vertex colors specified in the n \times 4 pen array ‘p’ and
internal control points in the n \times 4 array ‘z’, is implemented with
void tensorshade(picture pic=currentpicture, path[] g, bool stroke=false,
                pen fillrule=currentpen, pen[][] p, path[] b=g,
                pair[][] z=new pair[][]);
If the array ‘z’ is empty, Coons shading, in which the color control
points are calculated automatically, is used.  The pens in ‘p’ must
belong to the same color space.  A simpler interface for the case of a
single patch (n=1) is also available:
void tensorshade(picture pic=currentpicture, path g, bool stroke=false,
                pen fillrule=currentpen, pen[] p, path b=g,
                pair[] z=new pair[]);
  One can also smoothly shade the regions between consecutive paths of
a sequence using a given array of pens:
void draw(picture pic=currentpicture, pen fillrule=currentpen, path[] g,
         pen[] p);
Illustrations of tensor product and Coons shading are provided in the
example files ‘tensor.asy’, ‘Coons.asy’, ‘BezierPatch.asy’, and
‘rainbow.asy’.

  More general shading possibilities are available using TeX engines
that produce PDF output (*note texengines::): the routine
void functionshade(picture pic=currentpicture, path[] g, bool stroke=false,
                  pen fillrule=currentpen, string shader);
shades on picture ‘pic’ the interior of path ‘g’ according to fill rule
‘fillrule’ using the ‘PostScript’ calculator routine specified by the
string ‘shader’; this routine takes 2 arguments, each in [0,1], and
returns ‘colors(fillrule).length’ color components.  Function shading is
illustrated in the example ‘functionshading.asy’.

  The following routine uses ‘evenodd’ clipping together with the ‘^^’
operator to unfill a region:

void unfill(picture pic=currentpicture, path g);


File: asymptote.info,  Node: clip,  Next: label,  Prev: fill,  Up: Drawing commands

4.3 clip
========

void clip(picture pic=currentpicture, path g, stroke=false,
         pen fillrule=currentpen);

  Clip the current contents of picture ‘pic’ to the region bounded by
the path ‘g’, using fill rule ‘fillrule’ (*note fillrule::).  If
‘stroke=true’, the clipped portion is the same as the region that would
be drawn with ‘draw(pic,g,zerowinding)’; in this case the path ‘g’ need
not be cyclic.  While clipping has no notion of depth (it transcends
layers and even pages), one can localize clipping to a temporary
picture, which can then be added to ‘pic’.  For an illustration of
picture clipping, see the first example in *note LaTeX usage::.


File: asymptote.info,  Node: label,  Prev: clip,  Up: Drawing commands

4.4 label
=========

void label(picture pic=currentpicture, Label L, pair position,
          align align=NoAlign, pen p=currentpen, filltype filltype=NoFill)

  Draw Label ‘L’ on picture ‘pic’ using pen ‘p’.  If ‘align’ is
‘NoAlign’, the label will be centered at user coordinate ‘position’;
otherwise it will be aligned in the direction of ‘align’ and displaced
from ‘position’ by the ‘PostScript’ offset ‘align*labelmargin(p)’.

  Here, ‘real labelmargin(pen p=currentpen)’ is a quantity used to
align labels.  In the code below,
label("abcdefg",(0,0),align=up,basealign);
the baseline of the label will be exactly ‘labelmargin(currentpen)’
‘PostScript’ units above the center.

  The constant ‘Align’ can be used to align the bottom-left corner of
the label at ‘position’.  The Label ‘L’ can either be a string or the
structure obtained by calling one of the functions
Label Label(string s="", pair position, align align=NoAlign,
           pen p=nullpen, embed embed=Rotate, filltype filltype=NoFill);
Label Label(string s="", align align=NoAlign,
           pen p=nullpen, embed embed=Rotate, filltype filltype=NoFill);
Label Label(Label L, pair position, align align=NoAlign,
           pen p=nullpen, embed embed=L.embed, filltype filltype=NoFill);
Label Label(Label L, align align=NoAlign,
           pen p=nullpen, embed embed=L.embed, filltype filltype=NoFill);
  The text of a Label can be scaled, slanted, rotated, or shifted by
multiplying it on the left by an affine transform (*note Transforms::).
For example, ‘rotate(45)*xscale(2)*L’ first scales ‘L’ in the x
direction and then rotates it counterclockwise by 45 degrees.  The final
position of a Label can also be shifted by a ‘PostScript’ coordinate
translation: ‘shift(10,0)*L’.  An explicit pen specified within the
Label overrides other pen arguments.  The ‘embed’ argument determines
how the Label should transform with the embedding picture:
‘Shift’
    only shift with embedding picture;

‘Rotate’
    only shift and rotate with embedding picture (default);

‘Rotate(pair z)’
    rotate with (picture-transformed) vector ‘z’.

‘Slant’
    only shift, rotate, slant, and reflect with embedding picture;

‘Scale’
    shift, rotate, slant, reflect, and scale with embedding picture.

  To add a label to a path, use
void label(picture pic=currentpicture, Label L, path g, align align=NoAlign,
          pen p=currentpen, filltype filltype=NoFill);
  By default the label will be positioned at the midpoint of the path.
An alternative label position (in the sense of ‘point(path p, real t)’)
may be specified as a real value for ‘position’ in constructing the
Label.  The position ‘Relative(real)’ specifies a location relative to
the total arclength of the path.  These convenient abbreviations are
predefined:
position BeginPoint=Relative(0);
position MidPoint=Relative(0.5);
position EndPoint=Relative(1);

  Path labels are aligned in the direction ‘align’, which may be
specified as an absolute compass direction (pair) or a direction
‘Relative(pair)’ measured relative to a north axis in the local
direction of the path.  For convenience ‘LeftSide’, ‘Center’, and
‘RightSide’ are defined as ‘Relative(W)’, ‘Relative((0,0))’, and
‘Relative(E)’, respectively.  Multiplying ‘LeftSide’ and ‘RightSide’ on
the left by a real scaling factor will move the label further away from
or closer to the path.

  A label with a fixed-size arrow of length ‘arrowlength’ pointing to
‘b’ from direction ‘dir’ can be produced with the routine
void arrow(picture pic=currentpicture, Label L="", pair b, pair dir,
          real length=arrowlength, align align=NoAlign,
          pen p=currentpen, arrowbar arrow=Arrow, margin margin=EndMargin);
  If no alignment is specified (either in the Label or as an explicit
argument), the optional Label will be aligned in the direction ‘dir’,
using margin ‘margin’.

  The function ‘string graphic(string name, string options="")’ returns
a string that can be used to include an encapsulated ‘PostScript’ (EPS)
file.  Here, ‘name’ is the name of the file to include and ‘options’ is
a string containing a comma-separated list of optional bounding box
(‘bb=llx lly urx ury’), width (‘width=value’), height (‘height=value’),
rotation (‘angle=value’), scaling (‘scale=factor’), clipping
(‘clip=bool’), and draft mode (‘draft=bool’) parameters.  The ‘layer()’
function can be used to force future objects to be drawn on top of the
included image:
label(graphic("file.eps","width=1cm"),(0,0),NE);
layer();

  The ‘string baseline(string s, string template="\strut")’ function
can be used to enlarge the bounding box of a label to match a given
template, so that their baselines will be typeset on a horizontal line.
See ‘Pythagoras.asy’ for an example.  Alternatively, the pen ‘basealign’
may be used to force labels to respect the TeX baseline (*note
basealign::).

  One can prevent labels from overwriting one another with the
‘overwrite’ pen attribute (*note overwrite::).

  The structure ‘object’ defined in ‘plain_Label.asy’ allows Labels and
frames to be treated in a uniform manner.  A group of objects may be
packed together into single frame with the routine
frame pack(pair align=2S ... object inset[]);
To draw or fill a box (or ellipse or other path) around a ‘Label’ and
return the bounding object, use one of the routines
object draw(picture pic=currentpicture, Label L, envelope e,
           real xmargin=0, real ymargin=xmargin, pen p=currentpen,
           filltype filltype=NoFill, bool above=true);
object draw(picture pic=currentpicture, Label L, envelope e, pair position,
           real xmargin=0, real ymargin=xmargin, pen p=currentpen,
           filltype filltype=NoFill, bool above=true);
Here ‘envelope’ is a boundary-drawing routine such as ‘box’, ‘roundbox’,
or ‘ellipse’ defined in ‘plain_boxes.asy’.

  The function ‘path[] texpath(Label L)’ returns the path array that
TeX would fill to draw the Label ‘L’.

  The ‘string minipage(string s, width=100pt)’ function can be used to
format string ‘s’ into a paragraph of width ‘width’.  This example uses
‘minipage’, ‘clip’, and ‘graphic’ to produce a CD label:

                             [./CDlabel]
size(11.7cm,11.7cm);

asy(nativeformat(),"logo");

fill(unitcircle^^(scale(2/11.7)*unitcircle),
    evenodd+rgb(124/255,205/255,124/255));
label(scale(1.1)*minipage(
                         "\centering\scriptsize \textbf{\LARGE {\tt Asymptote}\\
\smallskip
\small The Vector Graphics Language}\\
\smallskip
\textsc{Andy Hammerlindl, John Bowman, and Tom Prince}
https://asymptote.sourceforge.io\\
",8cm),(0,0.6));
label(graphic("logo","height=7cm"),(0,-0.22));
clip(unitcircle^^(scale(2/11.7)*unitcircle),evenodd);


File: asymptote.info,  Node: Bezier curves,  Next: Programming,  Prev: Drawing commands,  Up: Top

5 Bezier curves
***************

Each interior node of a cubic spline may be given a direction prefix or
suffix ‘{dir}’: the direction of the pair ‘dir’ specifies the direction
of the incoming or outgoing tangent, respectively, to the curve at that
node.  Exterior nodes may be given direction specifiers only on their
interior side.

  A cubic spline between the node z_0, with postcontrol point c_0, and
the node z_1, with precontrol point c_1, is computed as the Bezier curve

  [(1-t)^3*z_0+3t(1-t)^2*c_0+3t^2(1-t)*c_1+t^3*z_1 for 0 <=t <= 1.]

  As illustrated in the diagram below, the third-order midpoint (m_5)
constructed from two endpoints z_0 and z_1 and two control points c_0
and c_1, is the point corresponding to t=1/2 on the Bezier curve formed
by the quadruple (z_0, c_0, c_1, z_1).  This allows one to recursively
construct the desired curve, by using the newly extracted third-order
midpoint as an endpoint and the respective second- and first-order
midpoints as control points:

                             [./bezier2]

  Here m_0, m_1 and m_2 are the first-order midpoints, m_3 and m_4 are
the second-order midpoints, and m_5 is the third-order midpoint.  The
curve is then constructed by recursively applying the algorithm to (z_0,
m_0, m_3, m_5) and (m_5, m_4, m_2, z_1).

  In fact, an analogous property holds for points located at any
fraction t in [0,1] of each segment, not just for midpoints (t=1/2).

  The Bezier curve constructed in this manner has the following
properties:

  • It is entirely contained in the convex hull of the given four
    points.

  • It starts heading from the first endpoint to the first control
    point and finishes heading from the second control point to the
    second endpoint.

  The user can specify explicit control points between two nodes like
this:
draw((0,0)..controls (0,100) and (100,100)..(100,0));

  However, it is usually more convenient to just use the ‘..’ operator,
which tells ‘Asymptote’ to choose its own control points using the
algorithms described in Donald Knuth's monograph, The MetaFontbook,
Chapter 14.  The user can still customize the guide (or path) by
specifying direction, tension, and curl values.

  The higher the tension, the straighter the curve is, and the more it
approximates a straight line.  One can change the spline tension from
its default value of 1 to any real value greater than or equal to 0.75
(see John D. Hobby, Discrete and Computational Geometry 1, 1986):
draw((100,0)..tension 2 ..(100,100)..(0,100));
draw((100,0)..tension 3 and 2 ..(100,100)..(0,100));
draw((100,0)..tension atleast 2 ..(100,100)..(0,100));

  In these examples there is a space between ‘2’ and ‘..’.  This is
needed as ‘2.’ is interpreted as a numerical constant.

  The curl parameter specifies the curvature at the endpoints of a path
(0 means straight; the default value of 1 means approximately circular):
draw((100,0){curl 0}..(100,100)..{curl 0}(0,100));

  The ‘MetaPost ...’ path connector, which requests, when possible, an
inflection-free curve confined to a triangle defined by the endpoints
and directions, is implemented in ‘Asymptote’ as the convenient
abbreviation ‘::’ for ‘..tension atleast 1 ..’ (the ellipsis ‘...’ is
used in ‘Asymptote’ to indicate a variable number of arguments; *note
Rest arguments::).  For example, compare
draw((0,0){up}..(100,25){right}..(200,0){down});

                              [./dots]
with
draw((0,0){up}::(100,25){right}::(200,0){down});

                             [./colons]

  The ‘---’ connector is an abbreviation for ‘..tension atleast
infinity..’ and the ‘&’ connector concatenates two paths, after first
stripping off the last node of the first path (which normally should
coincide with the first node of the second path).


File: asymptote.info,  Node: Programming,  Next: LaTeX usage,  Prev: Bezier curves,  Up: Top

6 Programming
*************

* Menu:

* Data types::                  void, bool, int, real, pair, triple, string
* Paths and guides::            Bezier curves
* Pens::                        Colors, line types, line widths, font sizes
* Transforms::                  Affine transforms
* Frames and pictures::         Canvases for immediate and deferred drawing
* Deferred drawing::            Witholding drawing until all data is available
* Files::                       Reading and writing your data
* Variable initializers::       Initialize your variables
* Structures::                  Organize your data
* Operators::                   Arithmetic and logical operators
* Implicit scaling::            Avoiding those ugly *s
* Functions::                   Traditional and higher-order functions
* Arrays::                      Dynamic vectors
* Casts::                       Implicit and explicit casts
* Import::                      Importing external ‘Asymptote’ modules
* Static::                      Where to allocate your variable?
* Autounravel::                 Adding associated libraries to structures

Here is a short introductory example to the ‘Asymptote’ programming
language that highlights the similarity of its control structures with
those of C, C++, and Java:
// This is a comment.

// Declaration: Declare x to be a real variable;
real x;

// Assignment: Assign the real variable x the value 1.
x=1.0;

// Conditional: Test if x equals 1 or not.
if(x == 1.0) {
 write("x equals 1.0");
} else {
 write("x is not equal to 1.0");
}

// Loop: iterate 10 times
for(int i=0; i < 10; ++i) {
 write(i);
}

  ‘Asymptote’ supports ‘while’, ‘do’, ‘break’, and ‘continue’
statements just as in C/C++.  It also supports the Java-style shorthand
for iterating over all elements of an array:

// Iterate over an array
int[] array={1,1,2,3,5};
for(int k : array) {
 write(k);
}
In addition, it supports many features beyond the ones found in those
languages.


File: asymptote.info,  Node: Data types,  Next: Paths and guides,  Up: Programming

6.1 Data types
==============

‘Asymptote’ supports the following data types (in addition to
user-defined types):

‘void’
    The void type is used only by functions that take or return no
    arguments.

‘bool’
    a boolean type that can only take on the values ‘true’ or ‘false’.
    For example:
    bool b=true;

    defines a boolean variable ‘b’ and initializes it to the value
    ‘true’.  If no initializer is given:
    bool b;

    the value ‘false’ is assumed.

‘bool3’
    an extended boolean type that can take on the values ‘true’,
    ‘default’, or ‘false’.  A bool3 type can be cast to or from a bool.
    The default initializer for bool3 is ‘default’.

‘int’
    an integer type; if no initializer is given, the implicit value ‘0’
    is assumed.  The minimum allowed value of an integer is ‘intMin’
    and the maximum value is ‘intMax’.

‘real’
    a real number; this should be set to the highest-precision native
    floating-point type on the architecture.  The implicit initializer
    for reals is ‘0.0’.  Real numbers have precision ‘realEpsilon’,
    with ‘realDigits’ significant digits.  The smallest positive real
    number is ‘realMin’ and the largest positive real number is
    ‘realMax’.  The variables ‘inf’ and ‘nan’, along with the function
    ‘bool isnan(real x)’ are useful when floating-point exceptions are
    masked with the ‘-mask’ command-line option (the default in
    interactive mode).

‘pair’
    complex number, that is, an ordered pair of real components
    ‘(x,y)’.  The real and imaginary parts of a pair ‘z’ can read as
    ‘z.x’ and ‘z.y’.  We say that ‘x’ and ‘y’ are virtual members of
    the data element pair; they cannot be directly modified, however.
    The implicit initializer for pairs is ‘(0.0,0.0)’.

    There are a number of ways to take the complex conjugate of a pair:
         pair z=(3,4);
         z=(z.x,-z.y);
         z=z.x-I*z.y;
         z=conj(z);

    Here ‘I’ is the pair ‘(0,1)’.  A number of built-in functions are
    defined for pairs:

    ‘pair conj(pair z)’
         returns the conjugate of ‘z’;

    ‘real length(pair z)’
         returns the complex modulus |‘z’| of its argument ‘z’.  For
         example,
              pair z=(3,4);
              length(z);
         returns the result 5.  A synonym for ‘length(pair)’ is
         ‘abs(pair)’.  The function ‘abs2(pair z)’ returns |‘z’|^2;

    ‘real angle(pair z, bool warn=true)’
         returns the angle of ‘z’ in radians in the interval
         [-‘pi’,‘pi’] or ‘0’ if ‘warn’ is ‘false’ and ‘z=(0,0)’ (rather
         than producing an error);

    ‘real degrees(pair z, bool warn=true)’
         returns the angle of ‘z’ in degrees in the interval [0,360) or
         ‘0’ if ‘warn’ is ‘false’ and ‘z=(0,0)’ (rather than producing
         an error);

    ‘pair unit(pair z)’
         returns a unit vector in the direction of the pair ‘z’;

    ‘pair expi(real angle)’
         returns a unit vector in the direction ‘angle’ measured in
         radians;

    ‘pair dir(real degrees)’
         returns a unit vector in the direction ‘degrees’ measured in
         degrees;

    ‘real xpart(pair z)’
         returns ‘z.x’;

    ‘real ypart(pair z)’
         returns ‘z.y’;

    ‘pair realmult(pair z, pair w)’
         returns the element-by-element product ‘(z.x*w.x,z.y*w.y)’;

    ‘real dot(explicit pair z, explicit pair w)’
         returns the dot product ‘z.x*w.x+z.y*w.y’;

    ‘real cross(explicit pair z, explicit pair w)’
         returns the 2D scalar product ‘z.x*w.y-z.y*w.x’;

    ‘real orient(pair a, pair b, pair c);’
         returns a positive (negative) value if ‘a--b--c--cycle’ is
         oriented counterclockwise (clockwise) or zero if all three
         points are colinear.  Equivalently, a positive (negative)
         value is returned if ‘c’ lies to the left (right) of the line
         through ‘a’ and ‘b’ or zero if ‘c’ lies on this line.  The
         value returned can be expressed in terms of the 2D scalar
         cross product as ‘cross(a-c,b-c)’, which is the determinant
         |a.x a.y 1|
         |b.x b.y 1|
         |c.x c.y 1|

    ‘real incircle(pair a, pair b, pair c, pair d);’
         returns a positive (negative) value if ‘d’ lies inside
         (outside) the circle passing through the
         counterclockwise-oriented points ‘a,b,c’ or zero if ‘d’ lies
         on the this circle.  The value returned is the determinant
         |a.x a.y a.x^2+a.y^2 1|
         |b.x b.y b.x^2+b.y^2 1|
         |c.x c.y c.x^2+c.y^2 1|
         |d.x d.y d.x^2+d.y^2 1|

    ‘pair minbound(pair z, pair w)’
         returns ‘(min(z.x,w.x),min(z.y,w.y))’;

    ‘pair maxbound(pair z, pair w)’
         returns ‘(max(z.x,w.x),max(z.y,w.y))’.

‘triple’
    an ordered triple of real components ‘(x,y,z)’ used for
    three-dimensional drawings.  The respective components of a triple
    ‘v’ can read as ‘v.x’, ‘v.y’, and ‘v.z’.  The implicit initializer
    for triples is ‘(0.0,0.0,0.0)’.

    Here are the built-in functions for triples:
    ‘real length(triple v)’
         returns the length |‘v’| of its argument ‘v’.  A synonym for
         ‘length(triple)’ is ‘abs(triple)’.  The function ‘abs2(triple
         v)’ returns |‘v’|^2;

    ‘real polar(triple v, bool warn=true)’
         returns the colatitude of ‘v’ measured from the z axis in
         radians or ‘0’ if ‘warn’ is ‘false’ and ‘v=O’ (rather than
         producing an error);

    ‘real azimuth(triple v, bool warn=true)’
         returns the longitude of ‘v’ measured from the x axis in
         radians or ‘0’ if ‘warn’ is ‘false’ and ‘v.x=v.y=0’ (rather
         than producing an error);

    ‘real colatitude(triple v, bool warn=true)’
         returns the colatitude of ‘v’ measured from the z axis in
         degrees or ‘0’ if ‘warn’ is ‘false’ and ‘v=O’ (rather than
         producing an error);

    ‘real latitude(triple v, bool warn=true)’
         returns the latitude of ‘v’ measured from the xy plane in
         degrees or ‘0’ if ‘warn’ is ‘false’ and ‘v=O’ (rather than
         producing an error);

    ‘real longitude(triple v, bool warn=true)’
         returns the longitude of ‘v’ measured from the x axis in
         degrees or ‘0’ if ‘warn’ is ‘false’ and ‘v.x=v.y=0’ (rather
         than producing an error);

    ‘triple unit(triple v)’
         returns a unit triple in the direction of the triple ‘v’;

    ‘triple expi(real polar, real azimuth)’
         returns a unit triple in the direction ‘(polar,azimuth)’
         measured in radians;

    ‘triple dir(real colatitude, real longitude)’
         returns a unit triple in the direction
         ‘(colatitude,longitude)’ measured in degrees;

    ‘real xpart(triple v)’
         returns ‘v.x’;

    ‘real ypart(triple v)’
         returns ‘v.y’;

    ‘real zpart(triple v)’
         returns ‘v.z’;

    ‘real dot(triple u, triple v)’
         returns the dot product ‘u.x*v.x+u.y*v.y+u.z*v.z’;

    ‘triple cross(triple u, triple v)’
         returns the cross product

         ‘(u.y*v.z-u.z*v.y,u.z*v.x-u.x*v.z,u.x*v.y-v.x*u.y)’;

    ‘triple minbound(triple u, triple v)’
         returns ‘(min(u.x,v.x),min(u.y,v.y),min(u.z,v.z))’;

    ‘triple maxbound(triple u, triple v)’
         returns ‘(max(u.x,v.x),max(u.y,v.y),max(u.z,v.z)’).

‘string’
    a character string, implemented using the STL ‘string’ class.

    Strings delimited by double quotes (‘"’) are subject to the
    following mappings to allow the use of double quotes in TeX
    (e.g. for using the ‘babel’ package, *note babel::):

       • \" maps to "
       • \\ maps to \\

    Strings delimited by single quotes (‘'’) have the same mappings as
    character strings in ANSI ‘C’:

       • \' maps to '
       • \" maps to "
       • \?  maps to ?
       • \\ maps to backslash
       • \a maps to alert
       • \b maps to backspace
       • \f maps to form feed
       • \n maps to newline
       • \r maps to carriage return
       • \t maps to tab
       • \v maps to vertical tab
       • \0-\377 map to corresponding octal byte
       • \x0-\xFF map to corresponding hexadecimal byte

    The implicit initializer for strings is the empty string ‘""’.
    Strings may be concatenated with the ‘+’ operator.  In the
    following string functions, position ‘0’ denotes the start of the
    string:

    ‘int length(string s)’
         returns the length of the string ‘s’;

    ‘int find(string s, string t, int pos=0)’
         returns the position of the first occurrence of string ‘t’ in
         string ‘s’ at or after position ‘pos’, or -1 if ‘t’ is not a
         substring of ‘s’;

    ‘int rfind(string s, string t, int pos=-1)’
         returns the position of the last occurrence of string ‘t’ in
         string ‘s’ at or before position ‘pos’ (if ‘pos’=-1, at the
         end of the string ‘s’), or -1 if ‘t’ is not a substring of
         ‘s’;

    ‘string insert(string s, int pos, string t)’
         returns the string formed by inserting string ‘t’ at position
         ‘pos’ in ‘s’;

    ‘string erase(string s, int pos, int n)’
         returns the string formed by erasing the string of length ‘n’
         (if ‘n’=-1, to the end of the string ‘s’) at position ‘pos’ in
         ‘s’;

    ‘string substr(string s, int pos, int n=-1)’
         returns the substring of ‘s’ starting at position ‘pos’ and of
         length ‘n’ (if ‘n’=-1, until the end of the string ‘s’);

    ‘string reverse(string s)’
         returns the string formed by reversing string ‘s’;

    ‘string replace(string s, string before, string after)’
         returns a string with all occurrences of the string ‘before’
         in the string ‘s’ changed to the string ‘after’;

    ‘string replace(string s, string[][] table)’
         returns a string constructed by translating in string ‘s’ all
         occurrences of the string ‘before’ in an array ‘table’ of
         string pairs {‘before’,‘after’} to the corresponding string
         ‘after’;

    ‘string[] split(string s, string delimiter="")’
         returns an array of strings obtained by splitting ‘s’ into
         substrings delimited by ‘delimiter’ (an empty delimiter
         signifies a space, but with duplicate delimiters discarded);

    ‘string[] array(string s)’
         returns an array of strings obtained by splitting ‘s’ into
         individual characters.  The inverse operation is provided by
         ‘operator +(...string[] a)’.

    ‘string format(string s, int n, string locale="")’
         returns a string containing ‘n’ formatted according to the
         C-style format string ‘s’ using locale ‘locale’ (or the
         current locale if an empty string is specified), following the
         behavior of the C function ‘fprintf’), except that only one
         data field is allowed.

    ‘string format(string s=defaultformat, bool forcemath=false, string s=defaultseparator, real x, string locale="")’
         returns a string containing ‘x’ formatted according to the
         C-style format string ‘s’ using locale ‘locale’ (or the
         current locale if an empty string is specified), following the
         behavior of the C function ‘fprintf’), except that only one
         data field is allowed, trailing zeros are removed by default
         (unless ‘#’ is specified), and if ‘s’ specifies math mode or
         ‘forcemath=true’, TeX is used to typeset scientific notation
         using the ‘defaultseparator="\!\times\!";’;

    ‘int hex(string s);’
         casts a hexadecimal string ‘s’ to an integer;

    ‘int ascii(string s);’
         returns the ASCII code for the first character of string ‘s’;

    ‘string string(real x, int digits=realDigits)’
         casts ‘x’ to a string using precision ‘digits’ and the C
         locale;

    ‘string locale(string s="")’
         sets the locale to the given string, if nonempty, and returns
         the current locale;

    ‘string time(string format="%a %b %d %T %Z %Y")’
         returns the current time formatted by the ANSI C routine
         ‘strftime’ according to the string ‘format’ using the current
         locale.  Thus
         time();
         time("%a %b %d %H:%M:%S %Z %Y");

         are equivalent ways of returning the current time in the
         default format used by the ‘UNIX’ ‘date’ command;

    ‘int seconds(string t="", string format="")’
         returns the time measured in seconds after the Epoch (Thu Jan
         01 00:00:00 UTC 1970) as determined by the ANSI C routine
         ‘strptime’ according to the string ‘format’ using the current
         locale, or the current time if ‘t’ is the empty string.  Note
         that the ‘"%Z"’ extension to the POSIX ‘strptime’
         specification is ignored by the current GNU C Library.  If an
         error occurs, the value -1 is returned.  Here are some
         examples:
         seconds("Mar 02 11:12:36 AM PST 2007","%b %d %r PST %Y");
         seconds(time("%b %d %r %z %Y"),"%b %d %r %z %Y");
         seconds(time("%b %d %r %Z %Y"),"%b %d %r "+time("%Z")+" %Y");
         1+(seconds()-seconds("Jan 1","%b %d"))/(24*60*60);
         The last example returns today's ordinal date, measured from
         the beginning of the year.

    ‘string time(int seconds, string format="%a %b %d %T %Z %Y")’
         returns the time corresponding to ‘seconds’ seconds after the
         Epoch (Thu Jan 01 00:00:00 UTC 1970) formatted by the ANSI C
         routine ‘strftime’ according to the string ‘format’ using the
         current locale.  For example, to return the date corresponding
         to 24 hours ago:
         time(seconds()-24*60*60);

    ‘int system(string s)’
    ‘int system(string[] s)’
         if the setting ‘safe’ is false, call the arbitrary system
         command ‘s’;

    ‘void asy(string format, bool overwrite=false ... string[] s)’
         conditionally process each file name in array ‘s’ in a new
         environment, using format ‘format’, overwriting the output
         file only if ‘overwrite’ is true;

    ‘void abort(string s="")’
         aborts execution (with a non-zero return code in batch mode);
         if string ‘s’ is nonempty, a diagnostic message constructed
         from the source file, line number, and ‘s’ is printed;

    ‘void assert(bool b, string s="")’
         aborts execution with an error message constructed from ‘s’ if
         ‘b=false’;

    ‘void exit()’
         exits (with a zero error return code in batch mode);

    ‘void sleep(int seconds)’
         pauses for the given number of seconds;

    ‘void usleep(int microseconds)’
         pauses for the given number of microseconds;

    ‘void beep()’
         produces a beep on the console;

  As in C/C++, complicated types may be abbreviated with ‘typedef’ or
‘using’.  For instance, the line
using multipath = path[];
  will make ‘multipath’ a type equivalent ‘path[]’, as will the
equivalent line
typedef path[] multipath;
  For the most part such type aliasing is a convenience.  However, it
is required when declaring a function whose return type is a function
(see the example in *note Functions::).


File: asymptote.info,  Node: Paths and guides,  Next: Pens,  Prev: Data types,  Up: Programming

6.2 Paths and guides
====================

‘path’
    a cubic spline resolved into a fixed path.  The implicit
    initializer for paths is ‘nullpath’.

    For example, the routine ‘circle(pair c, real r)’, which returns a
    Bezier curve approximating a circle of radius ‘r’ centered on ‘c’,
    is based on ‘unitcircle’ (*note unitcircle::):
    path circle(pair c, real r)
    {
      return shift(c)*scale(r)*unitcircle;
    }
    If high accuracy is needed, a true circle may be produced with the
    routine ‘Circle’ defined in the module ‘graph’:
    import graph;
    path Circle(pair c, real r, int n=nCircle);

    A circular arc consistent with ‘circle’ centered on ‘c’ with radius
    ‘r’ from ‘angle1’ to ‘angle2’ degrees, drawing counterclockwise if
    ‘angle2 >= angle1’, can be constructed with
    path arc(pair c, real r, real angle1, real angle2);
    One may also specify the direction explicitly:
    path arc(pair c, real r, real angle1, real angle2, bool direction);
    Here the direction can be specified as CCW (counter-clockwise) or
    CW (clockwise).  For convenience, an arc centered at ‘c’ from pair
    ‘z1’ to ‘z2’ (assuming ‘|z2-c|=|z1-c|’) in the may also be
    constructed with
    path arc(pair c, explicit pair z1, explicit pair z2,
             bool direction=CCW)

    If high accuracy is needed, true arcs may be produced with routines
    in the module ‘graph’ that produce Bezier curves with ‘n’ control
    points:
    import graph;
    path Arc(pair c, real r, real angle1, real angle2, bool direction,
             int n=nCircle);
    path Arc(pair c, real r, real angle1, real angle2, int n=nCircle);
    path Arc(pair c, explicit pair z1, explicit pair z2,
             bool direction=CCW, int n=nCircle);

    An ellipse can be drawn with the routine
    path ellipse(pair c, real a, real b)
    {
      return shift(c)*scale(a,b)*unitcircle;
    }

    A brace can be constructed between pairs ‘a’ and ‘b’ with
    path brace(pair a, pair b, real amplitude=bracedefaultratio*length(b-a));

    This example illustrates the use of all five guide connectors
    discussed in *note Tutorial:: and *note Bezier curves:::
    size(300,0);
    pair[] z=new pair[10];

    z[0]=(0,100); z[1]=(50,0); z[2]=(180,0);

    for(int n=3; n <= 9; ++n)
      z[n]=z[n-3]+(200,0);

    path p=z[0]..z[1]---z[2]::{up}z[3]
    &z[3]..z[4]--z[5]::{up}z[6]
    &z[6]::z[7]---z[8]..{up}z[9];

    draw(p,grey+linewidth(4mm));

    dot(z);

                              [./join]

    Here are some useful functions for paths:

    ‘int length(path p);’
         This is the number of (linear or cubic) segments in path ‘p’.
         If ‘p’ is cyclic, this is the same as the number of nodes in
         ‘p’.

    ‘int size(path p);’
         This is the number of nodes in the path ‘p’.  If ‘p’ is
         cyclic, this is the same as ‘length(p)’.

    ‘bool cyclic(path p);’
         returns ‘true’ iff path ‘p’ is cyclic.

    ‘bool straight(path p, int i);’
         returns ‘true’ iff the segment of path ‘p’ between node ‘i’
         and node ‘i+1’ is straight.

    ‘bool piecewisestraight(path p)’
         returns ‘true’ iff the path ‘p’ is piecewise straight.

    ‘pair point(path p, int t);’
         If ‘p’ is cyclic, return the coordinates of node ‘t’ mod
         ‘length(p)’.  Otherwise, return the coordinates of node ‘t’,
         unless ‘t’ < 0 (in which case ‘point(0)’ is returned) or ‘t’ >
         ‘length(p)’ (in which case ‘point(length(p))’ is returned).

    ‘pair point(path p, real t);’
         This returns the coordinates of the point between node
         ‘floor(t)’ and ‘floor(t)+1’ corresponding to the cubic spline
         parameter ‘t-floor(t)’ (*note Bezier curves::).  If ‘t’ lies
         outside the range [0,‘length(p)’], it is first reduced modulo
         ‘length(p)’ in the case where ‘p’ is cyclic or else converted
         to the corresponding endpoint of ‘p’.

    ‘pair dir(path p, int t, int sign=0, bool normalize=true);’
         If ‘sign < 0’, return the direction (as a pair) of the
         incoming tangent to path ‘p’ at node ‘t’; if ‘sign > 0’,
         return the direction of the outgoing tangent.  If ‘sign=0’,
         the mean of these two directions is returned.

    ‘pair dir(path p, real t, bool normalize=true);’
         returns the direction of the tangent to path ‘p’ at the point
         between node ‘floor(t)’ and ‘floor(t)+1’ corresponding to the
         cubic spline parameter ‘t-floor(t)’ (*note Bezier curves::).

    ‘pair dir(path p)’
         returns dir(p,length(p)).

    ‘pair dir(path p, path q)’
         returns unit(dir(p)+dir(q)).

    ‘pair accel(path p, int t, int sign=0);’
         If ‘sign < 0’, return the acceleration of the incoming path
         ‘p’ at node ‘t’; if ‘sign > 0’, return the acceleration of the
         outgoing path.  If ‘sign=0’, the mean of these two
         accelerations is returned.

    ‘pair accel(path p, real t);’
         returns the acceleration of the path ‘p’ at the point ‘t’.

    ‘real radius(path p, real t);’
         returns the radius of curvature of the path ‘p’ at the point
         ‘t’.

    ‘pair precontrol(path p, int t);’
         returns the precontrol point of ‘p’ at node ‘t’.

    ‘pair precontrol(path p, real t);’
         returns the effective precontrol point of ‘p’ at parameter
         ‘t’.

    ‘pair postcontrol(path p, int t);’
         returns the postcontrol point of ‘p’ at node ‘t’.

    ‘pair postcontrol(path p, real t);’
         returns the effective postcontrol point of ‘p’ at parameter
         ‘t’.

    ‘real arclength(path p);’
         returns the length (in user coordinates) of the piecewise
         linear or cubic curve that path ‘p’ represents.

    ‘real arctime(path p, real L);’
         returns the path "time", a real number between 0 and the
         length of the path in the sense of ‘point(path p, real t)’, at
         which the cumulative arclength (measured from the beginning of
         the path) equals ‘L’.

    ‘pair arcpoint(path p, real L);’
         returns ‘point(p,arctime(p,L))’.

    ‘real dirtime(path p, pair z);’
         returns the first "time", a real number between 0 and the
         length of the path in the sense of ‘point(path, real)’, at
         which the tangent to the path has the direction of pair ‘z’,
         or -1 if this never happens.

    ‘real reltime(path p, real l);’
         returns the time on path ‘p’ at the relative fraction ‘l’ of
         its arclength.

    ‘pair relpoint(path p, real l);’
         returns the point on path ‘p’ at the relative fraction ‘l’ of
         its arclength.

    ‘pair midpoint(path p);’
         returns the point on path ‘p’ at half of its arclength.

    ‘path reverse(path p);’
         returns a path running backwards along ‘p’.

    ‘path subpath(path p, int a, int b);’
         returns the subpath of ‘p’ running from node ‘a’ to node ‘b’.
         If ‘a’ > ‘b’, the direction of the subpath is reversed.

    ‘path subpath(path p, real a, real b);’
         returns the subpath of ‘p’ running from path time ‘a’ to path
         time ‘b’, in the sense of ‘point(path, real)’.  If ‘a’ > ‘b’,
         the direction of the subpath is reversed.

    ‘real[] intersect(path p, path q, real fuzz=-1);’
         If ‘p’ and ‘q’ have at least one intersection point, return a
         real array of length 2 containing the times representing the
         respective path times along ‘p’ and ‘q’, in the sense of
         ‘point(path, real)’, for one such intersection point (as
         chosen by the algorithm described on page 137 of ‘The
         MetaFontbook’).  The computations are performed to the
         absolute error specified by ‘fuzz’, or if ‘fuzz < 0’, to
         machine precision.  If the paths do not intersect, return a
         real array of length 0.

    ‘real[][] intersections(path p, path q, real fuzz=-1);’
         Return all (unless there are infinitely many) intersection
         times of paths ‘p’ and ‘q’ as a sorted array of real arrays of
         length 2 (*note sort::).  The computations are performed to
         the absolute error specified by ‘fuzz’, or if ‘fuzz < 0’, to
         machine precision.

    ‘real[] intersections(path p, explicit pair a, explicit pair b, real fuzz=-1);’
         Return all (unless there are infinitely many) intersection
         times of path ‘p’ with the (infinite) line through points ‘a’
         and ‘b’ as a sorted array.  The intersections returned are
         guaranteed to be correct to within the absolute error
         specified by ‘fuzz’, or if ‘fuzz < 0’, to machine precision.

    ‘real[] times(path p, real x)’
         returns all intersection times of path ‘p’ with the vertical
         line through ‘(x,0)’.

    ‘real[] times(path p, explicit pair z)’
         returns all intersection times of path ‘p’ with the horizontal
         line through ‘(0,z.y)’.

    ‘real[] mintimes(path p)’
         returns an array of length 2 containing times at which path
         ‘p’ reaches its minimal horizontal and vertical extents,
         respectively.

    ‘real[] maxtimes(path p)’
         returns an array of length 2 containing times at which path
         ‘p’ reaches its maximal horizontal and vertical extents,
         respectively.

    ‘pair intersectionpoint(path p, path q, real fuzz=-1);’
         returns the intersection point
         ‘point(p,intersect(p,q,fuzz)[0])’.

    ‘pair[] intersectionpoints(path p, path q, real fuzz=-1);’
         returns an array containing all intersection points of the
         paths ‘p’ and ‘q’.

    ‘pair extension(pair P, pair Q, pair p, pair q);’
         returns the intersection point of the extensions of the line
         segments ‘P--Q’ and ‘p--q’, or if the lines are parallel,
         ‘(infinity,infinity)’.

    ‘slice cut(path p, path knife, int n);’
         returns the portions of path ‘p’ before and after the ‘n’th
         intersection of ‘p’ with path ‘knife’ as a structure ‘slice’
         (if no intersection exist is found, the entire path is
         considered to be 'before' the intersection):
         struct slice {
           path before,after;
         }
         The argument ‘n’ is treated as modulo the number of
         intersections.

    ‘slice firstcut(path p, path knife);’
         equivalent to ‘cut(p,knife,0);’ Note that ‘firstcut.after’
         plays the role of the ‘MetaPost cutbefore’ command.

    ‘slice lastcut(path p, path knife);’
         equivalent to ‘cut(p,knife,-1);’ Note that ‘lastcut.before’
         plays the role of the ‘MetaPost cutafter’ command.

    ‘path buildcycle(... path[] p);’
         This returns the path surrounding a region bounded by a list
         of two or more consecutively intersecting paths, following the
         behavior of the ‘MetaPost buildcycle’ command.

    ‘pair min(path p);’
         returns the pair (left,bottom) for the path bounding box of
         path ‘p’.

    ‘pair max(path p);’
         returns the pair (right,top) for the path bounding box of path
         ‘p’.

    ‘int windingnumber(path p, pair z);’
         returns the winding number of the cyclic path ‘p’ relative to
         the point ‘z’.  The winding number is positive if the path
         encircles ‘z’ in the counterclockwise direction.  If ‘z’ lies
         on ‘p’ the constant ‘undefined’ (defined to be the largest odd
         integer) is returned.

    ‘bool interior(int windingnumber, pen fillrule)’
         returns true if ‘windingnumber’ corresponds to an interior
         point according to ‘fillrule’.

    ‘bool inside(path p, pair z, pen fillrule=currentpen);’
         returns ‘true’ iff the point ‘z’ lies inside or on the edge of
         the region bounded by the cyclic path ‘p’ according to the
         fill rule ‘fillrule’ (*note fillrule::).

    ‘int inside(path p, path q, pen fillrule=currentpen);’
         returns ‘1’ if the cyclic path ‘p’ strictly contains ‘q’
         according to the fill rule ‘fillrule’ (*note fillrule::), ‘-1’
         if the cyclic path ‘q’ strictly contains ‘p’, and ‘0’
         otherwise.

    ‘pair inside(path p, pen fillrule=currentpen);’
         returns an arbitrary point strictly inside a nondegenerate
         cyclic path ‘p’ according to the fill rule ‘fillrule’ (*note
         fillrule::).

    ‘path[] strokepath(path g, pen p=currentpen);’
         returns the path array that ‘PostScript’ would fill in drawing
         path ‘g’ with pen ‘p’.

‘guide’
    an unresolved cubic spline (list of cubic-spline nodes and control
    points).  The implicit initializer for a guide is ‘nullpath’; this
    is useful for building up a guide within a loop.

    A guide is similar to a path except that the computation of the
    cubic spline is deferred until drawing time (when it is resolved
    into a path); this allows two guides with free endpoint conditions
    to be joined together smoothly.  The solid curve in the following
    example is built up incrementally as a guide, but only resolved at
    drawing time; the dashed curve is incrementally resolved at each
    iteration, before the entire set of nodes (shown in red) is known:

    size(200);

    real mexican(real x) {return (1-8x^2)*exp(-(4x^2));}

    int n=30;
    real a=1.5;
    real width=2a/n;

    guide hat;
    path solved;

    for(int i=0; i < n; ++i) {
      real t=-a+i*width;
      pair z=(t,mexican(t));
      hat=hat..z;
      solved=solved..z;
    }

    draw(hat);
    dot(hat,red);
    draw(solved,dashed);


                           [./mexicanhat]

    We point out an efficiency distinction in the use of guides and
    paths:
    guide g;
    for(int i=0; i < 10; ++i)
      g=g--(i,i);
    path p=g;

    runs in linear time, whereas
    path p;
    for(int i=0; i < 10; ++i)
      p=p--(i,i);

    runs in quadratic time, as the entire path up to that point is
    copied at each step of the iteration.

    The following routines can be used to examine the individual
    elements of a guide without actually resolving the guide to a fixed
    path (except for internal cycles, which are resolved):

    ‘int size(guide g);’
         Analogous to ‘size(path p)’.

    ‘int length(guide g);’
         Analogous to ‘length(path p)’.

    ‘bool cyclic(path p);’
         Analogous to ‘cyclic(path p)’.

    ‘pair point(guide g, int t);’
         Analogous to ‘point(path p, int t)’.

    ‘guide reverse(guide g);’
         Analogous to ‘reverse(path p)’.  If ‘g’ is cyclic and also
         contains a secondary cycle, it is first solved to a path, then
         reversed.  If ‘g’ is not cyclic but contains an internal
         cycle, only the internal cycle is solved before reversal.  If
         there are no internal cycles, the guide is reversed but not
         solved to a path.

    ‘pair[] dirSpecifier(guide g, int i);’
         This returns a pair array of length 2 containing the outgoing
         (in element 0) and incoming (in element 1) direction
         specifiers (or ‘(0,0)’ if none specified) for the segment of
         guide ‘g’ between nodes ‘i’ and ‘i+1’.

    ‘pair[] controlSpecifier(guide g, int i);’
         If the segment of guide ‘g’ between nodes ‘i’ and ‘i+1’ has
         explicit outgoing and incoming control points, they are
         returned as elements 0 and 1, respectively, of a two-element
         array.  Otherwise, an empty array is returned.

    ‘tensionSpecifier tensionSpecifier(guide g, int i);’
         This returns the tension specifier for the segment of guide
         ‘g’ between nodes ‘i’ and ‘i+1’.  The individual components of
         the ‘tensionSpecifier’ type can be accessed as the virtual
         members ‘in’, ‘out’, and ‘atLeast’.

    ‘real[] curlSpecifier(guide g);’
         This returns an array containing the initial curl specifier
         (in element 0) and final curl specifier (in element 1) for
         guide ‘g’.

    As a technical detail we note that a direction specifier given to
    ‘nullpath’ modifies the node on the other side: the guides
    a..{up}nullpath..b;
    c..nullpath{up}..d;
    e..{up}nullpath{down}..f;
    are respectively equivalent to
    a..nullpath..{up}b;
    c{up}..nullpath..d;
    e{down}..nullpath..{up}f;


File: asymptote.info,  Node: Pens,  Next: Transforms,  Prev: Paths and guides,  Up: Programming

6.3 Pens
========

In ‘Asymptote’, pens provide a context for the four basic drawing
commands (*note Drawing commands::).  They are used to specify the
following drawing attributes: color, line type, line width, line cap,
line join, fill rule, text alignment, font, font size, pattern,
overwrite mode, and calligraphic transforms on the pen nib.  The default
pen used by the drawing routines is called ‘currentpen’.  This provides
the same functionality as the ‘MetaPost’ command ‘pickup’.  The implicit
initializer for pens is ‘defaultpen’.

  Pens may be added together with the nonassociative binary operator
‘+’.  This will add the colors of the two pens.  All other non-default
attributes of the rightmost pen will override those of the leftmost pen.
Thus, one can obtain a yellow dashed pen by saying ‘dashed+red+green’ or
‘red+green+dashed’ or ‘red+dashed+green’.  The binary operator ‘*’ can
be used to scale the color of a pen by a real number, until it saturates
with one or more color components equal to 1.

  • Colors are specified using one of the following colorspaces:
    ‘pen gray(real g);’
         This produces a grayscale color, where the intensity ‘g’ lies
         in the interval [0,1], with 0.0 denoting black and 1.0
         denoting white.

    ‘pen rgb(real r, real g, real b);’
         This produces an RGB color, where each of the red, green, and
         blue intensities ‘r’, ‘g’, ‘b’, lies in the interval [0,1].

    ‘pen RGB(int r, int g, int b);’
         This produces an RGB color, where each of the red, green, and
         blue intensities ‘r’, ‘g’, ‘b’, lies in the interval [0,255].

    ‘pen cmyk(real c, real m, real y, real k);’
         This produces a CMYK color, where each of the cyan, magenta,
         yellow, and black intensities ‘c’, ‘m’, ‘y’, ‘k’, lies in the
         interval [0,1].

    ‘pen invisible;’
         This special pen writes in invisible ink, but adjusts the
         bounding box as if something had been drawn (like the
         ‘\phantom’ command in TeX).  The function ‘bool
         invisible(pen)’ can be used to test whether a pen is
         invisible.

    The default color is ‘black’; this may be changed with the routine
    ‘defaultpen(pen)’.  The function ‘colorspace(pen p)’ returns the
    colorspace of pen ‘p’ as a string (‘"gray"’, ‘"rgb"’, ‘"cmyk"’, or
    ‘""’).

    The function ‘real[] colors(pen)’ returns the color components of a
    pen.  The functions ‘pen gray(pen)’, ‘pen rgb(pen)’, and ‘pen
    cmyk(pen)’ return new pens obtained by converting their arguments
    to the respective color spaces.  The function
    ‘colorless(pen=currentpen)’ returns a copy of its argument with the
    color attributes stripped (to avoid color mixing).

    A 6-character RGB hexadecimal string can be converted to a pen with
    the routine
    pen rgb(string s);
  • A pen can be converted to a hexadecimal string with ‘string hex(pen
    p);’

    Various shades and mixtures of the grayscale primary colors ‘black’
    and ‘white’, RGB primary colors ‘red’, ‘green’, and ‘blue’, and RGB
    secondary colors ‘cyan’, ‘magenta’, and ‘yellow’ are defined as
    named colors, along with the CMYK primary colors ‘Cyan’, ‘Magenta’,
    ‘Yellow’, and ‘Black’, in the module ‘plain’:

                             [./colors]

    The standard 140 RGB ‘X11’ colors can be imported with the command
    import x11colors;
    and the standard 68 CMYK TeX colors can be imported with the
    command
    import texcolors;
    Note that there is some overlap between these two standards and the
    definitions of some colors (e.g. ‘Green’) actually disagree.

    ‘Asymptote’ also comes with a ‘asycolors.sty’ ‘LaTeX’ package that
    defines to ‘LaTeX’ CMYK versions of ‘Asymptote’'s predefined
    colors, so that they can be used directly within ‘LaTeX’ strings.
    Normally, such colors are passed to ‘LaTeX’ via a pen argument;
    however, to change the color of only a portion of a string, say for
    a slide presentation, (*note slide::) it may be desirable to
    specify the color directly to ‘LaTeX’.  This file can be passed to
    ‘LaTeX’ with the ‘Asymptote’ command
    usepackage("asycolors");

    The structure ‘hsv’ defined in ‘plain_pens.asy’ may be used to
    convert between HSV and RGB spaces, where the hue ‘h’ is an angle
    in [0,360) and the saturation ‘s’ and value ‘v’ lie in ‘[0,1]’:
    pen p=hsv(180,0.5,0.75);
    write(p);           // ([default], red=0.375, green=0.75, blue=0.75)
    hsv q=p;
    write(q.h,q.s,q.v); // 180     0.5     0.75

  • Line types are specified with the function ‘pen linetype(real[] a,
    real offset=0, bool scale=true, bool adjust=true)’, where ‘a’ is an
    array of real array numbers.  The optional parameter ‘offset’
    specifies where in the pattern to begin.  The first number
    specifies how far (if ‘scale’ is ‘true’, in units of the pen line
    width; otherwise in ‘PostScript’ units) to draw with the pen on,
    the second number specifies how far to draw with the pen off, and
    so on.  If ‘adjust’ is ‘true’, these spacings are automatically
    adjusted by ‘Asymptote’ to fit the arclength of the path.  Here are
    the predefined line types:
    pen solid=linetype(new real[]);
    pen dotted=linetype(new real[] {0,4});
    pen dashed=linetype(new real[] {8,8});
    pen longdashed=linetype(new real[] {24,8});
    pen dashdotted=linetype(new real[] {8,8,0,8});
    pen longdashdotted=linetype(new real[] {24,8,0,8});
    pen Dotted(pen p=currentpen) {return linetype(new real[] {0,3})+2*linewidth(p);}
    pen Dotted=Dotted();

                            [./linetype]

    The default line type is ‘solid’; this may be changed with
    ‘defaultpen(pen)’.  The line type of a pen can be determined with
    the functions ‘real[] linetype(pen p=currentpen)’, ‘real offset(pen
    p)’, ‘bool scale(pen p)’, and ‘bool adjust(pen p)’.

  • The pen line width is specified in ‘PostScript’ units with ‘pen
    linewidth(real)’.  The default line width is 0.5 bp; this value may
    be changed with ‘defaultpen(pen)’.  The line width of a pen is
    returned by ‘real linewidth(pen p=currentpen)’.  For convenience,
    in the module ‘plain_pens’ we define
    void defaultpen(real w) {defaultpen(linewidth(w));}
    pen operator +(pen p, real w) {return p+linewidth(w);}
    pen operator +(real w, pen p) {return linewidth(w)+p;}
    so that one may set the line width like this:
    defaultpen(2);
    pen p=red+0.5;

  • A pen with a specific ‘PostScript’ line cap is returned on calling
    ‘linecap’ with an integer argument:
    pen squarecap=linecap(0);
    pen roundcap=linecap(1);
    pen extendcap=linecap(2);

    The default line cap, ‘roundcap’, may be changed with
    ‘defaultpen(pen)’.  The line cap of a pen is returned by ‘int
    linecap(pen p=currentpen)’.

  • A pen with a specific ‘PostScript’ join style is returned on
    calling ‘linejoin’ with an integer argument:
    pen miterjoin=linejoin(0);
    pen roundjoin=linejoin(1);
    pen beveljoin=linejoin(2);

    The default join style, ‘roundjoin’, may be changed with
    ‘defaultpen(pen)’.The join style of a pen is returned by ‘int
    linejoin(pen p=currentpen)’.

  • A pen with a specific ‘PostScript’ miter limit is returned by
    calling ‘miterlimit(real)’.  The default miterlimit, ‘10.0’, may be
    changed with ‘defaultpen(pen)’.  The miter limit of a pen is
    returned by ‘real miterlimit(pen p=currentpen)’.

  • A pen with a specific ‘PostScript’ fill rule is returned on calling
    ‘fillrule’ with an integer argument:
    pen zerowinding=fillrule(0);
    pen evenodd=fillrule(1);

    The fill rule, which identifies the algorithm used to determine the
    insideness of a path or array of paths, only affects the ‘clip’,
    ‘fill’, and ‘inside’ functions.  For the ‘zerowinding’ fill rule, a
    point ‘z’ is outside the region bounded by a path if the number of
    upward intersections of the path with the horizontal line
    ‘z--z+infinity’ minus the number of downward intersections is zero.
    For the ‘evenodd’ fill rule, ‘z’ is considered to be outside the
    region if the total number of such intersections is even.  The
    default fill rule, ‘zerowinding’, may be changed with
    ‘defaultpen(pen)’.  The fill rule of a pen is returned by ‘int
    fillrule(pen p=currentpen)’.

  • A pen with a specific text alignment setting is returned on calling
    ‘basealign’ with an integer argument:
    pen nobasealign=basealign(0);
    pen basealign=basealign(1);

    The default setting, ‘nobasealign’, which may be changed with
    ‘defaultpen(pen)’, causes the label alignment routines to use the
    full label bounding box for alignment.  In contrast, ‘basealign’
    requests that the TeX baseline be respected.  The base align
    setting of a pen is returned by ‘int basealign(pen p=currentpen)’.

    For example, in the following image, the baselines of green \pi and
    \gamma are aligned, while the bottom border of red -\pi and -\gamma
    are aligned.
    import fontsize;
    import three;

    settings.autobillboard=false;
    settings.embed=false;
    currentprojection=orthographic(Z);

    defaultpen(fontsize(100pt));

    dot(O);

    label("acg",O,align=N,basealign);
    label("ace",O,align=N,red);
    label("acg",O,align=S,basealign);
    label("ace",O,align=S,red);
    label("acg",O,align=E,basealign);
    label("ace",O,align=E,red);
    label("acg",O,align=W,basealign);
    label("ace",O,align=W,red);

    picture pic;
    dot(pic,(labelmargin(),0,0),blue);
    dot(pic,(-labelmargin(),0,0),blue);
    dot(pic,(0,labelmargin(),0),blue);
    dot(pic,(0,-labelmargin(),0),blue);
    add(pic,O);

    dot((0,0));

    label("acg",(0,0),align=N,basealign);
    label("ace",(0,0),align=N,red);
    label("acg",(0,0),align=S,basealign);
    label("ace",(0,0),align=S,red);
    label("acg",(0,0),align=E,basealign);
    label("ace",(0,0),align=E,red);
    label("acg",(0,0),align=W,basealign);
    label("ace",(0,0),align=W,red);

    picture pic;
    dot(pic,(labelmargin(),0),blue);
    dot(pic,(-labelmargin(),0),blue);
    dot(pic,(0,labelmargin()),blue);
    dot(pic,(0,-labelmargin()),blue);
    add(pic,(0,0));

                            [./basealign]

    Another method for aligning baselines is provided by the ‘baseline’
    function (*note baseline::).

  • The font size is specified in TeX points (1 pt = 1/72.27 inches)
    with the function ‘pen fontsize(real size, real
    lineskip=1.2*size)’.  The default font size, 12pt, may be changed
    with ‘defaultpen(pen)’.  Nonstandard font sizes may require
    inserting
    import fontsize;
    at the beginning of the file (this requires the ‘type1cm’ package
    available from
         <http://mirror.ctan.org/macros/latex/contrib/type1cm/>
    and included in recent ‘LaTeX’ distributions).  The font size and
    line skip of a pen can be examined with the routines ‘real
    fontsize(pen p=currentpen)’ and ‘real lineskip(pen p=currentpen)’,
    respectively.

  • A pen using a specific LaTeX NFSS font is returned by calling the
    function ‘pen font(string encoding, string family, string series,
    string shape)’.  The default setting, ‘font("OT1","cmr","m","n")’,
    corresponds to 12pt Computer Modern Roman; this may be changed with
    ‘defaultpen(pen)’.  The font setting of a pen is returned by
    ‘string font(pen p=currentpen)’.

    Alternatively, one may select a fixed-size TeX font (on which
    ‘fontsize’ has no effect) like ‘"cmr12"’ (12pt Computer Modern
    Roman) or ‘"pcrr"’ (Courier) using the function ‘pen font(string
    name)’.  An optional size argument can also be given to scale the
    font to the requested size: ‘pen font(string name, real size)’.

    A nonstandard font command can be generated with ‘pen
    fontcommand(string)’.

    A convenient interface to the following standard ‘PostScript’ fonts
    is also provided:
    pen AvantGarde(string series="m", string shape="n");
    pen Bookman(string series="m", string shape="n");
    pen Courier(string series="m", string shape="n");
    pen Helvetica(string series="m", string shape="n");
    pen NewCenturySchoolBook(string series="m", string shape="n");
    pen Palatino(string series="m", string shape="n");
    pen TimesRoman(string series="m", string shape="n");
    pen ZapfChancery(string series="m", string shape="n");
    pen Symbol(string series="m", string shape="n");
    pen ZapfDingbats(string series="m", string shape="n");

  • Starting with the 2018/04/01 release, LaTeX takes UTF-8 as the new
    default input encoding.  However, you can still set different input
    encoding (so as the font, font encoding or even language context).
    Here is an example for ‘cp1251’ and Russian language in Cyrillic
    script (font encoding ‘T2A’):
    texpreamble("\usepackage[math]{anttor}");
    texpreamble("\usepackage[T2A]{fontenc}");
    texpreamble("\usepackage[cp1251]{inputenc}");
    texpreamble("\usepackage[russian]{babel}");
    Support for Chinese, Japanese, and Korean fonts is provided by the
    CJK package:
         <https://ctan.org/pkg/cjk>
    The following commands enable the CJK song family (within a label,
    you can also temporarily switch to another family, say kai, by
    prepending ‘"\CJKfamily{kai}"’ to the label string):
    texpreamble("\usepackage{CJK}
    \AtBeginDocument{\begin{CJK*}{GBK}{song}}
    \AtEndDocument{\clearpage\end{CJK*}}");

  • The transparency of a pen can be changed with the command:
    pen opacity(real opacity=1, string blend="Compatible");
    The opacity can be varied from ‘0’ (fully transparent) to the
    default value of ‘1’ (opaque), and ‘blend’ specifies one of the
    following foreground-background blending operations:
    "Compatible","Normal","Multiply","Screen","Overlay","SoftLight",
    "HardLight","ColorDodge","ColorBurn","Darken","Lighten","Difference",
    "Exclusion","Hue","Saturation","Color","Luminosity",
    as described in Tables 136 and 137 of
    <https://opensource.adobe.com/dc-acrobat-sdk-docs/standards/pdfstandards/pdf/PDF32000_2008.pdf>.
    Since ‘PostScript’ does not support transparency, this feature is
    only effective with the ‘-f pdf’ output format option; other
    formats can be produced from the resulting PDF file with the
    ‘ImageMagick’ ‘magick’ program.  Labels are always drawn with an
    ‘opacity’ of 1.  A simple example of transparent filling is
    provided in the example file ‘transparency.asy’.

  • ‘PostScript’ commands within a ‘picture’ may be used to create a
    tiling pattern, identified by the string ‘name’, for ‘fill’ and
    ‘draw’ operations by adding it to the global ‘PostScript’ frame
    ‘currentpatterns’, with optional left-bottom margin ‘lb’ and
    right-top margin ‘rt’.
    import patterns;
    void add(string name, picture pic, pair lb=0, pair rt=0);

    To ‘fill’ or ‘draw’ using pattern ‘name’, use the pen
    ‘pattern("name")’.  For example, rectangular tilings can be
    constructed using the routines ‘picture tile(real Hx=5mm, real
    Hy=0, pen p=currentpen, filltype filltype=NoFill)’, ‘picture
    checker(real Hx=5mm, real Hy=0, pen p=currentpen)’, and ‘picture
    brick(real Hx=5mm, real Hy=0, pen p=currentpen)’ defined in module
    ‘patterns’:
    size(0,90);
    import patterns;

    add("tile",tile());
    add("filledtilewithmargin",tile(6mm,4mm,red,Fill),(1mm,1mm),(1mm,1mm));
    add("checker",checker());
    add("brick",brick());

    real s=2.5;
    filldraw(unitcircle,pattern("tile"));
    filldraw(shift(s,0)*unitcircle,pattern("filledtilewithmargin"));
    filldraw(shift(2s,0)*unitcircle,pattern("checker"));
    filldraw(shift(3s,0)*unitcircle,pattern("brick"));

                              [./tile]

    Hatch patterns can be generated with the routines ‘picture
    hatch(real H=5mm, pair dir=NE, pen p=currentpen)’, ‘picture
    crosshatch(real H=5mm, pen p=currentpen)’:
    size(0,100);
    import patterns;

    add("hatch",hatch());
    add("hatchback",hatch(NW));
    add("crosshatch",crosshatch(3mm));

    real s=1.25;
    filldraw(unitsquare,pattern("hatch"));
    filldraw(shift(s,0)*unitsquare,pattern("hatchback"));
    filldraw(shift(2s,0)*unitsquare,pattern("crosshatch"));

                              [./hatch]

    You may need to turn off aliasing in your ‘PostScript’ viewer for
    patterns to appear correctly.  Custom patterns can easily be
    constructed, following the examples in module ‘patterns’.  The
    tiled pattern can even incorporate shading (*note gradient
    shading::), as illustrated in this example (not included in the
    manual because not all printers support ‘PostScript’ 3):
    size(0,100);
    import patterns;

    real d=4mm;
    picture tiling;
    path square=scale(d)*unitsquare;
    axialshade(tiling,square,white,(0,0),black,(d,d));
    fill(tiling,shift(d,d)*square,blue);
    add("shadedtiling",tiling);

    filldraw(unitcircle,pattern("shadedtiling"));


  • One can specify a custom pen nib as an arbitrary polygonal path
    with ‘pen makepen(path)’; this path represents the mark to be drawn
    for paths containing a single point.  This pen nib path can be
    recovered from a pen with ‘path nib(pen)’.  Unlike in ‘MetaPost’,
    the path need not be convex:

    size(200);
    pen convex=makepen(scale(10)*polygon(8))+grey;
    draw((1,0.4),convex);
    draw((0,0)---(1,1)..(2,0)--cycle,convex);

    pen nonconvex=scale(10)*
      makepen((0,0)--(0.25,-1)--(0.5,0.25)--(1,0)--(0.5,1.25)--cycle)+red;
    draw((0.5,-1.5),nonconvex);
    draw((0,-1.5)..(1,-0.5)..(2,-1.5),nonconvex);

                             [./makepen]

    The value ‘nullpath’ represents a circular pen nib (the default);
    an elliptical pen can be achieved simply by multiplying the pen by
    a transform: ‘yscale(2)*currentpen’.

  • One can prevent labels from overwriting one another by using the
    pen attribute ‘overwrite’, which takes a single argument:

    ‘Allow’
         Allow labels to overwrite one another.  This is the default
         behavior (unless overridden with ‘defaultpen(pen)’.

    ‘Suppress’
         Suppress, with a warning, each label that would overwrite
         another label.

    ‘SuppressQuiet’
         Suppress, without warning, each label that would overwrite
         another label.

    ‘Move’
         Move a label that would overwrite another out of the way and
         issue a warning.  As this adjustment is during the final
         output phase (in ‘PostScript’ coordinates) it could result in
         a larger figure than requested.

    ‘MoveQuiet’
         Move a label that would overwrite another out of the way,
         without warning.  As this adjustment is during the final
         output phase (in ‘PostScript’ coordinates) it could result in
         a larger figure than requested.

  The routine ‘defaultpen()’ returns the current default pen
attributes.  Calling the routine ‘resetdefaultpen()’ resets all pen
default attributes to their initial values.


File: asymptote.info,  Node: Transforms,  Next: Frames and pictures,  Prev: Pens,  Up: Programming

6.4 Transforms
==============

‘Asymptote’ makes extensive use of affine transforms.  A pair ‘(x,y)’ is
transformed by the transform ‘t=(t.x,t.y,t.xx,t.xy,t.yx,t.yy)’ to
‘(x',y')’, where
x' = t.x + t.xx * x + t.xy * y
y' = t.y + t.yx * x + t.yy * y
This is equivalent to the ‘PostScript’ transformation ‘[t.xx t.yx t.xy
t.yy t.x t.y]’.

  Transforms can be applied to pairs, guides, paths, pens, strings,
transforms, frames, and pictures by multiplication (via the binary
operator ‘*’) on the left (*note circle:: for an example).  Transforms
can be composed with one another and inverted with the function
‘transform inverse(transform t)’; they can also be raised to any integer
power with the ‘^’ operator.

  The built-in transforms are:

‘transform identity;’
    the identity transform;
‘transform shift(pair z);’
    translates by the pair ‘z’;
‘transform shift(real x, real y);’
    translates by the pair ‘(x,y)’;
‘transform xscale(real x);’
    scales by ‘x’ in the x direction;
‘transform yscale(real y);’
    scales by ‘y’ in the y direction;
‘transform scale(real s);’
    scale by ‘s’ in both x and y directions;
‘transform scale(real x, real y);’
    scale by ‘x’ in the x direction and by ‘y’ in the y direction;
‘transform slant(real s);’
    maps ‘(x,y)’ -> ‘(x+s*y,y)’;
‘transform rotate(real angle, pair z=(0,0));’
    rotates by ‘angle’ in degrees about ‘z’;
‘transform reflect(pair a, pair b);’
    reflects about the line ‘a--b’.
‘transform zeroTransform;’
    the zero transform;

  The implicit initializer for transforms is ‘identity()’.  The
routines ‘shift(transform t)’ and ‘shiftless(transform t)’ return the
transforms ‘(t.x,t.y,0,0,0,0)’ and ‘(0,0,t.xx,t.xy,t.yx,t.yy)’
respectively.  The function ‘bool isometry(transform t)’ can be used to
test if ‘t’ is an isometry (preserves distance).


File: asymptote.info,  Node: Frames and pictures,  Next: Deferred drawing,  Prev: Transforms,  Up: Programming

6.5 Frames and pictures
=======================

‘frame’
    Frames are canvases for drawing in ‘PostScript’ coordinates.  While
    working with frames directly is occasionally necessary for
    constructing deferred drawing routines The implicit initializer for
    frames is ‘newframe’.  The function ‘bool empty(frame f)’ returns
    ‘true’ only if the frame ‘f’ is empty.  A frame may be erased with
    the ‘erase(frame)’ routine.  The functions ‘pair min(frame)’ and
    ‘pair max(frame)’ return the (left,bottom) and (right,top)
    coordinates of the frame bounding box, respectively.  The contents
    of frame ‘src’ may be appended to frame ‘dest’ with the command
    void add(frame dest, frame src);
    or prepended with
    void prepend(frame dest, frame src);
    A frame obtained by aligning frame ‘f’ in the direction ‘align’, in
    a manner analogous to the ‘align’ argument of ‘label’ (*note
    label::), is returned by
    frame align(frame f, pair align);

‘picture’
    Pictures are high-level structures (*note Structures::) defined in
    the module ‘plain’ that provide canvases for drawing in user
    coordinates.  The default picture is called ‘currentpicture’.  A
    new picture can be created like this:
    picture pic;
    Anonymous pictures can be made by the expression ‘new picture’.

    The ‘size’ routine specifies the dimensions of the desired picture:

    void size(picture pic=currentpicture, real x, real y=x,
              bool keepAspect=pic.keepAspect);

    If the ‘x’ and ‘y’ sizes are both 0, user coordinates will be
    interpreted as ‘PostScript’ coordinates.  In this case, the
    transform mapping ‘pic’ to the final output frame is ‘identity()’.

    If exactly one of ‘x’ or ‘y’ is 0, no size restriction is imposed
    in that direction; it will be scaled the same as the other
    direction.

    If ‘keepAspect’ is set to ‘Aspect’ or ‘true’ (the default), the
    picture will be scaled with its aspect ratio preserved such that
    the final width is no more than ‘x’ and the final height is no more
    than ‘y’.

    If ‘keepAspect’ is set to ‘IgnoreAspect’ or ‘false’, the picture
    will be scaled in both directions so that the final width is ‘x’
    and the height is ‘y’.

    To make the user coordinates of picture ‘pic’ represent multiples
    of ‘x’ units in the x direction and ‘y’ units in the y direction,
    use
    void unitsize(picture pic=currentpicture, real x, real y=x);
    When nonzero, these ‘x’ and ‘y’ values override the corresponding
    size parameters of picture ‘pic’.

    The routine
    void size(picture pic=currentpicture, real xsize, real ysize,
              pair min, pair max);
    forces the final picture scaling to map the user coordinates
    ‘box(min,max)’ to a region of width ‘xsize’ and height ‘ysize’
    (when these parameters are nonzero).

    Alternatively, calling the routine
    transform fixedscaling(picture pic=currentpicture, pair min,
                           pair max, pen p=nullpen, bool warn=false);
    will cause picture ‘pic’ to use a fixed scaling to map user
    coordinates in ‘box(min,max)’ to the (already specified) picture
    size, taking account of the width of pen ‘p’.  A warning will be
    issued if the final picture exceeds the specified size.

    A picture ‘pic’ can be fit to a frame and output to a file
    ‘prefix’.‘format’ using image format ‘format’ by calling the
    ‘shipout’ function:
    void shipout(string prefix=defaultfilename, picture pic=currentpicture,
                 orientation orientation=orientation,
                 string format="", bool wait=false, bool view=true,
                 string options="", string script="",
                 light light=currentlight, projection P=currentprojection)
    The default output format, ‘PostScript’, may be changed with the
    ‘-f’ or ‘-tex’ command-line options.  The ‘options’, ‘script’, and
    ‘projection’ parameters are only relevant for 3D pictures.  If
    ‘defaultfilename’ is an empty string, the prefix ‘outprefix()’ will
    be used.

    A ‘shipout()’ command is added implicitly at file exit.  Explicit
    ‘shipout()’ commands to the same file as the final implicit shipout
    are ignored.  The default page orientation is ‘Portrait’; this may
    be modified by changing the variable ‘orientation’.  To output in
    landscape mode, simply set the variable ‘orientation=Landscape’ or
    issue the command
    shipout(Landscape);

    To rotate the page by -90 degrees, use the orientation ‘Seascape’.
    The orientation ‘UpsideDown’ rotates the page by 180 degrees.

    A picture ‘pic’ can be explicitly fit to a frame by calling
    frame pic.fit(real xsize=pic.xsize, real ysize=pic.ysize,
                  bool keepAspect=pic.keepAspect);
    The default size and aspect ratio settings are those given to the
    ‘size’ command (which default to ‘0’, ‘0’, and ‘true’,
    respectively).  The transformation that would currently be used to
    fit a picture ‘pic’ to a frame is returned by the member function
    ‘pic.calculateTransform()’.

    In certain cases (e.g. 2D graphs) where only an approximate size
    estimate for ‘pic’ is available, the picture fitting routine
    frame pic.scale(real xsize=this.xsize, real ysize=this.ysize,
                    bool keepAspect=this.keepAspect);
    (which scales the resulting frame, including labels and fixed-size
    objects) will enforce perfect compliance with the requested size
    specification, but should not normally be required.

    To draw a bounding box with margins around a picture, fit the
    picture to a frame using the function
    frame bbox(picture pic=currentpicture, real xmargin=0,
               real ymargin=xmargin, pen p=currentpen,
               filltype filltype=NoFill);
    Here ‘filltype’ specifies one of the following fill types:
    ‘FillDraw’
         Fill the interior and draw the boundary.

    ‘FillDraw(real xmargin=0, real ymargin=xmargin, pen fillpen=nullpen,’
         ‘pen drawpen=nullpen)’ If ‘fillpen’ is ‘nullpen’, fill with
         the drawing pen; otherwise fill with pen ‘fillpen’.  If
         ‘drawpen’ is ‘nullpen’, draw the boundary with ‘fillpen’;
         otherwise with ‘drawpen’.  An optional margin of ‘xmargin’ and
         ‘ymargin’ can be specified.

    ‘Fill’
         Fill the interior.

    ‘Fill(real xmargin=0, real ymargin=xmargin, pen p=nullpen)’
         If ‘p’ is ‘nullpen’, fill with the drawing pen; otherwise fill
         with pen ‘p’.  An optional margin of ‘xmargin’ and ‘ymargin’
         can be specified.

    ‘NoFill’
         Do not fill.

    ‘Draw’
         Draw only the boundary.

    ‘Draw(real xmargin=0, real ymargin=xmargin, pen p=nullpen)’
         If ‘p’ is ‘nullpen’, draw the boundary with the drawing pen;
         otherwise draw with pen ‘p’.  An optional margin of ‘xmargin’
         and ‘ymargin’ can be specified.

    ‘UnFill’
         Clip the region.

    ‘UnFill(real xmargin=0, real ymargin=xmargin)’
         Clip the region and surrounding margins ‘xmargin’ and
         ‘ymargin’.

    ‘RadialShade(pen penc, pen penr)’
         Fill varying radially from ‘penc’ at the center of the
         bounding box to ‘penr’ at the edge.

    ‘RadialShadeDraw(real xmargin=0, real ymargin=xmargin, pen penc,’
         ‘pen penr, pen drawpen=nullpen)’ Fill with RadialShade and
         draw the boundary.

    For example, to draw a bounding box around a picture with a 0.25 cm
    margin and output the resulting frame, use the command:
    shipout(bbox(0.25cm));
    A ‘picture’ may be fit to a frame with the background color pen
    ‘p’, using the function ‘bbox(p,Fill)’.

    To pad a picture to a precise size in both directions, fit the
    picture to a frame using the function
    frame pad(picture pic=currentpicture, real xsize=pic.xsize,
              real ysize=pic.ysize, filltype filltype=NoFill);

    The functions
    pair min(picture pic, user=false);
    pair max(picture pic, user=false);
    pair size(picture pic, user=false);
    calculate the bounds that picture ‘pic’ would have if it were
    currently fit to a frame using its default size specification.  If
    ‘user’ is ‘false’ the returned value is in ‘PostScript’
    coordinates, otherwise it is in user coordinates.

    The function
    pair point(picture pic=currentpicture, pair dir, bool user=true);
    is a convenient way of determining the point on the bounding box of
    ‘pic’ in the direction ‘dir’ relative to its center, ignoring the
    contributions from fixed-size objects (such as labels and
    arrowheads).  If ‘user’ is ‘true’ the returned value is in user
    coordinates, otherwise it is in ‘PostScript’ coordinates.

    The function
    pair truepoint(picture pic=currentpicture, pair dir, bool user=true);
    is identical to ‘point’, except that it also accounts for
    fixed-size objects, using the scaling transform that picture ‘pic’
    would have if currently fit to a frame using its default size
    specification.  If ‘user’ is ‘true’ the returned value is in user
    coordinates, otherwise it is in ‘PostScript’ coordinates.

    Sometimes it is useful to draw objects on separate pictures and add
    one picture to another using the ‘add’ function:
    void add(picture src, bool group=true,
             filltype filltype=NoFill, bool above=true);
    void add(picture dest, picture src, bool group=true,
             filltype filltype=NoFill, bool above=true);
    The first example adds ‘src’ to ‘currentpicture’; the second one
    adds ‘src’ to ‘dest’.  The ‘group’ option specifies whether or not
    the graphical user interface should treat all of the elements of
    ‘src’ as a single entity (*note GUI::), ‘filltype’ requests
    optional background filling or clipping, and ‘above’ specifies
    whether to add ‘src’ above or below existing objects.

    There are also routines to add a fixed-size picture or frame ‘src’
    to another picture ‘dest’ (or ‘currentpicture’) about the user
    coordinate ‘position’:
    void add(picture src, pair position, bool group=true,
             filltype filltype=NoFill, bool above=true);
    void add(picture dest, picture src, pair position,
             bool group=true, filltype filltype=NoFill, bool above=true);
    void add(picture dest=currentpicture, frame src, pair position=0,
             bool group=true, filltype filltype=NoFill, bool above=true);
    void add(picture dest=currentpicture, frame src, pair position,
             pair align, bool group=true, filltype filltype=NoFill,
             bool above=true);

    The optional ‘align’ argument in the last form specifies a
    direction to use for aligning the frame, in a manner analogous to
    the ‘align’ argument of ‘label’ (*note label::).  However, one key
    difference is that when ‘align’ is not specified, labels are
    centered, whereas frames and pictures are aligned so that their
    origin is at ‘position’.  Illustrations of frame alignment can be
    found in the examples *note errorbars:: and *note image::.  If you
    want to align three or more subpictures, group them two at a time:

    picture pic1;
    real size=50;
    size(pic1,size);
    fill(pic1,(0,0)--(50,100)--(100,0)--cycle,red);

    picture pic2;
    size(pic2,size);
    fill(pic2,unitcircle,green);

    picture pic3;
    size(pic3,size);
    fill(pic3,unitsquare,blue);

    picture pic;
    add(pic,pic1.fit(),(0,0),N);
    add(pic,pic2.fit(),(0,0),10S);

    add(pic.fit(),(0,0),N);
    add(pic3.fit(),(0,0),10S);


                           [./subpictures]

    Alternatively, one can use ‘attach’ to automatically increase the
    size of picture ‘dest’ to accommodate adding a frame ‘src’ about
    the user coordinate ‘position’:
    void attach(picture dest=currentpicture, frame src,
                     pair position=0, bool group=true,
                     filltype filltype=NoFill, bool above=true);
    void attach(picture dest=currentpicture, frame src,
                     pair position, pair align, bool group=true,
                     filltype filltype=NoFill, bool above=true);

    To erase the contents of a picture (but not the size
    specification), use the function
    void erase(picture pic=currentpicture);

    To save a snapshot of ‘currentpicture’, ‘currentpen’, and
    ‘currentprojection’, use the function ‘save()’.

    To restore a snapshot of ‘currentpicture’, ‘currentpen’, and
    ‘currentprojection’, use the function ‘restore()’.

    Many further examples of picture and frame operations are provided
    in the base module ‘plain’.

    It is possible to insert verbatim ‘PostScript’ commands in a
    picture with one of the routines
    void postscript(picture pic=currentpicture, string s);
    void postscript(picture pic=currentpicture, string s, pair min,
                    pair max)
    Here ‘min’ and ‘max’ can be used to specify explicit bounds
    associated with the resulting ‘PostScript’ code.

    Verbatim TeX commands can be inserted in the intermediate ‘LaTeX’
    output file with one of the functions
    void tex(picture pic=currentpicture, string s);
    void tex(picture pic=currentpicture, string s, pair min, pair max)
    Here ‘min’ and ‘max’ can be used to specify explicit bounds
    associated with the resulting TeX code.

    To issue a global TeX command (such as a TeX macro definition) in
    the TeX preamble (valid for the remainder of the top-level module)
    use:
    void texpreamble(string s);

    The TeX environment can be reset to its initial state, clearing all
    macro definitions, with the function
    void texreset();

    The routine
    void usepackage(string s, string options="");
    provides a convenient abbreviation for
    texpreamble("\usepackage["+options+"]{"+s+"}");
    that can be used for importing ‘LaTeX’ packages.


File: asymptote.info,  Node: Deferred drawing,  Next: Files,  Prev: Frames and pictures,  Up: Programming

6.6 Deferred drawing
====================

It is sometimes desirable to have elements of a fixed absolute size,
independent of the picture scaling from user to ‘PostScript’
coordinates.  For example, normally one would want the size of a dot
created with ‘dot’, the size of the arrowheads created with ‘arrow’
(*note arrows::), and labels to be drawn independent of the scaling.

  However, because of ‘Asymptote’'s automatic scaling feature (*note
Figure size::), the translation between user coordinate and ‘PostScript’
coordinate is not determined until shipout time:
size(1cm);
dot((0,0));
dot((1,1));
shipout("x"); // at this point, 1 unit coordinate = 1cm
dot((2,2));
shipout("y"); // at this point, 1 unit coordinate = 0.5cm
It is therefore necessary to defer the drawing of these elements until
shipout time.

  For example, a frame can be added at a specified user coordinate of a
picture with the deferred drawing routine ‘add(picture
dest=currentpicture, frame src, pair position)’:
frame f;
fill(f,circle((0,0),1.5pt));
add(f,position=(1,1),align=(0,0));

  A deferred drawing routine is an object of type ‘drawer’, which is a
function with signature ‘void(frame f, transform t)’.  For example, if
the drawing routine
void d(frame f, transform t){
 fill(f,shift(3cm,0)*circle(t*(1,1),2pt));
}
is added to ‘currentpicture’ with
currentpicture.add(d);
a filled circle of radius 2pt will be drawn on currentpicture centered
3cm to the right of user coordinate ‘(1,1)’.  The parameter ‘t’ is the
affine transformation from user coordinates to ‘PostScript’ coordinates.

  Even though the actual drawing is deferred, you still need to specify
to the ‘Asymptote’ scaling routines that ultimately a fixed-size circle
of radius 2pt will be drawn 3cm to the right of user-coordinate (1,1),
by adding a frame about (1,1) that extends beyond (1,1) from
‘(3cm-2pt,-2pt)+min(currentpen)’ to ‘(3cm+2pt,2pt)+max(currentpen)’,
where we have even accounted for the pen linewidth.  The following
example will then produce a PDF file 10 cm wide:

settings.outformat="pdf";
size(10cm);
dot((0,0));
dot((1,1),red);
add(new void(frame f, transform t) {
 fill(f,shift(3cm,0)*circle(t*(1,1),2pt));
});
pair trueMin=(3cm-2pt,-2pt)+min(currentpen);
pair trueMax=(3cm+2pt,2pt)+max(currentpen);
currentpicture.addPoint((1,1),trueMin);
currentpicture.addPoint((1,1),trueMax);
Here we specified the minimum and maximum user and truesize (fixed)
coordinates of the drawer with the ‘picture’ routine
void addPoint(pair user, pair truesize);
Alternatively, one can use
void addBox(pair userMin, pair userMax, pair trueMin=0, pair trueMax=0) {
to specify a bounding box with bottom-left corner ‘t*(1,1)+trueMin’ and
top-right corner ‘t*(1,1)+trueMax’, where ‘t’ is the transformation that
transforms from user coordinates to ‘PostScript’ coordinates.

  For more details about deferred drawing, see "Asymptote: A vector
graphics language," John C. Bowman and Andy Hammerlindl, TUGBOAT: The
Communications of the TeX Users Group, 29:2, 288-294 (2008),

<https://www.math.ualberta.ca/~bowman/publications/asyTUG.pdf>.


File: asymptote.info,  Node: Files,  Next: Variable initializers,  Prev: Deferred drawing,  Up: Programming

6.7 Files
=========

‘Asymptote’ can read and write text files (including comma-separated
value) files and portable XDR (External Data Representation) binary
files.

  An input file can be opened with
input(string name=""
  reading is then done by assignment:
file fin=input("test.txt");
real a=fin;

  If the optional boolean argument ‘check’ is ‘false’, no check will be
made that the file exists.  If the file does not exist or is not
readable, the function ‘bool error(file)’ will return ‘true’.  The first
character of the string ‘comment’ specifies a comment character.  If
this character is encountered in a data file, the remainder of the line
is ignored.  When reading strings, a comment character followed
immediately by another comment character is treated as a single literal
comment character.  If ‘Asymptote’ is compiled with support for
‘libcurl’, ‘name’ can be a URL.

  Unless the ‘-noglobalread’ command-line option is specified, one can
change the current working directory for read operations to the contents
of the string ‘s’ with the function ‘string cd(string s)’, which returns
the new working directory.  If ‘string s’ is empty, the path is reset to
the value it had at program startup.

  When reading pairs, the enclosing parenthesis are optional.  Strings
are also read by assignment, by reading characters up to but not
including a newline.  In addition, ‘Asymptote’ provides the function
‘string getc(file)’ to read the next character (treating the comment
character as an ordinary character) and return it as a string.

  A file named ‘name’ can be open for output with
file output(string name="", bool update=false, string comment="#", string mode="");
If ‘update=false’, any existing data in the file will be erased and only
write operations can be used on the file.  If ‘update=true’, any
existing data will be preserved, the position will be set to the
end-of-file, and both reading and writing operations will be enabled.
For security reasons, writing to files in directories other than the
current directory is allowed only if the ‘-globalwrite’ (or ‘-nosafe’)
command-line option is specified.  Reading from files in other
directories is allowed unless the ‘-noglobalread’ command-line option is
specified.  The function ‘string mktemp(string s)’ may be used to create
and return the name of a unique temporary file in the current directory
based on the string ‘s’.

  There are two special files: ‘stdin’, which reads from the keyboard,
and ‘stdout’, which writes to the terminal.  The implicit initializer
for files is ‘null’.

  Data of a built-in type ‘T’ can be written to an output file by
calling one of the functions
write(string s="", T x, suffix suffix=endl ... T[]);
write(file file, string s="", T x, suffix suffix=none ... T[]);
write(file file=stdout, string s="", explicit T[] x ... T[][]);
write(file file=stdout, T[][]);
write(file file=stdout, T[][][]);
write(suffix suffix=endl);
write(file file, suffix suffix=none);
  If ‘file’ is not specified, ‘stdout’ is used and terminated by
default with a newline.  If specified, the optional identifying string
‘s’ is written before the data ‘x’.  An arbitrary number of data values
may be listed when writing scalars or one-dimensional arrays.  The
‘suffix’ may be one of the following: ‘none’ (do nothing), ‘flush’
(output buffered data), ‘endl’ (terminate with a newline and flush),
‘newl’ (terminate with a newline), ‘DOSendl’ (terminate with a DOS
newline and flush), ‘DOSnewl’ (terminate with a DOS newline), ‘tab’
(terminate with a tab), or ‘comma’ (terminate with a comma).  Here are
some simple examples of data output:
file fout=output("test.txt");
write(fout,1);                  // Writes "1"
write(fout, endl);              // Writes a new line
write(fout,"List: ",1,2,3);     // Writes "List: 1     2     3"

  A file may be opened with ‘mode="xdr"’ to read or write double
precision (64-bit) reals and single precision (32-bit) integers in Sun
Microsystem's XDR (External Data Representation) portable binary format.
A file may instead be opened with ‘mode="binary"’ to read or write
double precision reals and single precision integers in the native
(nonportable) machine binary format.  The virtual member functions ‘file
singlereal(bool b=true)’ and ‘file singleint(bool b=true)’ may be used
to change the precision of real and integer I/O operations,
respectively, for an XDR or binary file.  Similarly, the function ‘file
signedint(bool b=true)’ can be used to modify the signedness of integer
reads and writes for an XDR or binary file.  Since there are no
end-of-line terminators in these formats, reading a string from an XDR
or binary file will by default read in the remainder of the file as a
string.  The virtual member function ‘file word(bool b=true)’ may be
used to change this behaviour: a double precision integer specifying the
length of the string is first read or written, followed by that many
characters.

  The virtual fields ‘name’, ‘mode’, ‘singlereal’, ‘singleint’, and
‘signedint’ may be used to query these respective states of a file.

  One can test a file for end-of-file with the boolean function
‘eof(file)’, end-of-line with ‘eol(file)’, and for I/O errors with
‘error(file)’.  One can flush the output buffers with ‘flush(file)’,
clear a previous I/O error with ‘clear(file)’, and close the file with
‘close(file)’.  The function ‘int precision(file file=stdout, int
digits=0)’ sets the number of digits of output precision for ‘file’ to
‘digits’, provided ‘digits’ is nonzero, and returns the previous
precision setting.  The function ‘int tell(file)’ returns the current
position in a file relative to the beginning.  The routine ‘seek(file
file, int pos)’ can be used to change this position, where a negative
value for the position ‘pos’ is interpreted as relative to the
end-of-file.  For example, one can rewind a file ‘file’ with the command
‘seek(file,0)’ and position to the final character in the file with
‘seek(file,-1)’.  The command ‘seekeof(file)’ sets the position to the
end of the file.

  Assigning ‘settings.scroll=n’ for a positive integer ‘n’ requests a
pause after every ‘n’ output lines to ‘stdout’.  One may then press
‘Enter’ to continue to the next ‘n’ output lines, ‘s’ followed by
‘Enter’ to scroll without further interruption, or ‘q’ followed by
‘Enter’ to quit the current output operation.  If ‘n’ is negative, the
output scrolls a page at a time (i.e.  by one less than the current
number of display lines).  The default value, ‘settings.scroll=0’,
specifies continuous scrolling.

  The routines
string getstring(string name="", string default="", string prompt="",
                bool store=true);
int getint(string name="", int default=0, string prompt="",
          bool store=true);
real getreal(string name="", real default=0, string prompt="",
            bool store=true);
pair getpair(string name="", pair default=0, string prompt="",
            bool store=true);
triple gettriple(string name="", triple default=(0,0,0), string prompt="",
                bool store=true);
defined in the module ‘plain’ may be used to prompt for a value from
‘stdin’ using the GNU ‘readline’ library.  If ‘store=true’, the history
of values for ‘name’ is stored in the file ‘".asy_history_"+name’ (*note
history::).  The most recent value in the history will be used to
provide a default value for subsequent runs.  The default value
(initially ‘default’) is displayed after ‘prompt’.  These functions are
based on the internal routines
string readline(string prompt="", string name="", bool tabcompletion=false);
void saveline(string name, string value, bool store=true);
  Here, ‘readline’ prompts the user with the default value formatted
according to ‘prompt’, while ‘saveline’ is used to save the string
‘value’ in a local history named ‘name’, optionally storing the local
history in a file ‘".asy_history_"+name’.

  The routine ‘history(string name, int n=1)’ can be used to look up
the ‘n’ most recent values (or all values up to ‘historylines’ if ‘n=0’)
entered for string ‘name’.  The routine ‘history(int n=0)’ returns the
interactive history.  For example,
write(output("transcript.asy"),history());
outputs the interactive history to the file ‘transcript.asy’.

  The function ‘int delete(string s)’ deletes the file named by the
string ‘s’.  Unless the ‘-globalwrite’ (or ‘-nosafe’) option is enabled,
the file must reside in the current directory.  The function ‘int
rename(string from, string to)’ may be used to rename file ‘from’ to
file ‘to’.  Unless the ‘-globalwrite’ (or ‘-nosafe’) option is enabled,
this operation is restricted to the current directory.  The functions
int convert(string args="", string file="", string format="");
int animate(string args="", string file="", string format="");
call the ‘ImageMagick’ commands ‘magick’ and ‘animate’, respectively,
with the arguments ‘args’ and the file name constructed from the strings
‘file’ and ‘format’.


File: asymptote.info,  Node: Variable initializers,  Next: Structures,  Prev: Files,  Up: Programming

6.8 Variable initializers
=========================

A variable can be assigned a value when it is declared ‘int x=3;’ where
the variable ‘x’ is assigned the value ‘3’.  As well as literal
constants such as ‘3’, arbitary expressions can be used as initializers,
as in ‘real x=2*sin(pi/2);’.

  A variable is not added to the namespace until after the initializer
is evaluated, so for example, in
int x=2;
int x=5*x;
the ‘x’ in the initializer on the second line refers to the variable ‘x’
declared on the first line.  The second line, then, declares a variable
‘x’ shadowing the original ‘x’ and initializes it to the value ‘10’.

  Variables of most types can be declared without an explicit
initializer and they will be initialized by the default initializer of
that type:

  • Variables of the numeric types ‘int’, ‘real’, and ‘pair’ are all
    initialized to zero; variables of type ‘triple’ are initialized to
    ‘O=(0,0,0)’.
  • ‘boolean’ variables are initialized to ‘false’.
  • ‘string’ variables are initialized to the empty string.
  • ‘transform’ variables are initialized to the identity
    transformation.
  • ‘path’ and ‘guide’ variables are initialized to ‘nullpath’.
  • ‘pen’ variables are initialized to the default pen.
  • ‘frame’ and ‘picture’ variables are initialized to empty frames and
    pictures, respectively.
  • ‘file’ variables are initialized to ‘null’.

  The default initializers for user-defined array, structure, and
function types are explained in their respective sections.  Some types,
such as ‘code’, do not have default initializers.  When a variable of
such a type is introduced, the user must initialize it by explicitly
giving it a value.

  The default initializer for any type ‘T’ can be redeclared by
defining the function ‘T operator init()’.  For instance, ‘int’
variables are usually initialized to zero, but in
int operator init() {
 return 3;
}
int y;

the variable ‘y’ is initialized to ‘3’.  This example was given for
illustrative purposes; redeclaring the initializers of built-in types is
not recommended.  Typically, ‘operator init’ is used to define sensible
defaults for user-defined types.

  The special type ‘var’ may be used to infer the type of a variable
from its initializer.  If the initializer is an expression of a unique
type, then the variable will be defined with that type.  For instance,
var x=5;
var y=4.3;
var reddash=red+dashed;
is equivalent to
int x=5;
real y=4.3;
pen reddash=red+dashed;

  ‘var’ may also be used with the extended ‘for’ loop syntax.

int[] a = {1,2,3};
for (var x : a)
 write(x);


File: asymptote.info,  Node: Structures,  Next: Operators,  Prev: Variable initializers,  Up: Programming

6.9 Structures
==============

Users may also define their own data types as structures, along with
user-defined operators, much as in C++.  By default, structure members
are ‘public’ (may be read and modified anywhere in the code), but may be
optionally declared ‘restricted’ (readable anywhere but writeable only
inside the structure where they are defined) or ‘private’ (readable and
writable only inside the structure).  In a structure definition, the
keyword ‘this’ can be used as an expression to refer to the enclosing
structure.  Any code at the top-level scope within the structure is
executed on initialization.

  Variables hold references to structures.  That is, in the example:
struct T {
 int x;
}

T foo;
T bar=foo;
bar.x=5;

  The variable ‘foo’ holds a reference to an instance of the structure
‘T’.  When ‘bar’ is assigned the value of ‘foo’, it too now holds a
reference to the same instance as ‘foo’ does.  The assignment ‘bar.x=5’
changes the value of the field ‘x’ in that instance, so that ‘foo.x’
will also be equal to ‘5’.

  The expression ‘new T’ creates a new instance of the structure ‘T’
and returns a reference to that instance.  In creating the new instance,
any code in the body of the record definition is executed.  For example:
int Tcount=0;
struct T {
 int x;
 ++Tcount;
}

T foo=new T;
T foo;
Here, ‘new T’ produces a new instance of the class, which causes
‘Tcount’ to be incremented, tracking the number of instances produced.
The declarations ‘T foo=new T’ and ‘T foo’ are equivalent: the second
form implicitly creates a new instance of ‘T’.  That is, after the
definition of a structure ‘T’, a variable of type ‘T’ is initialized to
a new instance (‘new T’) by default.  During the definition of the
structure, however, variables of type ‘T’ are initialized to ‘null’ by
default.  This special behavior is to avoid infinite recursion of
creating new instances in code such as
struct tree {
 int value;
 tree left;
 tree right;
}

  The expression ‘null’ can be cast to any structure type to yield a
null reference, a reference that does not actually refer to any instance
of the structure.  Trying to use a field of a null reference will cause
an error.

  The function ‘bool alias(T,T)’ checks to see if two structure
references refer to the same instance of the structure (or both to
‘null’).  In the example at the beginning of this section,
‘alias(foo,bar)’ would return true, but ‘alias(foo,new T)’ would return
false, as ‘new T’ creates a new instance of the structure ‘T’.  The
boolean operators ‘==’ and ‘!=’ are by default equivalent to ‘alias’ and
‘!alias’ respectively, but may be overwritten for a particular type (for
example, to do a deep comparison).

  Here is a simple example that illustrates the use of structures:
struct S {
 real a=1;
 real f(real a) {return a+this.a;}
}

S s;                            // Initializes s with new S;

write(s.f(2));                  // Outputs 3

S operator + (S s1, S s2)
{
 S result;
 result.a=s1.a+s2.a;
 return result;
}

write((s+s).f(0));              // Outputs 2

  It is often convenient to have functions that construct new instances
of a structure.  Say we have a ‘Person’ structure:
struct Person {
 string firstname;
 string lastname;
}

Person joe;
joe.firstname="Joe";
joe.lastname="Jones";
Creating a new Person is a chore; it takes three lines to create a new
instance and to initialize its fields (that's still considerably less
effort than creating a new person in real life, though).

  We can reduce the work by defining ‘operator init’:
struct Person {
 string firstname;
 string lastname;

 void operator init(string firstname, string lastname) {
   this.firstname=firstname;
   this.lastname=lastname;
 }
}

Person joe=Person("Joe", "Jones");

  The use of ‘operator init’ to implicitly define constructors should
not be confused with its use to define default values for variables
(*note Variable initializers::).  Indeed, in the first case, the return
type of the ‘operator init’ must be ‘void’ while in the second, it must
be the (non-‘void’) type of the variable.

  Internally, ‘operator init’ implicitly defines a constructor function
‘Person(string,string)’ as follows, where ARGS is ‘string firstname,
string lastname’ in this case:
    struct Person {
      string firstname;
      string lastname;

      static Person Person(ARGS) {
        Person p=new Person;
        p.operator init(ARGS);
        return p;
      }
    }
which then can be used as:
Person joe=Person.Person("Joe", "Jones");

  The following is also implicitly generated in the enclosing scope,
after the end of the structure definition.
from Person unravel Person;
It allows us to use the constructor without qualification, otherwise we
would have to refer to the constructor by the qualified name
‘Person.Person’.

  Much like in C++, casting (*note Casts::) provides for an elegant
implementation of structure inheritance, including a virtual function
‘v’:
struct parent {
 real x;
 void operator init(int x) {this.x=x;}
 void v(int) {write(0);}
 void f() {v(1);}
}

void write(parent p) {write(p.x);}

struct child {
 parent parent;
 real y=3;
 void operator init(int x) {parent.operator init(x);}
 void v(int x) {write(x);}
 parent.v=v;
 void f()=parent.f;
}

parent operator cast(child child) {return child.parent;}

parent p=parent(1);
child c=child(2);

write(c);                       // Outputs 2;

p.f();                          // Outputs 0;
c.f();                          // Outputs 1;

write(c.parent.x);              // Outputs 2;
write(c.y);                     // Outputs 3;

  For further examples of structures, see ‘Legend’ and ‘picture’ in the
‘Asymptote’ base module ‘plain’.


File: asymptote.info,  Node: Operators,  Next: Implicit scaling,  Prev: Structures,  Up: Programming

6.10 Operators
==============

* Menu:

* Arithmetic & logical::        Basic mathematical operators
* Self & prefix operators::     Increment and decrement
* User-defined operators::      Overloading operators


File: asymptote.info,  Node: Arithmetic & logical,  Next: Self & prefix operators,  Up: Operators

6.10.1 Arithmetic & logical operators
-------------------------------------

‘Asymptote’ uses the standard binary arithmetic operators.  However,
when one integer is divided by another, both arguments are converted to
real values before dividing and a real quotient is returned (since this
is typically what is intended; otherwise one can use the function ‘int
quotient(int x, int y)’, which returns greatest integer less than or
equal to ‘x/y’).  In all other cases both operands are promoted to the
same type, which will also be the type of the result:
‘+’
    addition
‘-’
    subtraction
‘*’
    multiplication
‘/’
    division
‘#’
    integer division; equivalent to ‘quotient(x,y)’.  Noting that the
    ‘Python3’ community adopted our comment symbol (‘//’) for integer
    division, we decided to reciprocate and use their comment symbol
    for integer division in ‘Asymptote’!
‘%’
    modulo; the result always has the same sign as the divisor.  In
    particular, this makes ‘q*(p # q)+p % q == p’ for all integers ‘p’
    and nonzero integers ‘q’.
‘^’
    power; if the exponent (second argument) is an int, recursive
    multiplication is used; otherwise, logarithms and exponentials are
    used (‘**’ is a synonym for ‘^’).

  The usual boolean operators are also defined:
‘==’
    equals
‘!=’
    not equals
‘<’
    less than
‘<=’
    less than or equals
‘>=’
    greater than or equals
‘>’
    greater than
‘&&’
    and (with conditional evaluation of right-hand argument)
‘&’
    and
‘||’
    or (with conditional evaluation of right-hand argument)
‘|’
    or
‘^’
    xor
‘!’
    not

  ‘Asymptote’ also supports the C-like conditional syntax:
bool positive=(pi > 0) ? true : false;

  The function ‘T interp(T a, T b, real t)’ returns ‘(1-t)*a+t*b’ for
nonintegral built-in arithmetic types ‘T’.  If ‘a’ and ‘b’ are pens,
they are first promoted to the same color space.

  ‘Asymptote’ also defines bitwise functions ‘int AND(int,int)’, ‘int
OR(int,int)’, ‘int XOR(int,int)’, ‘int NOT(int)’, ‘int CLZ(int)’ (count
leading zeros), ‘int CTZ(int)’ (count trailing zeros), ‘int
popcount(int)’ (count bits populated by ones), and ‘int bitreverse(int
a, int bits)’ (reverse bits within a word of length bits).


File: asymptote.info,  Node: Self & prefix operators,  Next: User-defined operators,  Prev: Arithmetic & logical,  Up: Operators

6.10.2 Self & prefix operators
------------------------------

As in C, each of the arithmetic operators ‘+’, ‘-’, ‘*’, ‘/’, ‘#’, ‘%’,
and ‘^’ can be used as a self operator.  The prefix operators ‘++’
(increment by one) and ‘--’ (decrement by one) are also defined.  For
example,
int i=1;
i += 2;
int j=++i;

is equivalent to the code
int i=1;
i=i+2;
int j=i=i+1;

  However, postfix operators like ‘i++’ and ‘i--’ are not defined
(because of the inherent ambiguities that would arise with the ‘--’
path-joining operator).  In the rare instances where ‘i++’ and ‘i--’ are
really needed, one can substitute the expressions ‘(++i-1)’ and
‘(--i+1)’, respectively.


File: asymptote.info,  Node: User-defined operators,  Prev: Self & prefix operators,  Up: Operators

6.10.3 User-defined operators
-----------------------------

The following symbols may be used with ‘operator’ to define or redefine
operators on structures and built-in types:
- + * / % ^ ! < > == != <= >= & | ^^ .. :: -- --- ++
<< >> $ $$ @ @@ <>
The operators on the second line have precedence one higher than the
boolean operators ‘<’, ‘>’, ‘<=’, and ‘>=’.

  Guide operators like ‘..’ may be overloaded, say, to write a user
function that produces a new guide from a given guide:
guide dots(... guide[] g)=operator ..;

guide operator ..(... guide[] g) {
 guide G;
 if(g.length > 0) {
   write(g[0]);
   G=g[0];
 }
 for(int i=1; i < g.length; ++i) {
   write(g[i]);
   write();
   G=dots(G,g[i]);
 }
 return G;
}

guide g=(0,0){up}..{SW}(100,100){NE}..{curl 3}(50,50)..(10,10);
write("g=",g);

  *Note Autounravel::, for an example overloading the ‘+’ operator.


File: asymptote.info,  Node: Implicit scaling,  Next: Functions,  Prev: Operators,  Up: Programming

6.11 Implicit scaling
=====================

If a numeric literal is in front of certain types of expressions, then
the two are multiplied:
int x=2;
real y=2.0;
real cm=72/2.540005;

write(3x);
write(2.5x);
write(3y);
write(-1.602e-19 y);
write(0.5(x,y));
write(2x^2);
write(3x+2y);
write(3(x+2y));
write(3sin(x));
write(3(sin(x))^2);
write(10cm);

  This produces the output
6
5
6
-3.204e-19
(1,1)
8
10
18
2.72789228047704
2.48046543129542
283.464008929116


File: asymptote.info,  Node: Functions,  Next: Arrays,  Prev: Implicit scaling,  Up: Programming

6.12 Functions
==============

* Menu:

* Default arguments::           Default values can appear anywhere
* Named arguments::             Assigning function arguments by keyword
* Rest arguments::              Functions with a variable number of arguments
* Mathematical functions::      Standard libm functions

‘Asymptote’ functions are treated as variables with a signature
(non-function variables have null signatures).  Variables with the same
name are allowed, so long as they have distinct signatures.

  Function arguments are passed by value.  To pass an argument by
reference, simply enclose it in a structure (*note Structures::).

  Here are some significant features of ‘Asymptote’ functions:

 1. Variables with signatures (functions) and without signatures
    (nonfunction variables) are distinct:
    int x, x();
    x=5;
    x=new int() {return 17;};
    x=x();              // calls x() and puts the result, 17, in the scalar x

 2. Traditional function definitions are allowed:
    int sqr(int x)
    {
      return x*x;
    }
    sqr=null;           // but the function is still just a variable.

 3. Casting can be used to resolve ambiguities:
    int a, a(), b, b(); // Valid: creates four variables.
    a=b;                // Invalid: assignment is ambiguous.
    a=(int) b;          // Valid: resolves ambiguity.
    (int) (a=b);        // Valid: resolves ambiguity.
    (int) a=b;          // Invalid: cast expressions cannot be L-values.

    int c();
    c=a;                // Valid: only one possible assignment.

 4. "Higher-order" functions, in other words functions that return
    functions, are allowed.  The return type must be given a
    signature-free alias with ‘using’ or ‘typedef’:
    using intop = int(int);
    // typedef int intop(int); // Equivalent to previous line
    intop adder(int m)
    {
      return new int(int n) {return m+n;};
    }
    intop addby7=adder(7);
    write(addby7(1));       // Writes 8.

 5. One may redefine a function ‘f’, even for calls to ‘f’ in
    previously declared functions, by assigning another (anonymous or
    named) function to it.  However, if ‘f’ is overloaded by a new
    function definition, previous calls will still access the original
    version of ‘f’, as illustrated in this example:
    void f() {
      write("hi");
    }

    void g() {
      f();
    }

    g(); // writes "hi"

    f=new void() {write("bye");};

    g(); // writes "bye"

    void f() {write("overloaded");};

    f(); // writes "overloaded"
    g(); // writes "bye"

 6. Anonymous functions can be used to redefine a function variable
    that has been declared (and implicitly initialized to the null
    function) but not yet explicitly defined:
    void f(bool b);

    void g(bool b) {
      if(b) f(b);
      else write(b);
    }

    f=new void(bool b) {
      write(b);
      g(false);
    };

    g(true); // Writes true, then writes false.

  ‘Asymptote’ is the only language we know of that treats functions as
variables, but allows overloading by distinguishing variables based on
their signatures.

  Functions are allowed to call themselves recursively.  As in C++,
infinite nested recursion will generate a stack overflow (reported as a
segmentation fault, unless a fully working version of the GNU library
‘libsigsegv’ (e.g. 2.4 or later) is installed at configuration time).


File: asymptote.info,  Node: Default arguments,  Next: Named arguments,  Up: Functions

6.12.1 Default arguments
------------------------

‘Asymptote’ supports a more flexible mechanism for default function
arguments than C++: they may appear anywhere in the function prototype.
Because certain data types are implicitly cast to more sophisticated
types (*note Casts::) one can often avoid ambiguities by ordering
function arguments from the simplest to the most complicated.  For
example, given
real f(int a=1, real b=0) {return a+b;}
then ‘f(1)’ returns 1.0, but ‘f(1.0)’ returns 2.0.

  The value of a default argument is determined by evaluating the given
‘Asymptote’ expression in the scope where the called function is
defined.


File: asymptote.info,  Node: Named arguments,  Next: Rest arguments,  Prev: Default arguments,  Up: Functions

6.12.2 Named arguments
----------------------

It is sometimes difficult to remember the order in which arguments
appear in a function declaration.  Named (keyword) arguments make
calling functions with multiple arguments easier.  Unlike in the C and
C++ languages, an assignment in a function argument is interpreted as an
assignment to a parameter of the same name in the function signature,
_not within the local scope_.  The command-line option ‘-d’ may be used
to check ‘Asymptote’ code for cases where a named argument may be
mistaken for a local assignment.

  When matching arguments to signatures, first all of the keywords are
matched, then the arguments without names are matched against the
unmatched formals as usual.  For example,
int f(int x, int y) {
 return 10x+y;
}
write(f(4,x=3));
outputs 34, as ‘x’ is already matched when we try to match the unnamed
argument ‘4’, so it gets matched to the next item, ‘y’.

  For the rare occasions where it is desirable to assign a value to
local variable within a function argument (generally _not_ a good
programming practice), simply enclose the assignment in parentheses.
For example, given the definition of ‘f’ in the previous example,
int x;
write(f(4,(x=3)));
is equivalent to the statements
int x;
x=3;
write(f(4,3));
and outputs 43.

  Parameters can be specified as "keyword-only" by putting ‘keyword’
immediately before the parameter name, as in ‘int f(int keyword x)’ or
‘int f(int keyword x=77)’.  This forces the caller of the function to
use a named argument to give a value for this parameter.  That is,
‘f(x=42)’ is legal, but ‘f(25)’ is not.  Keyword-only parameters must be
listed after normal parameters in a function definition.

  As a technical detail, we point out that, since variables of the same
name but different signatures are allowed in the same scope, the code
int f(int x, int x()) {
 return x+x();
}
int seven() {return 7;}
is legal in ‘Asymptote’, with ‘f(2,seven)’ returning 9.  A named
argument matches the first unmatched formal of the same name, so
‘f(x=2,x=seven)’ is an equivalent call, but ‘f(x=seven,2)’ is not, as
the first argument is matched to the first formal, and ‘int ()’ cannot
be implicitly cast to ‘int’.  Default arguments do not affect which
formal a named argument is matched to, so if ‘f’ were defined as
int f(int x=3, int x()) {
 return x+x();
}
then ‘f(x=seven)’ would be illegal, even though ‘f(seven)’ obviously
would be allowed.


File: asymptote.info,  Node: Rest arguments,  Next: Mathematical functions,  Prev: Named arguments,  Up: Functions

6.12.3 Rest arguments
---------------------

Rest arguments allow one to write functions that take a variable number
of arguments:
// This function sums its arguments.
int sum(... int[] nums) {
 int total=0;
 for(int i=0; i < nums.length; ++i)
   total += nums[i];
 return total;
}

sum(1,2,3,4);                       // returns 10
sum();                              // returns 0

// This function subtracts subsequent arguments from the first.
int subtract(int start ... int[] subs) {
 for(int i=0; i < subs.length; ++i)
   start -= subs[i];
 return start;
}

subtract(10,1,2);                   // returns 7
subtract(10);                       // returns 10
subtract();                         // illegal

  Putting an argument into a rest array is called _packing_.  One can
give an explicit list of arguments for the rest argument, so ‘subtract’
could alternatively be implemented as
int subtract(int start ... int[] subs) {
 return start - sum(... subs);
}

  One can even combine normal arguments with rest arguments:
sum(1,2,3 ... new int[] {4,5,6});   // returns 21
This builds a new six-element array that is passed to ‘sum’ as ‘nums’.
The opposite operation, _unpacking_, is not allowed:
subtract(... new int[] {10, 1, 2});
is illegal, as the start formal is not matched.

  If no arguments are packed, then a zero-length array (as opposed to
‘null’) is bound to the rest parameter.  Note that default arguments are
ignored for rest formals and the rest argument is not bound to a
keyword.

  In some cases, keyword-only parameters are helpful to avoid arguments
intended for the rest parameter to be assigned to other parameters.  For
example, here the use of ‘keyword’ is to avoid ‘pnorm(1.0,2.0,0.3)’
matching ‘1.0’ to ‘p’.
real pnorm(real keyword p=2.0 ... real[] v)
{
 return sum(v^p)^(1/p);
}

  The overloading resolution in ‘Asymptote’ is similar to the function
matching rules used in C++.  Every argument match is given a score.
Exact matches score better than matches with casting, and matches with
formals (regardless of casting) score better than packing an argument
into the rest array.  A candidate is maximal if all of the arguments
score as well in it as with any other candidate.  If there is one unique
maximal candidate, it is chosen; otherwise, there is an ambiguity error.

int f(path g);
int f(guide g);
f((0,0)--(100,100)); // matches the second; the argument is a guide

int g(int x, real y);
int g(real x, int x);

g(3,4); // ambiguous; the first candidate is better for the first argument,
       // but the second candidate is better for the second argument

int h(... int[] rest);
int h(real x ... int[] rest);

h(1,2); // the second definition matches, even though there is a cast,
       // because casting is preferred over packing

int i(int x ... int[] rest);
int i(real x, real y ... int[] rest);

i(3,4); // ambiguous; the first candidate is better for the first argument,
       // but the second candidate is better for the second one


File: asymptote.info,  Node: Mathematical functions,  Prev: Rest arguments,  Up: Functions

6.12.4 Mathematical functions
-----------------------------

‘Asymptote’ has built-in versions of the standard ‘libm’ mathematical
real(real) functions ‘sin’, ‘cos’, ‘tan’, ‘asin’, ‘acos’, ‘atan’, ‘exp’,
‘log’, ‘pow10’, ‘log10’, ‘sinh’, ‘cosh’, ‘tanh’, ‘asinh’, ‘acosh’,
‘atanh’, ‘sqrt’, ‘cbrt’, ‘fabs’, ‘expm1’, ‘log1p’, as well as the
identity function ‘identity’.  ‘Asymptote’ also defines the order ‘n’
Bessel functions of the first kind ‘Jn(int n, real)’ and second kind
‘Yn(int n, real)’, as well as the gamma function ‘gamma’, the error
function ‘erf’, and the complementary error function ‘erfc’.  The
standard real(real, real) functions ‘atan2’, ‘hypot’, ‘fmod’,
‘remainder’ are also included.

  The functions ‘degrees(real radians)’ and ‘radians(real degrees)’ can
be used to convert between radians and degrees.  The function
‘Degrees(real radians)’ returns the angle in degrees in the interval
[0,360).  For convenience, ‘Asymptote’ defines variants ‘Sin’, ‘Cos’,
‘Tan’, ‘aSin’, ‘aCos’, and ‘aTan’ of the standard trigonometric
functions that use degrees rather than radians.  We also define complex
versions of the ‘sqrt’, ‘sin’, ‘cos’, ‘exp’, ‘log’, and ‘gamma’
functions.

  The functions ‘floor’, ‘ceil’, and ‘round’ differ from their usual
definitions in that they all return an int value rather than a real
(since that is normally what one wants).  The functions ‘Floor’, ‘Ceil’,
and ‘Round’ are respectively similar, except that if the result cannot
be converted to a valid int, they return ‘intMax’ for positive arguments
and ‘intMin’ for negative arguments, rather than generating an integer
overflow.  We also define a function ‘sgn’, which returns the sign of
its real argument as an integer (-1, 0, or 1).

  There is an ‘abs(int)’ function, as well as an ‘abs(real)’ function
(equivalent to ‘fabs(real)’), an ‘abs(pair)’ function (equivalent to
‘length(pair)’).

  Asymptote's random number generators can be seeded with ‘srand(int)’.
If a negative argument is given to ‘srand’, an internal entropy source
is used as a seed.  Random numbers are initially seeded with
‘srand(-1)’.  The function ‘int rand(int a=0, int b=randMax)’ returns a
random integer in [a,b].  The ‘unitrand()’ function returns a random
number uniformly distributed in the interval [0,1).  A Gaussian random
number generator ‘Gaussrand’ and a collection of statistics routines,
including ‘histogram’, are provided in the module ‘stats’.

  The functions ‘factorial(int n)’, which returns n!, and ‘choose(int
n, int k)’, which returns n!/(k!(n-k)!), are also defined.

  When configured with the GNU Scientific Library (GSL), available from
<https://www.gnu.org/software/gsl/>, ‘Asymptote’ contains an internal
module ‘gsl’ that defines the airy functions ‘Ai(real)’, ‘Bi(real)’,
‘Ai_deriv(real)’, ‘Bi_deriv(real)’, ‘zero_Ai(int)’, ‘zero_Bi(int)’,
‘zero_Ai_deriv(int)’, ‘zero_Bi_deriv(int)’, the Bessel functions ‘I(int,
real)’, ‘K(int, real)’, ‘j(int, real)’, ‘y(int, real)’, ‘i_scaled(int,
real)’, ‘k_scaled(int, real)’, ‘J(real, real)’, ‘Y(real, real)’,
‘I(real, real)’, ‘K(real, real)’, ‘zero_J(real, int)’, the elliptic
functions ‘F(real, real)’, ‘E(real, real)’, and ‘P(real, real)’, the
Jacobi elliptic functions ‘real[] sncndn(real,real)’, the
exponential/trigonometric integrals ‘Ei’, ‘Si’, and ‘Ci’, the Legendre
polynomials ‘Pl(int, real)’, and the Riemann zeta function ‘zeta(real)’.
For example, to compute the sine integral ‘Si’ of 1.0:
import gsl;
write(Si(1.0));

  ‘Asymptote’ also provides a few general purpose numerical routines:

‘real newton(int iterations=100, real f(real), real fprime(real), real x, bool verbose=false);’
    Use Newton-Raphson iteration to solve for a root of a real-valued
    differentiable function ‘f’, given its derivative ‘fprime’ and an
    initial guess ‘x’.  Diagnostics for each iteration are printed if
    ‘verbose=true’.  If the iteration fails after the maximum allowed
    number of loops (‘iterations’), ‘realMax’ is returned.

‘real newton(int iterations=100, real f(real), real fprime(real), real x1, real x2, bool verbose=false);’
    Use bracketed Newton-Raphson bisection to solve for a root of a
    real-valued differentiable function ‘f’ within an interval
    [‘x1’,‘x2’] (on which the endpoint values of ‘f’ have opposite
    signs), given its derivative ‘fprime’.  Diagnostics for each
    iteration are printed if ‘verbose=true’.  If the iteration fails
    after the maximum allowed number of loops (‘iterations’), ‘realMax’
    is returned.

‘real simpson(real f(real), real a, real b, real acc=realEpsilon, real dxmax=b-a)’
    returns the integral of ‘f’ from ‘a’ to ‘b’ using adaptive Simpson
    integration.

‘cputime cputime()’
    returns a structure ‘cputime’ with cumulative CPU times broken down
    into the fields ‘parent.user’, ‘parent.system’, ‘child.user’, and
    ‘child.system’, along with the cumulative wall clock time in
    ‘parent.clock’, all measured in seconds.  For convenience, the
    incremental fields ‘change.user’, ‘change.system’, and
    ‘change.clock’ indicate the change in the corresponding fields
    since the last call to ‘cputime()’.  The function
    void write(file file=stdout, string s="", cputime c,
               string format=cputimeformat, suffix suffix=none);
    displays the incremental user cputime followed by "u", the
    incremental system cputime followed by "s", the total user cputime
    followed by "U", and the total system cputime followed by "S".


File: asymptote.info,  Node: Arrays,  Next: Casts,  Prev: Functions,  Up: Programming

6.13 Arrays
===========

* Menu:

* Slices::                      Python-style array slices

Appending ‘[]’ to a built-in or user-defined type yields an array.  The
array element ‘i’ of an array ‘A’ can be accessed as ‘A[i]’.  By
default, attempts to access or assign to an array element using a
negative index generates an error.  Reading an array element with an
index beyond the length of the array also generates an error; however,
assignment to an element beyond the length of the array causes the array
to be resized to accommodate the new element.  One can also index an
array ‘A’ with an integer array ‘B’: the array ‘A[B]’ is formed by
indexing array ‘A’ with successive elements of array ‘B’.  A convenient
Java-style shorthand exists for iterating over all elements of an array;
see *note array iteration::.

  The declaration
real[] A;

initializes ‘A’ to be an empty (zero-length) array.  Empty arrays should
be distinguished from null arrays.  If we say
real[] A=null;

then ‘A’ cannot be dereferenced at all (null arrays have no length and
cannot be read from or assigned to).

  Arrays can be explicitly initialized like this:
real[] A={0,1,2};

  Array assignment in ‘Asymptote’ does a shallow copy: only the pointer
is copied (if one copy if modified, the other will be too).  The ‘copy’
function listed below provides a deep copy of an array.

  Every array ‘A’ of type ‘T[]’ has the virtual members
  • ‘int length’,
  • ‘bool cyclic’,
  • ‘int[] keys’,
  • ‘T push(T x)’,
  • ‘void append(T[] a)’,
  • ‘T pop()’,
  • ‘void insert(int i ... T[] x)’,
  • ‘void delete(int i, int j=i)’,
  • ‘void delete()’, and
  • ‘bool initialized(int n)’.

  The member ‘A.length’ evaluates to the length of the array.  Setting
‘A.cyclic=true’ signifies that array indices should be reduced modulo
the current array length.  Reading from or writing to a nonempty cyclic
array never leads to out-of-bounds errors or array resizing.

  The member ‘A.keys’ evaluates to an array of integers containing the
indices of initialized entries in the array in ascending order.  Hence,
for an array of length ‘n’ with all entries initialized, ‘A.keys’
evaluates to ‘{0,1,...,n-1}’.  A new keys array is produced each time
‘A.keys’ is evaluated.

  The functions ‘A.push’ and ‘A.append’ append their arguments onto the
end of the array, while ‘A.insert(int i ... T[] x)’ inserts ‘x’ into the
array at index ‘i’.  For convenience ‘A.push’ returns the pushed item.
The function ‘A.pop()’ pops and returns the last element, while
‘A.delete(int i, int j=i)’ deletes elements with indices in the range
[‘i’,‘j’], shifting the position of all higher-indexed elements down.
If no arguments are given, ‘A.delete()’ provides a convenient way of
deleting all elements of ‘A’.  The routine ‘A.initialized(int n)’ can be
used to examine whether the element at index ‘n’ is initialized.  Like
all ‘Asymptote’ functions, ‘push’, ‘append’, ‘pop’, ‘insert’, ‘delete’,
and ‘initialized’ can be "pulled off" of the array and used on their
own.  For example,
int[] A={1};
A.push(2);         // A now contains {1,2}.
A.append(A);       // A now contains {1,2,1,2}.
int f(int)=A.push;
f(3);              // A now contains {1,2,1,2,3}.
int g()=A.pop;
write(g());        // Outputs 3.
A.delete(0);       // A now contains {2,1,2}.
A.delete(0,1);       // A now contains {2}.
A.insert(1,3);     // A now contains {2,3}.
A.insert(1 ... A); // A now contains {2,2,3,3}
A.insert(2,4,5);   // A now contains {2,2,4,5,3,3}.

  The ‘[]’ suffix can also appear after the variable name; this is
sometimes convenient for declaring a list of variables and arrays of the
same type:
real a,A[];
This declares ‘a’ to be ‘real’ and implicitly declares ‘A’ to be of type
‘real[]’.

  In the following list of built-in array functions, ‘T’ represents a
generic type.  Note that the internal functions ‘alias’, ‘array’,
‘copy’, ‘concat’, ‘sequence’, ‘map’, and ‘transpose’, which depend on
type ‘T[]’, are defined only after the first declaration of a variable
of type ‘T[]’.

‘new T[]’
    returns a new empty array of type ‘T[]’;

‘new T[] {list}’
    returns a new array of type ‘T[]’ initialized with ‘list’ (a comma
    delimited list of elements);

‘new T[n]’
    returns a new array of ‘n’ elements of type ‘T[]’.  These ‘n’ array
    elements are not initialized unless they are arrays themselves (in
    which case they are each initialized to empty arrays);

‘T[] array(int n, T value, int depth=intMax)’
    returns an array consisting of ‘n’ copies of ‘value’.  If ‘value’
    is itself an array, a deep copy of ‘value’ is made for each entry.
    If ‘depth’ is specified, this deep copying only recurses to the
    specified number of levels;

‘int[] sequence(int n)’
    if ‘n >= 1’ returns the array ‘{0,1,...,n-1}’ (otherwise returns a
    null array);

‘int[] sequence(int n, int m)’
    if ‘m >= n’ returns an array ‘{n,n+1,...,m}’ (otherwise returns a
    null array);

‘int[] sequence(int n, int m, int skip)’
    if ‘m >= n’ returns an array ‘{n,n+1,...,m}’ skipping by ‘skip’
    (otherwise returns a null array);

‘T[] sequence(T f(int), int n)’
    if ‘n >= 1’ returns the sequence ‘{f_i :i=0,1,...n-1}’ given a
    function ‘T f(int)’ and integer ‘int n’ (otherwise returns a null
    array);

‘T[] map(T f(T), T[] a)’
    returns the array obtained by applying the function ‘f’ to each
    element of the array ‘a’.  This is equivalent to ‘sequence(new
    T(int i) {return f(a[i]);},a.length)’;

‘T2[] map(T2 f(T1), T1[] a)’
    constructed by running ‘from mapArray(Src=T1, Dst=T2) access map;’,
    returns the array obtained by applying the function ‘f’ to each
    element of the array ‘a’;

‘int[] reverse(int n)’
    if ‘n >= 1’ returns the array ‘{n-1,n-2,...,0}’ (otherwise returns
    a null array);

‘int[] complement(int[] a, int n)’
    returns the complement of the integer array ‘a’ in
    ‘{0,1,2,...,n-1}’, so that ‘b[complement(a,b.length)]’ yields the
    complement of ‘b[a]’;

‘real[] uniform(real a, real b, int n)’
    if ‘n >= 1’ returns a uniform partition of ‘[a,b]’ into ‘n’
    subintervals (otherwise returns a null array);

‘int find(bool[] a, int n=1)’
    returns the index of the ‘n’th ‘true’ value in the boolean array
    ‘a’ or -1 if not found.  If ‘n’ is negative, search backwards from
    the end of the array for the ‘-n’th value;

‘int[] findall(bool[] a)’
    returns the indices of all ‘true’ values in the boolean array ‘a’;

‘int search(T[] a, T key)’
    For built-in ordered types ‘T’, searches a sorted array ‘a’ of ‘n’
    elements for ‘key’, returning the index ‘i’ if ‘a[i] <= key <
    a[i+1]’, ‘-1’ if ‘key’ is less than all elements of ‘a’, or ‘n-1’
    if ‘key’ is greater than or equal to the last element of ‘a’;

‘int search(T[] a, T key, bool less(T i, T j))’
    searches an array ‘a’ for ‘key’ sorted in ascending order such that
    element ‘i’ precedes element ‘j’ if ‘less(i,j)’ is true;

‘T[] copy(T[] a)’
    returns a deep copy of the array ‘a’;

‘T[] concat(... T[][] a)’
    returns a new array formed by concatenating the given
    one-dimensional arrays given as arguments;

‘bool alias(T[] a, T[] b)’
    returns ‘true’ if the arrays ‘a’ and ‘b’ are identical;

‘T[] sort(T[] a)’
    For built-in ordered types ‘T’, returns a copy of ‘a’ sorted in
    ascending order;

‘T[][] sort(T[][] a)’
    For built-in ordered types ‘T’, returns a copy of ‘a’ with the rows
    sorted by the first column, breaking ties with successively higher
    columns.  For example:
    string[][] a={{"bob","9"},{"alice","5"},{"pete","7"},
                  {"alice","4"}};
    // Row sort (by column 0, using column 1 to break ties):
    write(sort(a));

    produces
    alice   4
    alice   5
    bob     9
    pete    7

‘T[] sort(T[] a, bool less(T i, T j), bool stable=true)’
    returns a copy of ‘a’ sorted in ascending order such that element
    ‘i’ precedes element ‘j’ if ‘less(i,j)’ is true, subject to (if
    ‘stable’ is ‘true’) the stability constraint that the original
    order of elements ‘i’ and ‘j’ is preserved if ‘less(i,j)’ and
    ‘less(j,i)’ are both ‘false’;

‘T[][] transpose(T[][] a)’
    returns the transpose of ‘a’;

‘T[][][] transpose(T[][][] a, int[] perm)’
    returns the 3D transpose of ‘a’ obtained by applying the
    permutation ‘perm’ of ‘new int[]{0,1,2}’ to the indices of each
    entry;

‘T sum(T[] a)’
    for arithmetic types ‘T’, returns the sum of ‘a’.  In the case
    where ‘T’ is ‘bool’, the number of true elements in ‘a’ is
    returned;

‘T min(T[] a)’
‘T min(T[][] a)’
‘T min(T[][][] a)’
    for built-in ordered types ‘T’, returns the minimum element of ‘a’;

‘T max(T[] a)’
‘T max(T[][] a)’
‘T max(T[][][] a)’
    for built-in ordered types ‘T’, returns the maximum element of ‘a’;

‘T[] min(T[] a, T[] b)’
    for built-in ordered types ‘T’, and arrays ‘a’ and ‘b’ of the same
    length, returns an array composed of the minimum of the
    corresponding elements of ‘a’ and ‘b’;

‘T[] max(T[] a, T[] b)’
    for built-in ordered types ‘T’, and arrays ‘a’ and ‘b’ of the same
    length, returns an array composed of the maximum of the
    corresponding elements of ‘a’ and ‘b’;

‘pair[] pairs(real[] x, real[] y);’
    for arrays ‘x’ and ‘y’ of the same length, returns the pair array
    ‘sequence(new pair(int i) {return (x[i],y[i]);},x.length)’;

‘pair[] fft(pair[] a, int sign=1)’
    returns the unnormalized Fast Fourier Transform of ‘a’ (if the
    optional ‘FFTW’ package is installed), using the given ‘sign’.
    Here is a simple example:
    int n=4;
    pair[] f=sequence(n);
    write(f);
    pair[] g=fft(f,-1);
    write();
    write(g);
    f=fft(g,1);
    write();
    write(f/n);

‘pair[][] fft(pair[][] a, int sign=1)’
    returns the unnormalized two-dimensional Fourier transform of ‘a’
    using the given ‘sign’;

‘pair[][][] fft(pair[][][] a, int sign=1)’
    returns the unnormalized three-dimensional Fourier transform of ‘a’
    using the given ‘sign’;

‘realschur schur(real[][] a)’
    returns a struct ‘realschur’ containing a unitary matrix ‘U’ and a
    quasitriangular matrix ‘T’ such that ‘a=U*T*transpose(U)’;

‘schur schur(pair[][] a)’
    returns a struct ‘schur’ containing a unitary matrix ‘U’ and a
    triangular matrix ‘T’ such that ‘a=U*T*conj(transpose(U))’;

‘real dot(real[] a, real[] b)’
    returns the dot product of the vectors ‘a’ and ‘b’;

‘pair dot(pair[] a, pair[] b)’
    returns the complex dot product ‘sum(a*conj(b))’ of the vectors ‘a’
    and ‘b’;

‘real[] tridiagonal(real[] a, real[] b, real[] c, real[] f);’
    Solve the periodic tridiagonal problem L‘x’=‘f’ and return the
    solution ‘x’, where ‘f’ is an n vector and L is the n \times n
    matrix
    [ b[0] c[0]           a[0]   ]
    [ a[1] b[1] c[1]             ]
    [      a[2] b[2] c[2]        ]
    [                ...         ]
    [ c[n-1]       a[n-1] b[n-1] ]
    For Dirichlet boundary conditions (denoted here by ‘u[-1]’ and
    ‘u[n]’), replace ‘f[0]’ by ‘f[0]-a[0]u[-1]’ and
    ‘f[n-1]-c[n-1]u[n]’; then set ‘a[0]=c[n-1]=0’;

‘real[] solve(real[][] a, real[] b, bool warn=true)’
    Solve the linear equation ‘a’x=‘b’ by LU decomposition and return
    the solution x, where ‘a’ is an n \times n matrix and ‘b’ is an
    array of length n.  For example:
    import math;
    real[][] a={{1,-2,3,0},{4,-5,6,2},{-7,-8,10,5},{1,50,1,-2}};
    real[] b={7,19,33,3};
    real[] x=solve(a,b);
    write(a); write();
    write(b); write();
    write(x); write();
    write(a*x);
    If ‘a’ is a singular matrix and ‘warn’ is ‘false’, return an empty
    array.  If the matrix ‘a’ is tridiagonal, the routine ‘tridiagonal’
    provides a more efficient algorithm (*note tridiagonal::);

‘real[][] solve(real[][] a, real[][] b, bool warn=true)’
    Solve the linear equation ‘a’x=‘b’ and return the solution x, where
    ‘a’ is an n \times n matrix and ‘b’ is an n \times m matrix.  If
    ‘a’ is a singular matrix and ‘warn’ is ‘false’, return an empty
    matrix;

‘real[][] identity(int n);’
    returns the n \times n identity matrix;

‘real[][] diagonal(... real[] a)’
    returns the diagonal matrix with diagonal entries given by a;

‘real[][] inverse(real[][] a)’
    returns the inverse of a square matrix ‘a’;

‘real[] quadraticroots(real a, real b, real c);’
    This numerically robust solver returns the real roots of the
    quadratic equation ax^2+bx+c=0, in ascending order.  Multiple roots
    are listed separately;

‘pair[] quadraticroots(explicit pair a, explicit pair b, explicit pair c);’
    This numerically robust solver returns the complex roots of the
    quadratic equation ax^2+bx+c=0;

‘real[] cubicroots(real a, real b, real c, real d);’
    This numerically robust solver returns the real roots of the cubic
    equation ax^3+bx^2+cx+d=0.  Multiple roots are listed separately.

  ‘Asymptote’ includes a full set of vectorized array instructions for
arithmetic (including self) and logical operations.  These
element-by-element instructions are implemented in C++ code for speed.
Given
real[] a={1,2};
real[] b={3,2};
then ‘a == b’ and ‘a >= 2’ both evaluate to the vector ‘{false, true}’.
To test whether all components of ‘a’ and ‘b’ agree, use the boolean
function ‘all(a == b)’.  One can also use conditionals like ‘(a >= 2) ?
a : b’, which returns the array ‘{3,2}’, or ‘write((a >= 2) ? a : null’,
which returns the array ‘{2}’.

  All of the standard built-in ‘libm’ functions of signature
‘real(real)’ also take a real array as an argument, effectively like an
implicit call to ‘map’.

  As with other built-in types, arrays of the basic data types can be
read in by assignment.  In this example, the code
file fin=input("test.txt");
real[] A=fin;

reads real values into ‘A’ until the end-of-file is reached (or an I/O
error occurs).

  The virtual member functions ‘line()’, ‘word()’, ‘csv()’,
‘dimension()’, and ‘read()’ of a file are useful for qualifying array
reads, while the virtual fields ‘line’, ‘word’, ‘csv’, and ‘dimension’
may be used to query these respective states.

  If line mode is set with ‘file line(bool b=true)’, then reading will
stop once the end of the line is reached:
file fin=input("test.txt");
real[] A=fin.line();

  Since string reads by default read up to the end of line anyway, line
mode normally has no effect on string array reads.  However, there is a
white-space delimiter mode for reading strings, ‘file word(bool
b=true)’, which causes string reads to respect white-space delimiters,
instead of the default end-of-line delimiter:
file fin=input("test.txt").line().word();
real[] A=fin;

  Another useful mode is comma-separated-value mode, ‘file csv(bool
b=true)’, which causes reads to respect comma delimiters:
file fin=input("test.txt").csv();
real[] A=fin;

  To restrict the number of values read, use the ‘file dimension(int)’
virtual member function:
file fin=input("test.txt");
real[] A=fin.dimension(10);

  This reads 10 values into A, unless end-of-file (or end-of-line in
line mode) occurs first.  Attempting to read beyond the end of the file
will produce a runtime error message.  Specifying a value of 0 for the
integer limit is equivalent to the previous example of reading until
end-of-file (or end-of-line in line mode) is encountered.

  Two- and three-dimensional arrays of the basic data types can be read
in like this:
file fin=input("test.txt");
real[][] A=fin.dimension(2,3);
real[][][] B=fin.dimension(2,3,4);

  Sometimes the array dimensions are stored with the data as integer
fields at the beginning of an array.  Such 1, 2, or 3 dimensional arrays
can be read in with the virtual member functions ‘read(1)’, ‘read(2)’,
or ‘read(3)’, respectively:
file fin=input("test.txt");
real[] A=fin.read(1);
real[][] B=fin.read(2);
real[][][] C=fin.read(3);

  One, two, and three-dimensional arrays of the basic data types can be
output with the functions ‘write(file,T[])’, ‘write(file,T[][])’,
‘write(file,T[][][])’, respectively.


File: asymptote.info,  Node: Slices,  Up: Arrays

6.13.1 Slices
-------------

Asymptote allows a section of an array to be addressed as a slice using
a Python-like syntax.  If ‘A’ is an array, the expression ‘A[m:n]’
returns a new array consisting of the elements of ‘A’ with indices from
‘m’ up to but not including ‘n’.  For example,
int[] x={0,1,2,3,4,5,6,7,8,9};
int[] y=x[2:6];  // y={2,3,4,5};
int[] z=x[5:10]; // z={5,6,7,8,9};

  If the left index is omitted, it is taken be ‘0’.  If the right index
is omitted it is taken to be the length of the array.  If both are
omitted, the slice then goes from the start of the array to the end,
producing a non-cyclic deep copy of the array.  For example:
int[] x={0,1,2,3,4,5,6,7,8,9};
int[] y=x[:4];  // y={0,1,2,3}
int[] z=x[5:];  // z={5,6,7,8,9}
int[] w=x[:];   // w={0,1,2,3,4,5,6,7,8,9}, distinct from array x.

  If A is a non-cyclic array, it is illegal to use negative values for
either of the indices.  If the indices exceed the length of the array,
however, they are politely truncated to that length.

  For cyclic arrays, the slice ‘A[m:n]’ still consists of the cells
with indices in the set [‘m’,‘n’), but now negative values and values
beyond the length of the array are allowed.  The indices simply wrap
around.  For example:

int[] x={0,1,2,3,4,5,6,7,8,9};
x.cyclic=true;
int[] y=x[8:15];  // y={8,9,0,1,2,3,4}.
int[] z=x[-5:5];  // z={5,6,7,8,9,0,1,2,3,4}
int[] w=x[-3:17]; // w={7,8,9,0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6}

  Notice that with cyclic arrays, it is possible to include the same
element of the original array multiple times within a slice.  Regardless
of the original array, arrays produced by slices are always non-cyclic.

  If the left and right indices of a slice are the same, the result is
an empty array.  If the array being sliced is empty, the result is an
empty array.  Any slice with a left index greater than its right index
will yield an error.

  Slices can also be assigned to, changing the value of the original
array.  If the array being assigned to the slice has a different length
than the slice itself, elements will be inserted or removed from the
array to accommodate it.  For instance:
string[] toppings={"mayo", "salt", "ham", "lettuce"};
toppings[0:2]=new string[] {"mustard", "pepper"};
   // Now toppings={"mustard", "pepper", "ham", "lettuce"}
toppings[2:3]=new string[] {"turkey", "bacon" };
   // Now toppings={"mustard", "pepper", "turkey", "bacon", "lettuce"}
toppings[0:3]=new string[] {"tomato"};
   // Now toppings={"tomato", "bacon", "lettuce"}

  If an array is assigned to a slice of itself, a copy of the original
array is assigned to the slice.  That is, code such as ‘x[m:n]=x’ is
equivalent to ‘x[m:n]=copy(x)’.  One can use the shorthand ‘x[m:m]=y’ to
insert the contents of the array ‘y’ into the array ‘x’ starting at the
location just before ‘x[m]’.

  For a cyclic array, a slice is bridging if it addresses cells up to
the end of the array and then continues on to address cells at the start
of the array.  For instance, if ‘A’ is a cyclic array of length 10,
‘A[8:12]’, ‘A[-3:1]’, and ‘A[5:25]’ are bridging slices whereas
‘A[3:7]’, ‘A[7:10]’, ‘A[-3:0]’ and ‘A[103:107]’ are not.  Bridging
slices can only be assigned to if the number of elements in the slice is
exactly equal to the number of elements we are assigning to it.
Otherwise, there is no clear way to decide which of the new entries
should be ‘A[0]’ and an error is reported.  Non-bridging slices may be
assigned an array of any length.

  For a cyclic array ‘A’ an expression of the form
‘A[A.length:A.length]’ is equivalent to the expression ‘A[0:0]’ and so
assigning to this slice will insert values at the start of the array.
‘A.append()’ can be used to insert values at the end of the array.

  It is illegal to assign to a slice of a cyclic array that repeats any
of the cells.


File: asymptote.info,  Node: Casts,  Next: Import,  Prev: Arrays,  Up: Programming

6.14 Casts
==========

‘Asymptote’ implicitly casts ‘int’ to ‘real’, ‘int’ to ‘pair’, ‘real’ to
‘pair’, ‘pair’ to ‘path’, ‘pair’ to ‘guide’, ‘path’ to ‘guide’, ‘guide’
to ‘path’, ‘real’ to ‘pen’, ‘pair[]’ to ‘guide[]’, ‘pair[]’ to ‘path[]’,
‘path’ to ‘path[]’, and ‘guide’ to ‘path[]’, along with various
three-dimensional casts defined in module ‘three’.  Implicit casts are
automatically attempted on assignment and when trying to match function
calls with possible function signatures.  Implicit casting can be
inhibited by declaring individual arguments ‘explicit’ in the function
signature, say to avoid an ambiguous function call in the following
example, which outputs 0:
int f(pair a) {return 0;}
int f(explicit real x) {return 1;}

write(f(0));

  Other conversions, say ‘real’ to ‘int’ or ‘real’ to ‘string’, require
an explicit cast:
int i=(int) 2.5;
string s=(string) 2.5;

real[] a={2.5,-3.5};
int[] b=(int []) a;
write(stdout,b);     // Outputs 2,-3
  In situations where casting from a string to a type ‘T’ fails, an
uninitialized variable is returned; this condition can be detected with
the function ‘bool initialized(T);’
int i=(int) "2.5";
assert(initialized(i),"Invalid cast.");

real x=(real) "2.5a";
assert(initialized(x),"Invalid cast.");

  Casting to user-defined types is also possible using ‘operator cast’:
struct rpair {
 real radius;
 real angle;
}

pair operator cast(rpair x) {
 return (x.radius*cos(x.angle),x.radius*sin(x.angle));
}

rpair x;
x.radius=1;
x.angle=pi/6;

write(x);            // Outputs (0.866025403784439,0.5)

  One must use care when defining new cast operators.  Suppose that in
some code one wants all integers to represent multiples of 100.  To
convert them to reals, one would first want to multiply them by 100.
However, the straightforward implementation
real operator cast(int x) {return x*100;}
is equivalent to an infinite recursion, since the result ‘x*100’ needs
itself to be cast from an integer to a real.  Instead, we want to use
the standard conversion of int to real:
real convert(int x) {return x*100;}
real operator cast(int x)=convert;

  Explicit casts are implemented similarly, with ‘operator ecast’.


File: asymptote.info,  Node: Import,  Next: Static,  Prev: Casts,  Up: Programming

6.15 Import
===========

While ‘Asymptote’ provides many features by default, some applications
require specialized features contained in external ‘Asymptote’ modules.
For instance, the lines
access graph;
graph.axes();
draw x and y axes on a two-dimensional graph.  Here, the command looks
up the module under the name ‘graph’ in a global dictionary of modules
and puts it in a new variable named ‘graph’.  The module is a structure,
and we can refer to its fields as we usually would with a structure.

  Often, one wants to use module functions without having to specify
the module name.  The code
from graph access axes;
adds the ‘axes’ field of ‘graph’ into the local name space, so that
subsequently, one can just write ‘axes()’.  If the given name is
overloaded, all types and variables of that name are added.  To add more
than one name, just use a comma-separated list:
from graph access axes, xaxis, yaxis;
Wild card notation can be used to add all non-private fields and types
of a module to the local name space:

from graph access *;

  Similarly, one can add the non-private fields and types of a
structure to the local environment with the ‘unravel’ keyword:
struct matrix {
 real a,b,c,d;
}

real det(matrix m) {
 unravel m;
 return a*d-b*c;
}
  Alternatively, one can unravel selective fields:
real det(matrix m) {
 from m unravel a,b,c as C,d;
 return a*d-b*C;
}

  The command
import graph;
  is a convenient abbreviation for the commands
access graph;
unravel graph;
  That is, ‘import graph’ first loads a module into a structure called
‘graph’ and then adds its non-private fields and types to the local
environment.  This way, if a member variable (or function) is
overwritten with a local variable (or function of the same signature),
the original one can still be accessed by qualifying it with the module
name.

  Wild card importing will work fine in most cases, but one does not
usually know all of the internal types and variables of a module, which
can also change as the module writer adds or changes features of the
module.  As such, it is prudent to add ‘import’ commands at the start of
an ‘Asymptote’ file, so that imported names won't shadow locally defined
functions.  Still, imported names may shadow other imported names,
depending on the order in which they were imported, and imported
functions may cause overloading resolution problems if they have the
same name as local functions defined later.

  To rename modules or fields when adding them to the local
environment, use ‘as’:
access graph as graph2d;
from graph access xaxis as xline, yaxis as yline;

  The command
import graph as graph2d;
  is a convenient abbreviation for the commands
access graph as graph2d;
unravel graph2d;

  Except for a few built-in modules, such as ‘settings’, all modules
are implemented as ‘Asymptote’ files.  When looking up a module that has
not yet been loaded, ‘Asymptote’ searches the standard search paths
(*note Search paths::) for the matching file.  The file corresponding to
that name is read and the code within it is interpreted as the body of a
structure defining the module.

  If the file name contains nonalphanumeric characters, enclose it with
quotation marks:

‘access "/usr/local/share/asymptote/graph.asy" as graph;’

‘from "/usr/local/share/asymptote/graph.asy" access axes;’

‘import "/usr/local/share/asymptote/graph.asy" as graph;’

  If ‘Asymptote’ is compiled with support for ‘libcurl’, the file name
can even be a URL: ‘import
"https://raw.githubusercontent.com/vectorgraphics/asymptote/HEAD/doc/axis3.asy"
as axis3;’

  It is an error if modules import themselves (or each other in a
cycle).  The module name to be imported must be known at compile time.

  However, you can import an ‘Asymptote’ module determined by the
string ‘s’ at runtime like this:
eval("import "+s,true);

  To conditionally execute an array of asy files, use
void asy(string format, bool overwrite ... string[] s);
  The file will only be processed, using output format ‘format’, if
overwrite is ‘true’ or the output file is missing.

  One can evaluate an ‘Asymptote’ expression (without any return value,
however) contained in the string ‘s’ with:
void eval(string s, bool embedded=false);
  It is not necessary to terminate the string ‘s’ with a semicolon.  If
‘embedded’ is ‘true’, the string will be evaluated at the top level of
the current environment.  If ‘embedded’ is ‘false’ (the default), the
string will be evaluated in an independent environment, sharing the same
‘settings’ module (*note settings::).

  One can evaluate arbitrary ‘Asymptote’ code (which may contain
unescaped quotation marks) with the command
void eval(code s, bool embedded=false);
  Here ‘code’ is a special type used with ‘quote {}’ to enclose
‘Asymptote code’ like this:
real a=1;
code s=quote {
 write(a);
};
eval(s,true);        // Outputs 1

  To include the contents of an existing file ‘graph’ verbatim (as if
the contents of the file were inserted at that point), use one of the
forms:
include graph;

‘include "/usr/local/share/asymptote/graph.asy";’

  To list all global functions and variables defined in a module named
by the contents of the string ‘s’, use the function
void list(string s, bool imports=false);
Imported global functions and variables are also listed if ‘imports’ is
‘true’.

* Menu:

* Templated imports::


File: asymptote.info,  Node: Templated imports,  Up: Import

6.15.1 Templated imports
------------------------

*Warning:* This feature is experimental: it has known issues and its
behavior may change in the future.

  In Asymptote types are specified when they are imported.  The first
executable line of any such module must be of the form ‘typedef
import(<types>)’, where ‘<types>’ is a list of required type parameters.
For instance,
typedef import(T, S, Number);
could be the first line of a module that requires three type parameters.
The remaining code in the module can then use ‘T’, ‘S’, and ‘Number’ as
types.

  To import such a module, one must specify the types to be used.  For
instance, if the module above were named ‘templatedModule’, it could be
accessed for types ‘string’, ‘int[]’, and ‘real’ with the import command
access templatedModule(T=string, S=int[], Number=real)
   as templatedModule_string_int_real;
Note that this is actually an _access_ command rather than an _import_
command, so a type, function, or variable ‘A’ defined in
‘templatedModule.asy’ would need to be accessed qualified as
‘templatedModule_string_int_real.A’.

  Alternatively, the module could be imported via a command like
from templatedModule(T=string, S=int[], Number=real) access
   Wrapper_Number as Wrapper_real,
   operator ==;
This command would automatically rename ‘Wrapper_Number’ to
‘Wrapper_real’ and would also allow the use of any ‘operator ==’
overloads defined in the module.

  Further examples can be found in the ‘tests/template’ subdirectory of
the ‘Asymptote’ source directory.

  Issues: Certain expected operators (such as ‘operator ==’) may only
be available for type arguments that are builtin or defined in module
‘plain’.


File: asymptote.info,  Node: Static,  Next: Autounravel,  Prev: Import,  Up: Programming

6.16 Static
===========

Static qualifiers allocate the memory address of a variable in a higher
enclosing level.

  For a function body, the variable is allocated in the block where the
function is defined; so in the code
struct s {
 int count() {
   static int c=0;
   ++c;
   return c;
 }
}

there is one instance of the variable ‘c’ for each object ‘s’ (as
opposed to each call of ‘count’).

  Similarly, in
int factorial(int n) {
 int helper(int k) {
   static int x=1;
   x *= k;
   return k == 1 ? x : helper(k-1);
 }
 return helper(n);
}

there is one instance of ‘x’ for every call to ‘factorial’ (and not for
every call to ‘helper’), so this is a correct, but ugly, implementation
of factorial.

  Similarly, a static variable declared within a structure is allocated
in the block where the structure is defined.  Thus,
struct A {
 struct B {
   static pair z;
 }
}

creates one object ‘z’ for each object of type ‘A’ created.

  In this example,
int pow(int n, int k) {
 struct A {
   static int x=1;
   void helper() {
     x *= n;
   }
 }
 for(int i=0; i < k; ++i) {
   A a;
   a.helper();
 }
 return A.x;
}

there is one instance of ‘x’ for each call to ‘pow’, so this is an ugly
implementation of exponentiation.

  Loop constructs allocate a new frame in every iteration.  This is so
that higher-order functions can refer to variables of a specific
iteration of a loop:
void f();
for(int i=0; i < 10; ++i) {
 int x=i;
 if(x==5) {
   f=new void() {write(x);};
 }
}
f();

  Here, every iteration of the loop has its own variable ‘x’, so ‘f()’
will write ‘5’.  If a variable in a loop is declared static, it will be
allocated where the enclosing function or structure was defined (just as
if it were declared static outside of the loop).  For instance, in:
void f() {
 static int x;
 for(int i=0; i < 10; ++i) {
   static int y;
 }
}
both ‘x’ and ‘y’ will be allocated in the same place, which is also
where ‘f’ is allocated.

  Statements may also be declared static, in which case they are run at
the place where the enclosing function or structure is defined.
Declarations or statements not enclosed in a function or structure
definition are already at the top level, so static modifiers are
meaningless.  A warning is given in such a case.

  Since structures can have static fields, it is not always clear for a
qualified name whether the qualifier is a variable or a type.  For
instance, in:

struct A {
 static int x;
}
pair A;

int y=A.x;
does the ‘A’ in ‘A.x’ refer to the structure or to the pair variable.
It is the convention in Asymptote that, if there is a non-function
variable with the same name as the qualifier, the qualifier refers to
that variable, and not to the type.  This is regardless of what fields
the variable actually possesses.


File: asymptote.info,  Node: Autounravel,  Prev: Static,  Up: Programming

6.17 Autounravel
================

The ‘autounravel’ modifier can be used to automatically unravel a field.
This is useful when building an associated library of functions that
operate on a structure.  For instance, consider a simple implementation
of the ‘rational’ structure defined in ‘rational.asy’:

struct rational {
 int p=0, q=1;
 void operator init(int p, int q) {
   this.p=p;
   this.q=q;
 }
}
rational operator +(rational a, rational b) {
 return rational(a.p*b.q+b.p*a.q, a.q*b.q);
}

  To allow ‘rational’ to be used as a type parameter for a templated
import that adds instances of ‘rational’, we should move ‘operator +’
into the body of the ‘rational’ structure and add the ‘autounravel’
modifier:

struct rational {
 int p=0, q=1;
 void operator init(int p, int q) {
   this.p=p;
   this.q=q;
 }
 autounravel rational operator +(rational a, rational b) {
   return rational(a.p*b.q+b.p*a.q, a.q*b.q);
 }
}

  This is almost equivalent to the previous code, but now the ‘+’
operator will be accessible wherever the ‘rational’ structure is.

  *Currently, types cannot be autounraveled.*  Users who encounter a
case where this might be useful can submit a feature request at
<https://github.com/vectorgraphics/asymptote/issues>.

* Menu:

* When fields are autounraveled::
* Where autounravel is legal::


File: asymptote.info,  Node: When fields are autounraveled,  Next: Where autounravel is legal,  Up: Autounravel

6.17.1 When fields are autounraveled
------------------------------------

If a ‘struct’ contains fields (including functions) that are declared
with ‘autounravel’, these fields will be unraveled from the ‘struct’ at:

  • the end of the ‘struct’ definition;
  • a ‘typedef import’ statement, if the ‘struct’ is the argument for
    one of the type parameters;
  • an ‘unravel’ or ‘access’ statement that unravels the ‘struct’ from
    a module or outer ‘struct’ (for instance, ‘from rational access
    rational;’ would make the ‘+’ operator available from the ‘struct’
    ‘rational’ defined in ‘rational.asy’);

  • A ‘typedef’ statement like ‘typedef rational.rational rat;’ that
    renames a ‘struct’.


File: asymptote.info,  Node: Where autounravel is legal,  Prev: When fields are autounraveled,  Up: Autounravel

6.17.2 Where ‘autounravel’ is legal
-----------------------------------

The ‘autounravel’ modifier implies ‘static’ and can be used in many of
the same places as ‘static’.  However, specifying ‘autounravel’ at the
top level of a module (i.e., outside of any structure or function) is an
error, whereas ‘static’ gives only a warning.  (1)  In front of a
‘struct’ definition or ‘typedef’ statement, ‘autounravel’ is forbidden
because types cannot be autounraveled.  While ‘static static’ results in
an error, ‘static autounravel’ and ‘autounravel static’ are both legal
and have exactly the same effect as ‘autounravel’ alone.

  ---------- Footnotes ----------

  (1) If top-level ‘autounravel’ were allowed, a user might incorrectly
assume that the field would be unraveled whenever the module is
‘access’ed.  The ‘static’ modifier is allowed at the top level because,
while it does nothing, it does not mislead the user.


File: asymptote.info,  Node: LaTeX usage,  Next: Base modules,  Prev: Programming,  Up: Top

7 ‘LaTeX’ usage
***************

‘Asymptote’ comes with a convenient ‘LaTeX’ style file ‘asymptote.sty’
(v1.36 or later required) that makes ‘LaTeX’ ‘Asymptote’-aware.
Entering ‘Asymptote’ code directly into the ‘LaTeX’ source file, at the
point where it is needed, keeps figures organized and avoids the need to
invent new file names for each figure.  Simply add the line
‘\usepackage{asymptote}’ at the beginning of your file and enclose your
‘Asymptote’ code within a ‘\begin{asy}...\end{asy}’ environment.  As
with the ‘LaTeX’ ‘comment’ environment, the ‘\end{asy}’ command must
appear on a line by itself, with no trailing commands/comments.  A blank
line is not allowed after ‘\begin{asy}’.

  The sample ‘LaTeX’ file below, named ‘latexusage.tex’, can be run as
follows:
latex latexusage
asy latexusage-*.asy
latex latexusage

or
pdflatex latexusage
asy latexusage-*.asy
pdflatex latexusage
To switch between using inline Asymptote code with ‘latex’ and
‘pdflatex’ you may first need to remove the files ‘latexusage-*.tex’.

  An even better method for processing a ‘LaTeX’ file with embedded
‘Asymptote’ code is to use the ‘latexmk’ utility from
    <http://mirror.ctan.org/support/latexmk/>
after putting the contents of
<https://raw.githubusercontent.com/vectorgraphics/asymptote/HEAD/doc/latexmkrc>
in a file ‘latexmkrc’ in the same directory.  The command
latexmk -pdf latexusage
will then call ‘Asymptote’ automatically, recompiling only the figures
that have changed.  Since each figure is compiled in a separate system
process, this method also tends to use less memory.  To store the
figures in a separate directory named ‘asy’, one can define
\def\asydir{asy}
  in ‘latexusage.tex’.  External ‘Asymptote’ code can be included with
\asyinclude[<options>]{<filename.asy>}
so that ‘latexmk’ will recognize when the code is changed.  Note that
‘latexmk’ requires ‘perl’, available from <https://www.perl.org/>.

  One can specify ‘width’, ‘height’, ‘keepAspect’, ‘viewportwidth’,
‘viewportheight’, ‘attach’, and ‘inline’.  ‘keyval’-style options to the
‘asy’ and ‘asyinclude’ environments.  Three-dimensional PRC files may
either be embedded within the page (the default) or attached as
annotated (but printable) attachments, using the ‘attach’ option and the
‘attachfile2’ (or older ‘attachfile’) ‘LaTeX’ package.  The ‘inline’
option generates inline ‘LaTeX’ code instead of EPS or PDF files.  This
makes 2D LaTeX symbols visible to the ‘\begin{asy}...\end{asy}’
environment.  In this mode, Asymptote correctly aligns 2D LaTeX symbols
defined outside of ‘\begin{asy}...\end{asy}’, but treats their size as
zero; an optional second string can be given to ‘Label’ to provide an
estimate of the unknown label size.

  Note that if the ‘latex’ TeX engine is used with the ‘inline’ option,
labels might not show up in DVI viewers that cannot handle raw
‘PostScript’ code.  One can use ‘dvips’/‘dvipdf’ to produce
‘PostScript’/PDF output (we recommend using the modified version of
‘dvipdf’ in the ‘Asymptote’ patches directory, which accepts the ‘dvips
-z’ hyperdvi option).

  Here now is ‘latexusage.tex’:
\documentclass[12pt]{article}

% Use this form to include EPS (latex) or PDF (pdflatex) files:
%\usepackage{asymptote}

% Use this form with latex or pdflatex to include inline LaTeX code by default:
\usepackage[inline]{asymptote}

% Use this form with latex or pdflatex to create PDF attachments by default:
%\usepackage[attach]{asymptote}

% Enable this line to support the attach option:
%\usepackage[dvips]{attachfile2}

\begin{document}

% Optional subdirectory for latex files (no spaces):
\def\asylatexdir{}
% Optional subdirectory for asy files (no spaces):
\def\asydir{}

\begin{asydef}
// Global Asymptote definitions can be put here.
settings.prc=true;
import three;
usepackage("bm");
texpreamble("\def\V#1{\bm{#1}}");
// One can globally override the default toolbar settings here:
// settings.toolbar=true;
\end{asydef}

Here is a venn diagram produced with Asymptote, drawn to width 4cm:

\def\A{A}
\def\B{\V{B}}

%\begin{figure}
\begin{center}
\begin{asy}
size(4cm,0);
pen colour1=red;
pen colour2=green;

pair z0=(0,0);
pair z1=(-1,0);
pair z2=(1,0);
real r=1.5;
path c1=circle(z1,r);
path c2=circle(z2,r);
fill(c1,colour1);
fill(c2,colour2);

picture intersection=new picture;
fill(intersection,c1,colour1+colour2);
clip(intersection,c2);

add(intersection);

draw(c1);
draw(c2);

//draw("$\A$",box,z1);              // Requires [inline] package option.
//draw(Label("$\B$","$B$"),box,z2); // Requires [inline] package option.
draw("$A$",box,z1);
draw("$\V{B}$",box,z2);

pair z=(0,-2);
real m=3;
margin BigMargin=Margin(0,m*dot(unit(z1-z),unit(z0-z)));

draw(Label("$A\cap B$",0),conj(z)--z0,Arrow,BigMargin);
draw(Label("$A\cup B$",0),z--z0,Arrow,BigMargin);
draw(z--z1,Arrow,Margin(0,m));
draw(z--z2,Arrow,Margin(0,m));

shipout(bbox(0.25cm));
\end{asy}
%\caption{Venn diagram}\label{venn}
\end{center}
%\end{figure}

Each graph is drawn in its own environment. One can specify the width
and height to \LaTeX\ explicitly. This 3D example can be viewed
interactively either with Adobe Reader or Asymptote's fast OpenGL-based
renderer. To support {\tt latexmk}, 3D figures should specify
\verb+inline=true+. It is sometimes desirable to embed 3D files as annotated
attachments; this requires the \verb+attach=true+ option as well as the
\verb+attachfile2+ \LaTeX\ package.
\begin{center}
\begin{asy}[height=4cm,inline=true,attach=false,viewportwidth=\linewidth]
currentprojection=orthographic(5,4,2);
draw(unitcube,blue);
label("$V-E+F=2$",(0,1,0.5),3Y,blue+fontsize(17pt));
\end{asy}
\end{center}

One can also scale the figure to the full line width:
\begin{center}
\begin{asy}[width=\the\linewidth,inline=true]
pair z0=(0,0);
pair z1=(2,0);
pair z2=(5,0);
pair zf=z1+0.75*(z2-z1);

draw(z1--z2);
dot(z1,red+0.15cm);
dot(z2,darkgreen+0.3cm);
label("$m$",z1,1.2N,red);
label("$M$",z2,1.5N,darkgreen);
label("$\hat{\ }$",zf,0.2*S,fontsize(24pt)+blue);

pair s=-0.2*I;
draw("$x$",z0+s--z1+s,N,red,Arrows,Bars,PenMargins);
s=-0.5*I;
draw("$\bar{x}$",z0+s--zf+s,blue,Arrows,Bars,PenMargins);
s=-0.95*I;
draw("$X$",z0+s--z2+s,darkgreen,Arrows,Bars,PenMargins);
\end{asy}
\end{center}
\end{document}
[./latexusage]


File: asymptote.info,  Node: Base modules,  Next: Options,  Prev: LaTeX usage,  Up: Top

8 Base modules
**************

‘Asymptote’ currently ships with the following base modules:

* Menu:

* plain::                       Default ‘Asymptote’ base file
* simplex::                     Linear programming: simplex method
* simplex2::                    Two-variable simplex method
* math::                        Extend ‘Asymptote’'s math capabilities
* interpolate::                 Interpolation routines
* geometry::                    Geometry routines
* trembling::                   Wavy lines
* stats::                       Statistics routines and histograms
* patterns::                    Custom fill and draw patterns
* markers::                     Custom path marker routines
* map::                         Map keys to values
* tree::                        Dynamic binary search tree
* binarytree::                  Binary tree drawing module
* drawtree::                    Tree drawing module
* syzygy::                      Syzygy and braid drawing module
* feynman::                     Feynman diagrams
* roundedpath::                 Round the sharp corners of paths
* animation::                   Embedded PDF and MPEG movies
* embed::                       Embedding movies, sounds, and 3D objects
* slide::                       Making presentations with ‘Asymptote’
* MetaPost::                    ‘MetaPost’ compatibility routines
* babel::                       Interface to ‘LaTeX’ ‘babel’ package
* labelpath::                   Drawing curved labels
* labelpath3::                  Drawing curved labels in 3D
* annotate::                    Annotate your PDF files
* CAD::                         2D CAD pen and measurement functions (DIN 15)
* graph::                       2D linear & logarithmic graphs
* palette::                     Color density images and palettes
* three::                       3D vector graphics
* obj::                         3D obj files
* graph3::                      3D linear & logarithmic graphs
* grid3::                       3D grids
* solids::                      3D solid geometry
* tube::                        3D rotation minimizing tubes
* flowchart::                   Flowchart drawing routines
* contour::                     Contour lines
* contour3::                    Contour surfaces
* smoothcontour3::              Smooth implicit surfaces
* slopefield::                  Slope fields
* ode::                         Ordinary differential equations


File: asymptote.info,  Node: plain,  Next: simplex,  Up: Base modules

8.1 ‘plain’
===========

This is the default ‘Asymptote’ base file drawing language (such as the
‘picture’ structure).

  By default, an implicit ‘private import plain;’ occurs before
translating a file and before the first command given in interactive
mode.  This also applies when translating files for module definitions
(except when translating ‘plain’, of course).  This means that the types
and functions defined in ‘plain’ are accessible in almost all
‘Asymptote’ code.  Use the ‘-noautoplain’ command-line option to disable
this feature.


File: asymptote.info,  Node: simplex,  Next: simplex2,  Prev: plain,  Up: Base modules

8.2 ‘simplex’
=============

This module solves the general linear programming problem using the
simplex method.


File: asymptote.info,  Node: simplex2,  Next: math,  Prev: simplex,  Up: Base modules

8.3 ‘simplex2’
==============

This module solves a special case of the two-variable linear programming
problem used by the module ‘plain’ for automatic sizing of pictures
(*note deferred drawing::).


File: asymptote.info,  Node: math,  Next: interpolate,  Prev: simplex2,  Up: Base modules

8.4 ‘math’
==========

This module extends ‘Asymptote’'s mathematical capabilities with useful
functions such as

‘void drawline(picture pic=currentpicture’
    draw the visible portion of the (infinite) line going through ‘P’
    and ‘Q’, without altering the size of picture ‘pic’, using pen ‘p’.

‘real intersect(triple P, triple Q, triple n, triple Z);’
    returns the intersection time of the extension of the line segment
    ‘PQ’ with the plane perpendicular to ‘n’ and passing through ‘Z’.

‘triple intersectionpoint(triple n0, triple P0, triple n1, triple P1);’
    Return any point on the intersection of the two planes with normals
    ‘n0’ and ‘n1’ passing through points ‘P0’ and ‘P1’, respectively.
    If the planes are parallel, return ‘(infinity,infinity,infinity)’.

‘pair[] quarticroots(real a, real b, real c, real d, real e);’
    returns the four complex roots of the quartic equation
    ax^4+bx^3+cx^2+dx+e=0.

‘real time(path g, real x, int n=0, real fuzz=-1)’
    returns the ‘n’th intersection time of path ‘g’ with the vertical
    line through x.

‘real time(path g, explicit pair z, int n=0, real fuzz=-1)’
    returns the ‘n’th intersection time of path ‘g’ with the horizontal
    line through ‘(0,z.y)’.

‘real value(path g, real x, int n=0, real fuzz=-1)’
    returns the ‘n’th ‘y’ value of ‘g’ at ‘x’.

‘real value(path g, explicit pair z, int n=0, real fuzz=-1)’
    returns the ‘n’th ‘x’ value of ‘g’ at ‘y=z.y’.

‘real slope(path g, real x, int n=0, real fuzz=-1)’
    returns the ‘n’th slope of ‘g’ at ‘x’.

‘real slope(path g, explicit pair z, int n=0, real fuzz=-1)’
    returns the ‘n’th slope of ‘g’ at ‘y=z.y’.

    int[][] segment(bool[] b) returns the indices of consecutive
    true-element segments of bool[] ‘b’.

‘real[] partialsum(real[] a)’
    returns the partial sums of a real array ‘a’.

‘real[] partialsum(real[] a, real[] dx)’
    returns the partial ‘dx’-weighted sums of a real array ‘a’.

‘bool increasing(real[] a, bool strict=false)’
    returns, if ‘strict=false’, whether ‘i > j’ implies ‘a[i] >= a[j]’,
    or if ‘strict=true’, whether ‘i > j’ implies implies ‘a[i] > a[j]’.

‘int unique(real[] a, real x)’
    if the sorted array ‘a’ does not contain ‘x’, insert it
    sequentially, returning the index of ‘x’ in the resulting array.

‘bool lexorder(pair a, pair b)’
    returns the strict lexicographical partial order of ‘a’ and ‘b’.

‘bool lexorder(triple a, triple b)’
    returns the strict lexicographical partial order of ‘a’ and ‘b’.


File: asymptote.info,  Node: interpolate,  Next: geometry,  Prev: math,  Up: Base modules

8.5 ‘interpolate’
=================

This module implements Lagrange, Hermite, and standard cubic spline
interpolation in ‘Asymptote’, as illustrated in the example
‘interpolate1.asy’.


File: asymptote.info,  Node: geometry,  Next: trembling,  Prev: interpolate,  Up: Base modules

8.6 ‘geometry’
==============

This module, written by Philippe Ivaldi, provides an extensive set of
geometry routines, including ‘perpendicular’ symbols and a ‘triangle’
structure.  Link to the documentation for the ‘geometry’ module are
posted here: <https://asymptote.sourceforge.io/links.html>, including an
extensive set of examples,
<https://web.archive.org/web/20201130113133/http://www.piprime.fr/files/asymptote/geometry/>,
and an index:
    <https://web.archive.org/web/20201130113133/http://www.piprime.fr/files/asymptote/geometry/modules/geometry.asy.index.type.html>


File: asymptote.info,  Node: trembling,  Next: stats,  Prev: geometry,  Up: Base modules

8.7 ‘trembling’
===============

This module, written by Philippe Ivaldi and illustrated in the example
‘floatingdisk.asy’, allows one to draw wavy lines, as if drawn by hand.


File: asymptote.info,  Node: stats,  Next: patterns,  Prev: trembling,  Up: Base modules

8.8 ‘stats’
===========

This module implements a Gaussian random number generator and a
collection of statistics routines, including ‘histogram’ and
‘leastsquares’.


File: asymptote.info,  Node: patterns,  Next: markers,  Prev: stats,  Up: Base modules

8.9 ‘patterns’
==============

This module implements ‘PostScript’ tiling patterns and includes several
convenient pattern generation routines.


File: asymptote.info,  Node: markers,  Next: map,  Prev: patterns,  Up: Base modules

8.10 ‘markers’
==============

This module implements specialized routines for marking paths and
angles.  The principal mark routine provided by this module is
markroutine markinterval(int n=1, frame f, bool rotated=false);
which centers ‘n’ copies of frame ‘f’ within uniformly space intervals
in arclength along the path, optionally rotated by the angle of the
local tangent.

  The ‘marker’ (*note marker::) routine can be used to construct new
markers from these predefined frames:

frame stickframe(int n=1, real size=0, pair space=0, real angle=0,
                pair offset=0, pen p=currentpen);
frame circlebarframe(int n=1, real barsize=0,
                    real radius=0,real angle=0,
                    pair offset=0, pen p=currentpen,
                    filltype filltype=NoFill, bool above=false);
frame crossframe(int n=3, real size=0, pair space=0,
                real angle=0, pair offset=0, pen p=currentpen);
frame tildeframe(int n=1, real size=0, pair space=0,
                real angle=0, pair offset=0, pen p=currentpen);

  For convenience, this module also constructs the markers
‘StickIntervalMarker’, ‘CrossIntervalMarker’, ‘CircleBarIntervalMarker’,
and ‘TildeIntervalMarker’ from the above frames.  The example
‘markers1.asy’ illustrates the use of these markers:


                            [./markers1]

  This module also provides a routine for marking an angle AOB:
void markangle(picture pic=currentpicture, Label L="",
              int n=1, real radius=0, real space=0,
              pair A, pair O, pair B, arrowbar arrow=None,
              pen p=currentpen, margin margin=NoMargin,
              marker marker=nomarker);
as illustrated in the example ‘markers2.asy’.


                            [./markers2]


File: asymptote.info,  Node: map,  Next: tree,  Prev: markers,  Up: Base modules

8.11 ‘map’
==========

This module creates a struct parameterized by the types specified in
strings ‘key’ and ‘value’, mapping keys to values with a specified
default:
from map(Key=string, Value=int) access map;

map M=map(Default=-1);

M.add("z",2);
M.add("a",3);
M.add("d",4);
write(M.lookup("a"));
write(M.lookup("y"));


File: asymptote.info,  Node: tree,  Next: binarytree,  Prev: map,  Up: Base modules

8.12 ‘tree’
===========

This module implements an example of a dynamic binary search tree.


File: asymptote.info,  Node: binarytree,  Next: drawtree,  Prev: tree,  Up: Base modules

8.13 ‘binarytree’
=================

This module can be used to draw an arbitrary binary tree and includes an
input routine for the special case of a binary search tree, as
illustrated in the example ‘binarytreetest.asy’:
import binarytree;

picture pic,pic2;

binarytree bt=binarytree(1,2,4,nil,5,nil,nil,0,nil,nil,3,6,nil,nil,7);
draw(pic,bt,condensed=false);

binarytree st=searchtree(10,5,2,1,3,4,7,6,8,9,15,13,12,11,14,17,16,18,19);
draw(pic2,st,blue,condensed=true);

add(pic.fit(),(0,0),10N);
add(pic2.fit(),(0,0),10S);


                         [./binarytreetest]


File: asymptote.info,  Node: drawtree,  Next: syzygy,  Prev: binarytree,  Up: Base modules

8.14 ‘drawtree’
===============

This is a simple tree drawing module used by the example ‘treetest.asy’.


File: asymptote.info,  Node: syzygy,  Next: feynman,  Prev: drawtree,  Up: Base modules

8.15 ‘syzygy’
=============

This module automates the drawing of braids, relations, and syzygies,
along with the corresponding equations, as illustrated in the example
‘knots.asy’.


File: asymptote.info,  Node: feynman,  Next: roundedpath,  Prev: syzygy,  Up: Base modules

8.16 ‘feynman’
==============

This module, contributed by Martin Wiebusch, is useful for drawing
Feynman diagrams, as illustrated by the examples ‘eetomumu.asy’ and
‘fermi.asy’.


File: asymptote.info,  Node: roundedpath,  Next: animation,  Prev: feynman,  Up: Base modules

8.17 ‘roundedpath’
==================

This module, contributed by Stefan Knorr, is useful for rounding the
sharp corners of paths, as illustrated in the example file
‘roundpath.asy’.


File: asymptote.info,  Node: animation,  Next: embed,  Prev: roundedpath,  Up: Base modules

8.18 ‘animation’
================

This module allows one to generate animations, as illustrated by the
files ‘wheel.asy’, ‘wavepacket.asy’, and ‘cube.asy’ in the ‘animations’
subdirectory of the examples directory.  These animations use the
‘ImageMagick’ ‘magick’ program to merge multiple images into a GIF or
MPEG movie.

  The related ‘animate’ module, derived from the ‘animation’ module,
generates higher-quality portable clickable PDF movies, with optional
controls.  This requires installing the module
    <http://mirror.ctan.org/macros/latex/contrib/animate/animate.sty>
(version 2007/11/30 or later) in a new directory ‘animate’ in the local
‘LaTeX’ directory (for example, in
‘/usr/local/share/texmf/tex/latex/animate’).  On ‘UNIX’ systems, one
must then execute the command ‘texhash’.

  The example ‘pdfmovie.asy’ in the ‘animations’ directory, along with
the slide presentations ‘slidemovies.asy’ and ‘intro’, illustrate the
use of embedded PDF movies.  The examples ‘inlinemovie.tex’ and
‘inlinemovie3.tex’ show how to generate and embed PDF movies directly
within a ‘LaTeX’ file (*note LaTeX usage::).  The member function
string pdf(fit fit=NoBox, real delay=animationdelay, string options="",
          bool keep=settings.keep, bool multipage=true);
of the ‘animate’ structure accepts any of the ‘animate.sty’ options, as
described here:
    <http://mirror.ctan.org/macros/latex/contrib/animate/doc/animate.pdf>


File: asymptote.info,  Node: embed,  Next: slide,  Prev: animation,  Up: Base modules

8.19 ‘embed’
============

This module provides an interface to the ‘LaTeX’ package (included with
‘MikTeX’)
    <http://mirror.ctan.org/macros/latex/contrib/media9>
for embedding movies, sounds, and 3D objects into a PDF document.

  A more portable method for embedding movie files, which should work
on any platform and does not require the ‘media9’ package, is provided
by using the ‘external’ module instead of ‘embed’.

  Examples of the above two interfaces is provided in the file
‘embeddedmovie.asy’ in the ‘animations’ subdirectory of the examples
directory and in ‘externalmovie.asy’.  For a higher quality embedded
movie generated directly by ‘Asymptote’, use the ‘animate’ module along
with the ‘animate.sty’ package to embed a portable PDF animation (*note
animate::).

  An example of embedding ‘U3D’ code is provided in the file
‘embeddedu3d’.


File: asymptote.info,  Node: slide,  Next: MetaPost,  Prev: embed,  Up: Base modules

8.20 ‘slide’
============

This module provides a simple yet high-quality facility for making
presentation slides, including portable embedded PDF animations (see the
file ‘slidemovies.asy’).  A simple example is provided in
‘slidedemo.asy’.


File: asymptote.info,  Node: MetaPost,  Next: babel,  Prev: slide,  Up: Base modules

8.21 ‘MetaPost’
===============

This module provides some useful routines to help ‘MetaPost’ users
migrate old ‘MetaPost’ code to ‘Asymptote’.  Further contributions here
are welcome.

  Unlike ‘MetaPost’, ‘Asymptote’ does not implicitly solve linear
equations and therefore does not have the notion of a ‘whatever’
unknown.  The routine ‘extension’ (*note extension::) provides a useful
replacement for a common use of ‘whatever’: finding the intersection
point of the lines through ‘P’, ‘Q’ and ‘p’, ‘q’.  For less common
occurrences of ‘whatever’, one can use the built-in explicit linear
equation solver ‘solve’ instead.


File: asymptote.info,  Node: babel,  Next: labelpath,  Prev: MetaPost,  Up: Base modules

8.22 ‘babel’
============

This module implements the ‘LaTeX’ ‘babel’ package in ‘Asymptote’.  For
example:
import babel;
babel("german");


File: asymptote.info,  Node: labelpath,  Next: labelpath3,  Prev: babel,  Up: Base modules

8.23 ‘labelpath’
================

This module uses the ‘PSTricks’ ‘pstextpath’ macro to fit labels along a
path (properly kerned, as illustrated in the example file
‘curvedlabel.asy’), using the command
void labelpath(picture pic=currentpicture, Label L, path g,
              string justify=Centered, pen p=currentpen);
Here ‘justify’ is one of ‘LeftJustified’, ‘Centered’, or
‘RightJustified’.  The x component of a shift transform applied to the
Label is interpreted as a shift along the curve, whereas the y component
is interpreted as a shift away from the curve.  All other Label
transforms are ignored.  This module requires the ‘latex’ tex engine and
inherits the limitations of the ‘PSTricks’ ‘\pstextpath’ macro.


File: asymptote.info,  Node: labelpath3,  Next: annotate,  Prev: labelpath,  Up: Base modules

8.24 ‘labelpath3’
=================

This module, contributed by Jens Schwaiger, implements a 3D version of
‘labelpath’ that does not require the ‘PSTricks’ package.  An example is
provided in ‘curvedlabel3.asy’.


File: asymptote.info,  Node: annotate,  Next: CAD,  Prev: labelpath3,  Up: Base modules

8.25 ‘annotate’
===============

This module supports PDF annotations for viewing with ‘Adobe Reader’,
via the function
void annotate(picture pic=currentpicture, string title, string text,
             pair position);
Annotations are illustrated in the example file ‘annotation.asy’.
Currently, annotations are only implemented for the ‘latex’ (default)
and ‘tex’ TeX engines.


File: asymptote.info,  Node: CAD,  Next: graph,  Prev: annotate,  Up: Base modules

8.26 ‘CAD’
==========

This module, contributed by Mark Henning, provides basic pen definitions
and measurement functions for simple 2D CAD drawings according to DIN
15.  It is documented separately, in the file ‘CAD.pdf’.


File: asymptote.info,  Node: graph,  Next: palette,  Prev: CAD,  Up: Base modules

8.27 ‘graph’
============

This module implements two-dimensional linear and logarithmic graphs,
including automatic scale and tick selection (with the ability to
override manually).  A graph is a ‘guide’ (that can be drawn with the
draw command, with an optional legend) constructed with one of the
following routines:

  • guide graph(picture pic=currentpicture, real f(real), real a, real b,
                int n=ngraph, real T(real)=identity,
                interpolate join=operator --);
    guide[] graph(picture pic=currentpicture, real f(real), real a, real b,
                 int n=ngraph, real T(real)=identity, bool3 cond(real),
                 interpolate join=operator --);

    Returns a graph using the scaling information for picture ‘pic’
    (*note automatic scaling::) of the function ‘f’ on the interval
    [‘T’(‘a’),‘T’(‘b’)], sampling at ‘n’ points evenly spaced in
    [‘a’,‘b’], optionally restricted by the bool3 function ‘cond’ on
    [‘a’,‘b’].  If ‘cond’ is:
       • ‘true’, the point is added to the existing guide;
       • ‘default’, the point is added to a new guide;
       • ‘false’, the point is omitted and a new guide is begun.
    The points are connected using the interpolation specified by
    ‘join’:

       • ‘operator --’ (linear interpolation; the abbreviation
         ‘Straight’ is also accepted);

       • ‘operator ..’ (piecewise Bezier cubic spline interpolation;
         the abbreviation ‘Spline’ is also accepted);

       • ‘linear’ (linear interpolation),
       • ‘Hermite’ (standard cubic spline interpolation using boundary
         condition ‘notaknot’, ‘natural’, ‘periodic’, ‘clamped(real
         slopea, real slopeb)’), or ‘monotonic’.  The abbreviation
         ‘Hermite’ is equivalent to ‘Hermite(notaknot)’ for nonperiodic
         data and ‘Hermite(periodic)’ for periodic data).

  • guide graph(picture pic=currentpicture, real x(real), real y(real),
                real a, real b, int n=ngraph, real T(real)=identity,
                interpolate join=operator --);
    guide[] graph(picture pic=currentpicture, real x(real), real y(real),
                  real a, real b, int n=ngraph, real T(real)=identity,
                  bool3 cond(real), interpolate join=operator --);

    Returns a graph using the scaling information for picture ‘pic’ of
    the parametrized function (‘x’(t),‘y’(t)) for t in the interval
    [‘T’(‘a’),‘T’(‘b’)], sampling at ‘n’ points evenly spaced in
    [‘a’,‘b’], optionally restricted by the bool3 function ‘cond’ on
    [‘a’,‘b’], using the given interpolation type.

  • guide graph(picture pic=currentpicture, pair z(real), real a, real b,
                int n=ngraph, real T(real)=identity,
                interpolate join=operator --);
    guide[] graph(picture pic=currentpicture, pair z(real), real a, real b,
                  int n=ngraph, real T(real)=identity, bool3 cond(real),
                  interpolate join=operator --);

    Returns a graph using the scaling information for picture ‘pic’ of
    the parametrized function ‘z’(t) for t in the interval
    [‘T’(‘a’),‘T’(‘b’)], sampling at ‘n’ points evenly spaced in
    [‘a’,‘b’], optionally restricted by the bool3 function ‘cond’ on
    [‘a’,‘b’], using the given interpolation type.

  • guide graph(picture pic=currentpicture, pair[] z,
                interpolate join=operator --);
    guide[] graph(picture pic=currentpicture, pair[] z, bool3[] cond,
                  interpolate join=operator --);

    Returns a graph using the scaling information for picture ‘pic’ of
    the elements of the array ‘z’, optionally restricted to those
    indices for which the elements of the boolean array ‘cond’ are
    ‘true’, using the given interpolation type.

  • guide graph(picture pic=currentpicture, real[] x, real[] y,
                interpolate join=operator --);
    guide[] graph(picture pic=currentpicture, real[] x, real[] y,
                  bool3[] cond, interpolate join=operator --);

    Returns a graph using the scaling information for picture ‘pic’ of
    the elements of the arrays (‘x’,‘y’), optionally restricted to
    those indices for which the elements of the boolean array ‘cond’
    are ‘true’, using the given interpolation type.

  • guide polargraph(picture pic=currentpicture, real f(real), real a,
                     real b, int n=ngraph, interpolate join=operator --);

    Returns a polar-coordinate graph using the scaling information for
    picture ‘pic’ of the function ‘f’ on the interval [‘a’,‘b’],
    sampling at ‘n’ evenly spaced points, with the given interpolation
    type.

  • guide polargraph(picture pic=currentpicture, real[] r, real[] theta,
                     interpolate join=operator--);
    Returns a polar-coordinate graph using the scaling information for
    picture ‘pic’ of the elements of the arrays (‘r’,‘theta’), using
    the given interpolation type.



  An axis can be drawn on a picture with one of the following commands:

  • void xaxis(picture pic=currentpicture, Label L="", axis axis=YZero,
               real xmin=-infinity, real xmax=infinity, pen p=currentpen,
               ticks ticks=NoTicks, arrowbar arrow=None, bool above=false);

    Draw an x axis on picture ‘pic’ from x=‘xmin’ to x=‘xmax’ using pen
    ‘p’, optionally labelling it with Label ‘L’.  The relative label
    location along the axis (a real number from [0,1]) defaults to 1
    (*note Label::), so that the label is drawn at the end of the axis.
    An infinite value of ‘xmin’ or ‘xmax’ specifies that the
    corresponding axis limit will be automatically determined from the
    picture limits.  The optional ‘arrow’ argument takes the same
    values as in the ‘draw’ command (*note arrows::).  The axis is
    drawn before any existing objects in ‘pic’ unless ‘above=true’.
    The axis placement is determined by one of the following ‘axis’
    types:

    ‘YZero(bool extend=true)’
         Request an x axis at y=0 (or y=1 on a logarithmic axis)
         extending to the full dimensions of the picture, unless
         ‘extend’=false.

    ‘YEquals(real Y, bool extend=true)’
         Request an x axis at y=‘Y’ extending to the full dimensions of
         the picture, unless ‘extend’=false.

    ‘Bottom(bool extend=false)’
         Request a bottom axis.

    ‘Top(bool extend=false)’
         Request a top axis.

    ‘BottomTop(bool extend=false)’
         Request a bottom and top axis.

    Custom axis types can be created by following the examples in the
    module ‘graph.asy’.  One can easily override the default values for
    the standard axis types:
    import graph;

    YZero=new axis(bool extend=true) {
      return new void(picture pic, axisT axis) {
        real y=pic.scale.x.scale.logarithmic ? 1 : 0;
        axis.value=I*pic.scale.y.T(y);
        axis.position=1;
        axis.side=right;
        axis.align=2.5E;
        axis.value2=Infinity;
        axis.extend=extend;
      };
    };
    YZero=YZero();


    The default tick option is ‘NoTicks’.  The options ‘LeftTicks’,
    ‘RightTicks’, or ‘Ticks’ can be used to draw ticks on the left,
    right, or both sides of the path, relative to the direction in
    which the path is drawn.  These tick routines accept a number of
    optional arguments:
    ticks LeftTicks(Label format="", ticklabel ticklabel=null,
                    bool beginlabel=true, bool endlabel=true,
                    int N=0, int n=0, real Step=0, real step=0,
                    bool begin=true, bool end=true, tickmodifier modify=None,
                    real Size=0, real size=0, bool extend=false,
                    pen pTick=nullpen, pen ptick=nullpen);

    If any of these parameters are omitted, reasonable defaults will be
    chosen:
    ‘Label format’
         override the default tick label format (‘defaultformat’,
         initially "$%.4g$"), rotation, pen, and alignment (for
         example, ‘LeftSide’, ‘Center’, or ‘RightSide’) relative to the
         axis.  To enable ‘LaTeX’ math mode fonts, the format string
         should begin and end with ‘$’ *note format::.  If the format
         string is ‘trailingzero’, trailing zeros will be added to the
         tick labels; if the format string is ‘"%"’, the tick label
         will be suppressed;
    ‘ticklabel’
         is a function ‘string(real x)’ returning the label (by
         default, format(format.s,x)) for each major tick value ‘x’;
    ‘bool beginlabel’
         include the first label;
    ‘bool endlabel’
         include the last label;
    ‘int N’
         when automatic scaling is enabled (the default; *note
         automatic scaling::), divide a linear axis evenly into this
         many intervals, separated by major ticks; for a logarithmic
         axis, this is the number of decades between labelled ticks;
    ‘int n’
         divide each interval into this many subintervals, separated by
         minor ticks;
    ‘real Step’
         the tick value spacing between major ticks (if ‘N’=‘0’);
    ‘real step’
         the tick value spacing between minor ticks (if ‘n’=‘0’);
    ‘bool begin’
         include the first major tick;
    ‘bool end’
         include the last major tick;
    ‘tickmodifier modify;’
         an optional function that takes and returns a ‘tickvalue’
         structure having real[] members ‘major’ and ‘minor’ consisting
         of the tick values (to allow modification of the automatically
         generated tick values);
    ‘real Size’
         the size of the major ticks (in ‘PostScript’ coordinates);
    ‘real size’
         the size of the minor ticks (in ‘PostScript’ coordinates);
    ‘bool extend;’
         extend the ticks between two axes (useful for drawing a grid
         on the graph);
    ‘pen pTick’
         an optional pen used to draw the major ticks;
    ‘pen ptick’
         an optional pen used to draw the minor ticks.

    For convenience, the predefined tickmodifiers ‘OmitTick(... real[]
    x)’, ‘OmitTickInterval(real a, real b)’, and
    ‘OmitTickIntervals(real[] a, real[] b)’ can be used to remove
    specific auto-generated ticks and their labels.  The
    ‘OmitFormat(string s=defaultformat ... real[] x)’ ticklabel can be
    used to remove specific tick labels but not the corresponding
    ticks.  The tickmodifier ‘NoZero’ is an abbreviation for
    ‘OmitTick(0)’ and the ticklabel ‘NoZeroFormat’ is an abbrevation
    for ‘OmitFormat(0)’.

    It is also possible to specify custom tick locations with
    ‘LeftTicks’, ‘RightTicks’, and ‘Ticks’ by passing explicit real
    arrays ‘Ticks’ and (optionally) ‘ticks’ containing the locations of
    the major and minor ticks, respectively:
    ticks LeftTicks(Label format="", ticklabel ticklabel=null,
                    bool beginlabel=true, bool endlabel=true,
                    real[] Ticks, real[] ticks=new real[],
                    real Size=0, real size=0, bool extend=false,
                    pen pTick=nullpen, pen ptick=nullpen)

  • void yaxis(picture pic=currentpicture, Label L="", axis axis=XZero,
               real ymin=-infinity, real ymax=infinity, pen p=currentpen,
               ticks ticks=NoTicks, arrowbar arrow=None, bool above=false,
               bool autorotate=true);

    Draw a y axis on picture ‘pic’ from y=‘ymin’ to y=‘ymax’ using pen
    ‘p’, optionally labelling it with a Label ‘L’ that is autorotated
    unless ‘autorotate=false’.  The relative location of the label (a
    real number from [0,1]) defaults to 1 (*note Label::).  An infinite
    value of ‘ymin’ or ‘ymax’ specifies that the corresponding axis
    limit will be automatically determined from the picture limits.
    The optional ‘arrow’ argument takes the same values as in the
    ‘draw’ command (*note arrows::).  The axis is drawn before any
    existing objects in ‘pic’ unless ‘above=true’.  The tick type is
    specified by ‘ticks’ and the axis placement is determined by one of
    the following ‘axis’ types:

    ‘XZero(bool extend=true)’
         Request a y axis at x=0 (or x=1 on a logarithmic axis)
         extending to the full dimensions of the picture, unless
         ‘extend’=false.

    ‘XEquals(real X, bool extend=true)’
         Request a y axis at x=‘X’ extending to the full dimensions of
         the picture, unless ‘extend’=false.

    ‘Left(bool extend=false)’
         Request a left axis.

    ‘Right(bool extend=false)’
         Request a right axis.

    ‘LeftRight(bool extend=false)’
         Request a left and right axis.

  • For convenience, the functions
    void xequals(picture pic=currentpicture, Label L="", real x,
                 bool extend=false, real ymin=-infinity, real ymax=infinity,
                 pen p=currentpen, ticks ticks=NoTicks, bool above=true,
                 arrowbar arrow=None);
    and
    void yequals(picture pic=currentpicture, Label L="", real y,
                 bool extend=false, real xmin=-infinity, real xmax=infinity,
                 pen p=currentpen, ticks ticks=NoTicks, bool above=true,
                 arrowbar arrow=None);
    can be respectively used to call ‘yaxis’ and ‘xaxis’ with the
    appropriate axis types ‘XEquals(x,extend)’ and ‘YEquals(y,extend)’.
    This is the recommended way of drawing vertical or horizontal lines
    and axes at arbitrary locations.

  • void axes(picture pic=currentpicture, Label xlabel="", Label ylabel="",
              bool extend=true,
              pair min=(-infinity,-infinity), pair max=(infinity,infinity),
              pen p=currentpen, arrowbar arrow=None, bool above=false);
    This convenience routine draws both x and y axes on picture ‘pic’
    from ‘min’ to ‘max’, with optional labels ‘xlabel’ and ‘ylabel’ and
    any arrows specified by ‘arrow’.  The axes are drawn on top of
    existing objects in ‘pic’ only if ‘above=true’.

  • void axis(picture pic=currentpicture, Label L="", path g,
              pen p=currentpen, ticks ticks, ticklocate locate,
              arrowbar arrow=None, int[] divisor=new int[],
              bool above=false, bool opposite=false);

    This routine can be used to draw on picture ‘pic’ a general axis
    based on an arbitrary path ‘g’, using pen ‘p’.  One can optionally
    label the axis with Label ‘L’ and add an arrow ‘arrow’.  The tick
    type is given by ‘ticks’.  The optional integer array ‘divisor’
    specifies what tick divisors to try in the attempt to produce
    uncrowded tick labels.  A ‘true’ value for the flag ‘opposite’
    identifies an unlabelled secondary axis (typically drawn opposite a
    primary axis).  The axis is drawn before any existing objects in
    ‘pic’ unless ‘above=true’.  The tick locator ‘ticklocate’ is
    constructed by the routine
    ticklocate ticklocate(real a, real b, autoscaleT S=defaultS,
                          real tickmin=-infinity, real tickmax=infinity,
                          real time(real)=null, pair dir(real)=zero);
    where ‘a’ and ‘b’ specify the respective tick values at
    ‘point(g,0)’ and ‘point(g,length(g))’, ‘S’ specifies the
    autoscaling transformation, the function ‘real time(real v)’
    returns the time corresponding to the value ‘v’, and ‘pair dir(real
    t)’ returns the absolute tick direction as a function of ‘t’ (zero
    means draw the tick perpendicular to the axis).

  • These routines are useful for manually putting ticks and labels on
    axes (if the variable ‘Label’ is given as the ‘Label’ argument, the
    ‘format’ argument will be used to format a string based on the tick
    location):
    void xtick(picture pic=currentpicture, Label L="", explicit pair z,
               pair dir=N, string format="",
               real size=Ticksize, pen p=currentpen);
    void xtick(picture pic=currentpicture, Label L="", real x,
               pair dir=N, string format="",
               real size=Ticksize, pen p=currentpen);
    void ytick(picture pic=currentpicture, Label L="", explicit pair z,
               pair dir=E, string format="",
               real size=Ticksize, pen p=currentpen);
    void ytick(picture pic=currentpicture, Label L="", real y,
               pair dir=E, string format="",
               real size=Ticksize, pen p=currentpen);
    void tick(picture pic=currentpicture, pair z,
              pair dir, real size=Ticksize, pen p=currentpen);
    void labelx(picture pic=currentpicture, Label L="", explicit pair z,
                align align=S, string format="", pen p=currentpen);
    void labelx(picture pic=currentpicture, Label L="", real x,
                align align=S, string format="", pen p=currentpen);
    void labelx(picture pic=currentpicture, Label L,
                string format="", explicit pen p=currentpen);
    void labely(picture pic=currentpicture, Label L="", explicit pair z,
                align align=W, string format="", pen p=currentpen);
    void labely(picture pic=currentpicture, Label L="", real y,
                align align=W, string format="", pen p=currentpen);
    void labely(picture pic=currentpicture, Label L,
                string format="", explicit pen p=currentpen);

  Here are some simple examples of two-dimensional graphs:

 1. This example draws a textbook-style graph of y= exp(x), with the y
    axis starting at y=0:
    import graph;
    size(150,0);

    real f(real x) {return exp(x);}
    pair F(real x) {return (x,f(x));}

    draw(graph(f,-4,2,operator ..),red);

    xaxis("$x$");
    yaxis("$y$",0);

    labely(1,E);
    label("$e^x$",F(1),SE);


                               [./exp]

 2. The next example draws a scientific-style graph with a legend.  The
    position of the legend can be adjusted either explicitly or by
    using the graphical user interface (*note GUI::).  If an
    ‘UnFill(real xmargin=0, real ymargin=xmargin)’ or ‘Fill(pen)’
    option is specified to ‘add’, the legend will obscure any
    underlying objects.  Here we illustrate how to clip the portion of
    the picture covered by a label:

    import graph;

    size(400,200,IgnoreAspect);

    real Sin(real t) {return sin(2pi*t);}
    real Cos(real t) {return cos(2pi*t);}

    draw(graph(Sin,0,1),red,"$\sin(2\pi x)$");
    draw(graph(Cos,0,1),blue,"$\cos(2\pi x)$");

    xaxis("$x$",BottomTop,LeftTicks);
    yaxis("$y$",LeftRight,RightTicks(trailingzero));

    label("LABEL",point(0),UnFill(1mm));

    add(legend(),point(E),20E,UnFill);

                          [./lineargraph0]

    To specify a fixed size for the graph proper, use ‘attach’:
    import graph;

    size(250,200,IgnoreAspect);

    real Sin(real t) {return sin(2pi*t);}
    real Cos(real t) {return cos(2pi*t);}

    draw(graph(Sin,0,1),red,"$\sin(2\pi x)$");
    draw(graph(Cos,0,1),blue,"$\cos(2\pi x)$");

    xaxis("$x$",BottomTop,LeftTicks);
    yaxis("$y$",LeftRight,RightTicks(trailingzero));

    label("LABEL",point(0),UnFill(1mm));

    attach(legend(),truepoint(E),20E,UnFill);

    A legend can have multiple entries per line:
    import graph;
    size(8cm,6cm,IgnoreAspect);

    typedef real realfcn(real);
    realfcn F(real p) {
      return new real(real x) {return sin(p*x);};
    }

    for(int i=1; i < 5; ++i)
      draw(graph(F(i*pi),0,1),Pen(i),
           "$\sin("+(i == 1 ? "" : (string) i)+"\pi x)$");
    xaxis("$x$",BottomTop,LeftTicks);
    yaxis("$y$",LeftRight,RightTicks(trailingzero));

    attach(legend(2),(point(S).x,truepoint(S).y),10S,UnFill);

                             [./legend]

 3. This example draws a graph of one array versus another (both of the
    same size) using custom tick locations and a smaller font size for
    the tick labels on the y axis.
    import graph;

    size(200,150,IgnoreAspect);

    real[] x={0,1,2,3};
    real[] y=x^2;

    draw(graph(x,y),red);

    xaxis("$x$",BottomTop,LeftTicks);
    yaxis("$y$",LeftRight,
          RightTicks(Label(fontsize(8pt)),new real[]{0,4,9}));

                            [./datagraph]

 4. This example shows how to graph columns of data read from a file.
    import graph;

    size(200,150,IgnoreAspect);

    file in=input("filegraph.dat").line();
    real[][] a=in;
    a=transpose(a);

    real[] x=a[0];
    real[] y=a[1];

    draw(graph(x,y),red);

    xaxis("$x$",BottomTop,LeftTicks);
    yaxis("$y$",LeftRight,RightTicks);

                            [./filegraph]

 5. The next example draws two graphs of an array of coordinate pairs,
    using frame alignment and data markers.  In the left-hand graph,
    the markers, constructed with
    marker marker(path g, markroutine markroutine=marknodes,
                  pen p=currentpen, filltype filltype=NoFill,
                  bool above=true);
    using the path ‘unitcircle’ (*note filltype::), are drawn below
    each node.  Any frame can be converted to a marker, using
    marker marker(frame f, markroutine markroutine=marknodes,
                  bool above=true);
    In the right-hand graph, the unit n-sided regular polygon
    ‘polygon(int n)’ and the unit n-point cyclic cross ‘cross(int n,
    bool round=true, real r=0)’ (where ‘r’ is an optional "inner"
    radius) are used to build a custom marker frame.  Here
    ‘markuniform(bool centered=false, int n, bool rotated=false)’ adds
    this frame at ‘n’ uniformly spaced points along the arclength of
    the path, optionally rotated by the angle of the local tangent to
    the path (if centered is true, the frames will be centered within
    ‘n’ evenly spaced arclength intervals).  Alternatively, one can use
    markroutine ‘marknodes’ to request that the marks be placed at each
    Bezier node of the path, or markroutine ‘markuniform(pair z(real
    t), real a, real b, int n)’ to place marks at points ‘z(t)’ for n
    evenly spaced values of ‘t’ in ‘[a,b]’.

    These markers are predefined:
    marker[] Mark={
      marker(scale(circlescale)*unitcircle),
      marker(polygon(3)),marker(polygon(4)),
      marker(polygon(5)),marker(invert*polygon(3)),
      marker(cross(4)),marker(cross(6)),marker(diamond),marker(plus);
    };

    marker[] MarkFill={
      marker(scale(circlescale)*unitcircle,Fill),marker(polygon(3),Fill),
      marker(polygon(4),Fill),marker(polygon(5),Fill),
      marker(invert*polygon(3),Fill),marker(diamond,Fill)
    };

    The example also illustrates the ‘errorbar’ routines:

    void errorbars(picture pic=currentpicture, pair[] z, pair[] dp,
                   pair[] dm={}, bool[] cond={}, pen p=currentpen,
                   real size=0);

    void errorbars(picture pic=currentpicture, real[] x, real[] y,
                   real[] dpx, real[] dpy, real[] dmx={}, real[] dmy={},
                   bool[] cond={}, pen p=currentpen, real size=0);

    Here, the positive and negative extents of the error are given by
    the absolute values of the elements of the pair array ‘dp’ and the
    optional pair array ‘dm’.  If ‘dm’ is not specified, the positive
    and negative extents of the error are assumed to be equal.
    import graph;

    picture pic;
    real xsize=200, ysize=140;
    size(pic,xsize,ysize,IgnoreAspect);

    pair[] f={(5,5),(50,20),(90,90)};
    pair[] df={(0,0),(5,7),(0,5)};

    errorbars(pic,f,df,red);
    draw(pic,graph(pic,f),"legend",
         marker(scale(0.8mm)*unitcircle,red,FillDraw(blue),above=false));

    scale(pic,true);

    xaxis(pic,"$x$",BottomTop,LeftTicks);
    yaxis(pic,"$y$",LeftRight,RightTicks);
    add(pic,legend(pic),point(pic,NW),20SE,UnFill);

    picture pic2;
    size(pic2,xsize,ysize,IgnoreAspect);

    frame mark;
    filldraw(mark,scale(0.8mm)*polygon(6),green,green);
    draw(mark,scale(0.8mm)*cross(6),blue);

    draw(pic2,graph(pic2,f),marker(mark,markuniform(5)));

    scale(pic2,true);

    xaxis(pic2,"$x$",BottomTop,LeftTicks);
    yaxis(pic2,"$y$",LeftRight,RightTicks);

    yequals(pic2,55.0,red+Dotted);
    xequals(pic2,70.0,red+Dotted);

    // Fit pic to W of origin:
    add(pic.fit(),(0,0),W);

    // Fit pic2 to E of (5mm,0):
    add(pic2.fit(),(5mm,0),E);


                            [./errorbars]

 6. A custom mark routine can be also be specified:
    import graph;

    size(200,100,IgnoreAspect);

    markroutine marks() {
      return new void(picture pic=currentpicture, frame f, path g) {
        path p=scale(1mm)*unitcircle;
        for(int i=0; i <= length(g); ++i) {
          pair z=point(g,i);
          frame f;
          if(i % 4 == 0) {
            fill(f,p);
            add(pic,f,z);
          } else {
            if(z.y > 50) {
              pic.add(new void(frame F, transform t) {
                  path q=shift(t*z)*p;
                  unfill(F,q);
                  draw(F,q);
                });
            } else {
              draw(f,p);
              add(pic,f,z);
            }
          }
        }
      };
    }

    pair[] f={(5,5),(40,20),(55,51),(90,30)};

    draw(graph(f),marker(marks()));

    scale(true);

    xaxis("$x$",BottomTop,LeftTicks);
    yaxis("$y$",LeftRight,RightTicks);

                          [./graphmarkers]

 7. This example shows how to label an axis with arbitrary strings.
    import graph;

    size(400,150,IgnoreAspect);

    real[] x=sequence(12);
    real[] y=sin(2pi*x/12);

    scale(false);

    string[] month={"Jan","Feb","Mar","Apr","May","Jun",
                    "Jul","Aug","Sep","Oct","Nov","Dec"};

    draw(graph(x,y),red,MarkFill[0]);

    xaxis(BottomTop,LeftTicks(new string(real x) {
          return month[round(x % 12)];}));
    yaxis("$y$",LeftRight,RightTicks(4));

                            [./monthaxis]

 8. The next example draws a graph of a parametrized curve.  The calls
    to
    xlimits(picture pic=currentpicture, real min=-infinity,
            real max=infinity, bool crop=NoCrop);
    and the analogous function ‘ylimits’ can be uncommented to set the
    respective axes limits for picture ‘pic’ to the specified ‘min’ and
    ‘max’ values.  Alternatively, the function
    void limits(picture pic=currentpicture, pair min, pair max, bool crop=NoCrop);
    can be used to limit the axes to the box having opposite vertices
    at the given pairs).  Existing objects in picture ‘pic’ will be
    cropped to lie within the given limits if ‘crop’=‘Crop’.  The
    function ‘crop(picture pic)’ can be used to crop a graph to the
    current graph limits.
    import graph;

    size(0,200);

    real x(real t) {return cos(2pi*t);}
    real y(real t) {return sin(2pi*t);}

    draw(graph(x,y,0,1));

    //limits((0,-1),(1,0),Crop);

    xaxis("$x$",BottomTop,LeftTicks);
    yaxis("$y$",LeftRight,RightTicks(trailingzero));



                         [./parametricgraph]

    The function
    guide graphwithderiv(pair f(real), pair fprime(real), real a, real b,
                         int n=ngraph#10);
    can be used to construct the graph of the parametric function ‘f’
    on ‘[a,b]’ with the control points of the ‘n’ Bezier segments
    determined by the specified derivative ‘fprime’:
    unitsize(2cm);
    import graph;
    pair F(real t) {
      return (1.3*t,-4.5*t^2+3.0*t+1.0);
    }
    pair Fprime(real t) {
      return (1.3,-9.0*t+3.0);
    }
    path g=graphwithderiv(F,Fprime,0,0.9,4);
    dot(g,red);
    draw(g,arrow=Arrow(TeXHead));

                         [./graphwithderiv]

    The next example illustrates how one can extract a common axis
    scaling factor.
    import graph;

    axiscoverage=0.9;
    size(200,IgnoreAspect);

    real[] x={-1e-11,1e-11};
    real[] y={0,1e6};

    real xscale=round(log10(max(x)));
    real yscale=round(log10(max(y)))-1;

    draw(graph(x*10^(-xscale),y*10^(-yscale)),red);

    xaxis("$x/10^{"+(string) xscale+"}$",BottomTop,LeftTicks);
    yaxis("$y/10^{"+(string) yscale+"}$",LeftRight,RightTicks(trailingzero));

                           [./scaledgraph]

    Axis scaling can be requested and/or automatic selection of the
    axis limits can be inhibited with one of these ‘scale’ routines:
    void scale(picture pic=currentpicture, scaleT x, scaleT y);

    void scale(picture pic=currentpicture, bool xautoscale=true,
               bool yautoscale=xautoscale, bool zautoscale=yautoscale);

    This sets the scalings for picture ‘pic’.  The ‘graph’ routines
    accept an optional ‘picture’ argument for determining the
    appropriate scalings to use; if none is given, it uses those set
    for ‘currentpicture’.

    Two frequently used scaling routines ‘Linear’ and ‘Log’ are
    predefined in ‘graph’.

    All picture coordinates (including those in paths and those given
    to the ‘label’ and ‘limits’ functions) are always treated as linear
    (post-scaled) coordinates.  Use
    pair Scale(picture pic=currentpicture, pair z);
    to convert a graph coordinate into a scaled picture coordinate.

    The x and y components can be individually scaled using the
    analogous routines
    real ScaleX(picture pic=currentpicture, real x);
    real ScaleY(picture pic=currentpicture, real y);

    The predefined scaling routines can be given two optional boolean
    arguments: ‘automin=false’ and ‘automax=automin’.  These default to
    ‘false’ but can be respectively set to ‘true’ to enable automatic
    selection of "nice" axis minimum and maximum values.  The ‘Linear’
    scaling can also take as optional final arguments a multiplicative
    scaling factor and intercept (e.g. for a depth axis, ‘Linear(-1)’
    requests axis reversal).

    For example, to draw a log/log graph of a function, use
    ‘scale(Log,Log)’:
    import graph;

    size(200,200,IgnoreAspect);

    real f(real t) {return 1/t;}

    scale(Log,Log);

    draw(graph(f,0.1,10));

    //limits((1,0.1),(10,0.5),Crop);

    dot(Label("(3,5)",align=S),Scale((3,5)));

    xaxis("$x$",BottomTop,LeftTicks);
    yaxis("$y$",LeftRight,RightTicks);


                            [./loggraph]

    By extending the ticks, one can easily produce a logarithmic grid:
    import graph;
    size(200,200,IgnoreAspect);

    real f(real t) {return 1/t;}

    scale(Log,Log);
    draw(graph(f,0.1,10),red);
    pen thin=linewidth(0.5*linewidth());
    xaxis("$x$",BottomTop,LeftTicks(begin=false,end=false,extend=true,
                                    ptick=thin));
    yaxis("$y$",LeftRight,RightTicks(begin=false,end=false,extend=true,
                                     ptick=thin));



                             [./loggrid]

    One can also specify custom tick locations and formats for
    logarithmic axes:
    import graph;

    size(300,175,IgnoreAspect);
    scale(Log,Log);
    draw(graph(identity,5,20));
    xlimits(5,20);
    ylimits(1,100);
    xaxis("$M/M_\odot$",BottomTop,LeftTicks(DefaultFormat,
                                            new real[] {6,10,12,14,16,18}));
    yaxis("$\nu_{\rm upp}$ [Hz]",LeftRight,RightTicks(DefaultFormat));


                            [./logticks]

    It is easy to draw logarithmic graphs with respect to other bases:
    import graph;
    size(200,IgnoreAspect);

    // Base-2 logarithmic scale on y-axis:

    real log2(real x) {static real log2=log(2); return log(x)/log2;}
    real pow2(real x) {return 2^x;}

    scaleT yscale=scaleT(log2,pow2,logarithmic=true);
    scale(Linear,yscale);

    real f(real x) {return 1+x^2;}

    draw(graph(f,-4,4));

    yaxis("$y$",ymin=1,ymax=f(5),RightTicks(Label(Fill(white))),EndArrow);
    xaxis("$x$",xmin=-5,xmax=5,LeftTicks,EndArrow);

                            [./log2graph]

    Here is an example of "broken" linear x and logarithmic y axes that
    omit the segments [3,8] and [100,1000], respectively.  In the case
    of a logarithmic axis, the break endpoints are automatically
    rounded to the nearest integral power of the base.
    import graph;

    size(200,150,IgnoreAspect);

    // Break the x axis at 3; restart at 8:
    real a=3, b=8;

    // Break the y axis at 100; restart at 1000:
    real c=100, d=1000;

    scale(Broken(a,b),BrokenLog(c,d));

    real[] x={1,2,4,6,10};
    real[] y=x^4;

    draw(graph(x,y),red,MarkFill[0]);

    xaxis("$x$",BottomTop,LeftTicks(Break(a,b)));
    yaxis("$y$",LeftRight,RightTicks(Break(c,d)));

    label(rotate(90)*Break,(a,point(S).y));
    label(rotate(90)*Break,(a,point(N).y));
    label(Break,(point(W).x,ScaleY(c)));
    label(Break,(point(E).x,ScaleY(c)));


                           [./brokenaxis]

 9. ‘Asymptote’ can draw secondary axes with the routines
    picture secondaryX(picture primary=currentpicture, void f(picture));
    picture secondaryY(picture primary=currentpicture, void f(picture));

    In this example, ‘secondaryY’ is used to draw a secondary linear y
    axis against a primary logarithmic y axis:
    import graph;
    texpreamble("\def\Arg{\mathop {\rm Arg}\nolimits}");

    size(10cm,5cm,IgnoreAspect);

    real ampl(real x) {return 2.5/sqrt(1+x^2);}
    real phas(real x) {return -atan(x)/pi;}

    scale(Log,Log);
    draw(graph(ampl,0.01,10));
    ylimits(0.001,100);

    xaxis("$\omega\tau_0$",BottomTop,LeftTicks);
    yaxis("$|G(\omega\tau_0)|$",Left,RightTicks);

    picture q=secondaryY(new void(picture pic) {
        scale(pic,Log,Linear);
        draw(pic,graph(pic,phas,0.01,10),red);
        ylimits(pic,-1.0,1.5);
        yaxis(pic,"$\Arg G/\pi$",Right,red,
              LeftTicks("$% #.1f$",
                        begin=false,end=false));
        yequals(pic,1,Dotted);
      });
    label(q,"(1,0)",Scale(q,(1,0)),red);
    add(q);


                              [./Bode]

    A secondary logarithmic y axis can be drawn like this:
    import graph;

    size(9cm,6cm,IgnoreAspect);
    string data="secondaryaxis.csv";

    file in=input(data).line().csv();

    string[] titlelabel=in;
    string[] columnlabel=in;

    real[][] a=in;
    a=transpose(a);
    real[] t=a[0], susceptible=a[1], infectious=a[2], dead=a[3], larvae=a[4];
    real[] susceptibleM=a[5], exposed=a[6], infectiousM=a[7];

    scale(true);

    draw(graph(t,susceptible,t >= 10 & t <= 15));
    draw(graph(t,dead,t >= 10 & t <= 15),dashed);

    xaxis("Time ($\tau$)",BottomTop,LeftTicks);
    yaxis(Left,RightTicks);

    picture secondary=secondaryY(new void(picture pic) {
        scale(pic,Linear(true),Log(true));
        draw(pic,graph(pic,t,infectious,t >= 10 & t <= 15),red);
        yaxis(pic,Right,red,LeftTicks(begin=false,end=false));
      });

    add(secondary);
    label(shift(5mm*N)*"Proportion of crows",point(NW),E);

                          [./secondaryaxis]

 10. Here is a histogram example, which uses the ‘stats’ module.
    import graph;
    import stats;

    size(400,200,IgnoreAspect);

    int n=10000;
    real[] a=new real[n];
    for(int i=0; i < n; ++i) a[i]=Gaussrand();

    draw(graph(Gaussian,min(a),max(a)),blue);

    // Optionally calculate "optimal" number of bins a la Shimazaki and Shinomoto.
    int N=bins(a);

    histogram(a,min(a),max(a),N,normalize=true,low=0,lightred,black,bars=true);

    xaxis("$x$",BottomTop,LeftTicks);
    yaxis("$dP/dx$",LeftRight,RightTicks(trailingzero));

                            [./histogram]

 11. Here is an example of reading column data in from a file and a
    least-squares fit, using the ‘stats’ module.
    size(400,200,IgnoreAspect);

    import graph;
    import stats;

    file fin=input("leastsquares.dat").line();

    real[][] a=fin;
    a=transpose(a);

    real[] t=a[0], rho=a[1];

    // Read in parameters from the keyboard:
    //real first=getreal("first");
    //real step=getreal("step");
    //real last=getreal("last");

    real first=100;
    real step=50;
    real last=700;

    // Remove negative or zero values of rho:
    t=rho > 0 ? t : null;
    rho=rho > 0 ? rho : null;

    scale(Log(true),Linear(true));

    int n=step > 0 ? ceil((last-first)/step) : 0;

    real[] T,xi,dxi;

    for(int i=0; i <= n; ++i) {
      real first=first+i*step;
      real[] logrho=(t >= first & t <= last) ? log(rho) : null;
      real[] logt=(t >= first & t <= last) ? -log(t) : null;

      if(logt.length < 2) break;

      // Fit to the line logt=L.m*logrho+L.b:
      linefit L=leastsquares(logt,logrho);

      T.push(first);
      xi.push(L.m);
      dxi.push(L.dm);
    }

    draw(graph(T,xi),blue);
    errorbars(T,xi,dxi,red);

    crop();

    ylimits(0);

    xaxis("$T$",BottomTop,LeftTicks);
    yaxis("$\xi$",LeftRight,RightTicks);

                          [./leastsquares]

 12. Here is an example that illustrates the general ‘axis’ routine.
    import graph;
    size(0,100);

    path g=ellipse((0,0),1,2);

    scale(true);

    axis(Label("C",align=10W),g,LeftTicks(endlabel=false,8,end=false),
         ticklocate(0,360,new real(real v) {
             path h=(0,0)--max(abs(max(g)),abs(min(g)))*dir(v);
             return intersect(g,h)[0];}));

                           [./generalaxis]

 13. To draw a vector field of ‘n’ arrows evenly spaced along the
    arclength of a path, use the routine
    picture vectorfield(path vector(real), path g, int n, bool truesize=false,
                        pen p=currentpen, arrowbar arrow=Arrow);
    as illustrated in this simple example of a flow field:
    import graph;
    defaultpen(1.0);

    size(0,150,IgnoreAspect);

    real arrowsize=4mm;
    real arrowlength=2arrowsize;

    typedef path vector(real);

    // Return a vector interpolated linearly between a and b.
    vector vector(pair a, pair b) {
      return new path(real x) {
        return (0,0)--arrowlength*interp(a,b,x);
      };
    }

    real f(real x) {return 1/x;}

    real epsilon=0.5;
    path g=graph(f,epsilon,1/epsilon);

    int n=3;
    draw(g);
    xaxis("$x$");
    yaxis("$y$");

    add(vectorfield(vector(W,W),g,n,true));
    add(vectorfield(vector(NE,NW),(0,0)--(point(E).x,0),n,true));
    add(vectorfield(vector(NE,NE),(0,0)--(0,point(N).y),n,true));


                              [./flow]

 14. To draw a vector field of ‘nx’\times‘ny’ arrows in ‘box(a,b)’, use
    the routine
    picture vectorfield(path vector(pair), pair a, pair b,
                        int nx=nmesh, int ny=nx, bool truesize=false,
                        real maxlength=truesize ? 0 : maxlength(a,b,nx,ny),
                        bool cond(pair z)=null, pen p=currentpen,
                        arrowbar arrow=Arrow, margin margin=PenMargin)
    as illustrated in this example:
    import graph;
    size(100);

    pair a=(0,0);
    pair b=(2pi,2pi);

    path vector(pair z) {return (sin(z.x),cos(z.y));}

    add(vectorfield(vector,a,b));

                           [./vectorfield]

 15. The following scientific graphs, which illustrate many features of
    ‘Asymptote’'s graphics routines, were generated from the examples
    ‘diatom.asy’ and ‘westnile.asy’, using the comma-separated data in
    ‘diatom.csv’ and ‘westnile.csv’.


                             [./diatom]

                            [./westnile]


File: asymptote.info,  Node: palette,  Next: three,  Prev: graph,  Up: Base modules

8.28 ‘palette’
==============

‘Asymptote’ can also generate color density images and palettes.  The
following palettes are predefined in ‘palette.asy’:

‘pen[] Grayscale(int NColors=256)’
    a grayscale palette;

‘pen[] Rainbow(int NColors=32766)’
    a rainbow spectrum;

‘pen[] BWRainbow(int NColors=32761)’
    a rainbow spectrum tapering off to black/white at the ends;

‘pen[] BWRainbow2(int NColors=32761)’
    a double rainbow palette tapering off to black/white at the ends,
    with a linearly scaled intensity.

‘pen[] Wheel(int NColors=32766)’
    a full color wheel palette;

‘pen[] Gradient(int NColors=256 ... pen[] p)’
    a palette varying linearly over the specified array of pens, using
    NColors in each interpolation interval;

  The function ‘cmyk(pen[] Palette)’ may be used to convert any of
these palettes to the CMYK colorspace.

  A color density plot using palette ‘palette’ can be generated from a
function ‘f’(x,y) and added to a picture ‘pic’:
bounds image(picture pic=currentpicture, real f(real, real),
            range range=Full, pair initial, pair final,
            int nx=ngraph, int ny=nx, pen[] palette, int divs=0,
            bool antialias=false)
  The function ‘f’ will be sampled at ‘nx’ and ‘ny’ evenly spaced
points over a rectangle defined by the points ‘initial’ and ‘final’,
respecting the current graphical scaling of ‘pic’.  The color space is
scaled according to the z axis scaling (*note automatic scaling::).  If
‘divs’ > 1, the palette is quantized to ‘divs’-1 values.  A ‘bounds’
structure for the function values is returned:
struct bounds {
 real min;
 real max;
 // Possible tick intervals:
 int[] divisor;
}
This information can be used for generating an optional palette bar.
The palette color space corresponds to a range of values specified by
the argument ‘range’, which can be ‘Full’, ‘Automatic’, or an explicit
range ‘Range(real min, real max)’.  (The type ‘range’ is defined in
‘palette.asy’.)  Here ‘Full’ specifies a range varying from the minimum
to maximum values of the function over the sampling interval, while
‘Automatic’ selects "nice" limits.  The examples ‘fillcontour.asy’ and
‘imagecontour.asy’ illustrate how level sets (contour lines) can be
drawn on a color density plot (*note contour::).

  A color density plot can also be generated from an explicit real[][]
array ‘data’:
bounds image(picture pic=currentpicture, real[][] f, range range=Full,
            pair initial, pair final, pen[] palette, int divs=0,
            bool transpose=(initial.x < final.x && initial.y < final.y),
            bool copy=true, bool antialias=false);
If the initial point is to the left and below the final point, by
default the array indices are interpreted according to the Cartesian
convention (first index: x, second index: y) rather than the usual
matrix convention (first index: -y, second index: x).

  To construct an image from an array of irregularly spaced points and
an array of values ‘f’ at these points, use one of the routines
bounds image(picture pic=currentpicture, pair[] z, real[] f,
            range range=Full, pen[] palette)
bounds image(picture pic=currentpicture, real[] x, real[] y, real[] f,
            range range=Full, pen[] palette)

  An optionally labelled palette bar may be generated with the routine
void palette(picture pic=currentpicture, Label L="", bounds bounds,
            pair initial, pair final, axis axis=Right, pen[] palette,
            pen p=currentpen, paletteticks ticks=PaletteTicks,
            bool copy=true, bool antialias=false);
  The color space of ‘palette’ is taken to be over bounds ‘bounds’ with
scaling given by the z scaling of ‘pic’.  The palette orientation is
specified by ‘axis’, which may be one of ‘Right’, ‘Left’, ‘Top’, or
‘Bottom’.  The bar is drawn over the rectangle from ‘initial’ to
‘final’.  The argument ‘paletteticks’ is a special tick type (*note
ticks::) that takes the following arguments:
paletteticks PaletteTicks(Label format="", ticklabel ticklabel=null,
                         bool beginlabel=true, bool endlabel=true,
                         int N=0, int n=0, real Step=0, real step=0,
                         pen pTick=nullpen, pen ptick=nullpen);

  The image and palette bar can be fit to a frame and added and
optionally aligned to a picture at the desired location:

size(12cm,12cm);

import graph;
import palette;

int n=256;
real ninv=2pi/n;
real[][] v=new real[n][n];

for(int i=0; i < n; ++i)
 for(int j=0; j < n; ++j)
   v[i][j]=sin(i*ninv)*cos(j*ninv);

pen[] Palette=BWRainbow();

picture bar;

bounds range=image(v,(0,0),(1,1),Palette);
palette(bar,"$A$",range,(0,0),(0.5cm,8cm),Right,Palette,
       PaletteTicks("$%+#.1f$"));
add(bar.fit(),point(E),30E);

                              [./image]

  Here is an example that uses logarithmic scaling of the function
values:

import graph;
import palette;

size(10cm,10cm,IgnoreAspect);

real f(real x, real y) {
 return 0.9*pow10(2*sin(x/5+2*y^0.25)) + 0.1*(1+cos(10*log(y)));
}

scale(Linear,Log,Log);

pen[] Palette=BWRainbow();

bounds range=image(f,Automatic,(0,1),(100,100),nx=200,Palette);

xaxis("$x$",BottomTop,LeftTicks,above=true);
yaxis("$y$",LeftRight,RightTicks,above=true);

palette("$f(x,y)$",range,(0,200),(100,250),Top,Palette,
       PaletteTicks(ptick=linewidth(0.5*linewidth())));



                            [./logimage]

  One can also draw an image directly from a two-dimensional pen array
or a function ‘pen f(int, int)’:
void image(picture pic=currentpicture, pen[][] data,
          pair initial, pair final,
          bool transpose=(initial.x < final.x && initial.y < final.y),
          bool copy=true, bool antialias=false);
void image(picture pic=currentpicture, pen f(int, int), int width, int height,
          pair initial, pair final,
          bool transpose=(initial.x < final.x && initial.y < final.y),
          bool antialias=false);
as illustrated in the following examples:

size(200);

import palette;

int n=256;
real ninv=2pi/n;
pen[][] v=new pen[n][n];

for(int i=0; i < n; ++i)
 for(int j=0; j < n; ++j)
   v[i][j]=rgb(0.5*(1+sin(i*ninv)),0.5*(1+cos(j*ninv)),0);

image(v,(0,0),(1,1));


                            [./penimage]

import palette;

size(200);

real fracpart(real x) {return (x-floor(x));}

pair pws(pair z) {
 pair w=(z+exp(pi*I/5)/0.9)/(1+z/0.9*exp(-pi*I/5));
 return exp(w)*(w^3-0.5*I);
}

int N=512;

pair a=(-1,-1);
pair b=(0.5,0.5);
real dx=(b-a).x/N;
real dy=(b-a).y/N;

pen f(int u, int v) {
 pair z=a+(u*dx,v*dy);
 pair w=pws(z);
 real phase=degrees(w,warn=false);
 real modulus=w == 0 ? 0: fracpart(log(abs(w)));
 return hsv(phase,1,sqrt(modulus));
}

image(f,N,N,(0,0),(300,300),antialias=true);

                        [./penfunctionimage]

  For convenience, the module ‘palette’ also defines functions that may
be used to construct a pen array from a given function and palette:
pen[] palette(real[] f, pen[] palette);
pen[][] palette(real[][] f, pen[] palette);


File: asymptote.info,  Node: three,  Next: obj,  Prev: palette,  Up: Base modules

8.29 ‘three’
============

This module fully extends the notion of guides and paths in ‘Asymptote’
to three dimensions.  It introduces the new types guide3, path3, and
surface.  Guides in three dimensions are specified with the same syntax
as in two dimensions except that triples ‘(x,y,z)’ are used in place of
pairs ‘(x,y)’ for the nodes and direction specifiers.  This
generalization of John Hobby's spline algorithm is shape-invariant under
three-dimensional rotation, scaling, and shifting, and reduces in the
planar case to the two-dimensional algorithm used in ‘Asymptote’,
‘MetaPost’, and ‘MetaFont’ [see J. C. Bowman, Proceedings in Applied
Mathematics and Mechanics, 7:1, 2010021-2010022 (2007)].

  For example, a unit circle in the XY plane may be filled and drawn
like this:
import three;

size(100);

path3 g=(1,0,0)..(0,1,0)..(-1,0,0)..(0,-1,0)..cycle;
draw(g);
draw(O--Z,red+dashed,Arrow3);
draw(((-1,-1,0)--(1,-1,0)--(1,1,0)--(-1,1,0)--cycle));
dot(g,red);

                           [./unitcircle3]
and then distorted into a saddle:
import three;

size(100,0);
path3 g=(1,0,0)..(0,1,1)..(-1,0,0)..(0,-1,1)..cycle;
draw(g);
draw(((-1,-1,0)--(1,-1,0)--(1,1,0)--(-1,1,0)--cycle));
dot(g,red);

                             [./saddle]

  Module ‘three’ provides constructors for converting two-dimensional
paths to three-dimensional ones, and vice-versa:
path3 path3(path p, triple plane(pair)=XYplane);
path path(path3 p, pair P(triple)=xypart);

  A Bezier surface, the natural two-dimensional generalization of
Bezier curves, is defined in ‘three_surface.asy’ as a structure
containing an array of Bezier patches.  Surfaces may drawn with one of
the routines
void draw(picture pic=currentpicture, surface s, int nu=1, int nv=1,
         material surfacepen=currentpen, pen meshpen=nullpen,
         light light=currentlight, light meshlight=nolight, string name="",
         render render=defaultrender);
void draw(picture pic=currentpicture, surface s, int nu=1, int nv=1,
         material[] surfacepen, pen meshpen,
         light light=currentlight, light meshlight=nolight, string name="",
         render render=defaultrender);
void draw(picture pic=currentpicture, surface s, int nu=1, int nv=1,
         material[] surfacepen, pen[] meshpen=nullpens,
         light light=currentlight, light meshlight=nolight, string name="",
         render render=defaultrender);

  The parameters ‘nu’ and ‘nv’ specify the number of subdivisions for
drawing optional mesh lines for each Bezier patch.  The optional ‘name’
parameter is used as a prefix for naming the surface patches in the PRC
model tree.  Here material is a structure defined in ‘three_light.asy’:
struct material {
 pen[] p; // diffusepen,emissivepen,specularpen
 real opacity;
 real shininess;
 real metallic;
 real fresnel0;
}
These material properties are used to implement physically based
rendering (PBR) using light properties defined in ‘plain_prethree.asy’
and ‘three_light.asy’:
struct light {
 real[][] diffuse;
 real[][] specular;
 pen background=nullpen; // Background color of the canvas.
 real specularfactor;
 triple[] position; // Only directional lights are currently implemented.
}

light Viewport=light(specularfactor=3,(0.25,-0.25,1));

light White=light(new pen[] {rgb(0.38,0.38,0.45),rgb(0.6,0.6,0.67),
                            rgb(0.5,0.5,0.57)},specularfactor=3,
 new triple[] {(-2,-1.5,-0.5),(2,1.1,-2.5),(-0.5,0,2)});

light Headlamp=light(gray(0.8),specular=gray(0.7),
                    specularfactor=3,dir(42,48));

currentlight=Headlamp;

light nolight;
  The ‘currentlight.background’ (or ‘background’ member of the
specified ‘light’) can be used to set the background color for 2D (or
3D) images.  The default background is white for ‘HTML’ images and
transparent for all other formats.  One can request a completely
transparent background for 3D ‘WebGL’ images with
‘currentlight.background=black+opacity(0.0);’

  ‘render’

  A function ‘render()’ may be assigned to the optional ‘render’
parameter allows one to pass specialized rendering options to the
surface drawing routines, via arguments such as:
 bool tessellate;   // use tessellated mesh to store straight patches
 real margin;       // shrink amount for rendered OpenGL viewport, in bp.
 bool partnames;    // assign part name indices to compound objects
 bool defaultnames; // assign default names to unnamed objects
 interaction interaction; // billboard interaction mode
  along with the rendering parameters for the legacy PRC format
described in ‘three.asy’.

  Asymptote also supports image-based lighting with the setting
‘settings.ibl=true’.  This uses pre-rendered EXR images from the
directory specified by ‘-imageDir’ (which defaults to ‘ibl’) or, for
‘WebGL’ rendering, the URL specified by ‘-imageURL’ (which defaults to
<https://vectorgraphics.gitlab.io/asymptote/ibl>).  Additional rendered
images can be generated on an ‘NVIDIA’ GPU using the ‘reflect’ program
in the ‘cudareflect’ subdirectory of the ‘Asymptote’ source directory.

  Sample Bezier surfaces are contained in the example files
‘BezierSurface.asy’, ‘teapot.asy’, ‘teapotIBL.asy’, and
‘parametricsurface.asy’.

  The structure ‘render’ contains specialized rendering options
documented at the beginning of module ‘three’.

  The examples ‘elevation.asy’ and ‘sphericalharmonic.asy’ illustrate
how to draw a surface with patch-dependent colors.  The examples
‘vertexshading.asy’ and ‘smoothelevation.asy’ illustrate
vertex-dependent colors, which are supported by ‘Asymptote’'s native
‘OpenGL’/‘WebGL’ renderers and the two-dimensional vector output format
(‘settings.render=0’).  Since the legacy PRC output format does not
support vertex shading of Bezier surfaces, PRC patches are shaded with
the mean of the four vertex colors.

  A surface can be constructed from a cyclic ‘path3’ with the
constructor
surface surface(path3 external, triple[] internal=new triple[],
               pen[] colors=new pen[], bool3 planar=default);
and then filled:
draw(surface(unitsquare3,new triple[] {X,Y,Z,O}),red);
draw(surface(O--X{Y}..Y{-X}--cycle,new triple[] {Z}),red);
draw(surface(path3(polygon(5))),red,nolight);
draw(surface(unitcircle3),red,nolight);
draw(surface(unitcircle3,new pen[] {red,green,blue,black}),nolight);
The first example draws a Bezier patch and the second example draws a
Bezier triangle.  The third and fourth examples are planar surfaces.
The last example constructs a patch with vertex-specific colors.  A
three-dimensional planar surface in the plane ‘plane’ can be constructed
from a two-dimensional cyclic path ‘g’ with the constructor
surface surface(path p, triple plane(pair)=XYplane);
and then filled:
draw(surface((0,0)--E+2N--2E--E+N..0.2E..cycle),red);
Planar Bezier surfaces patches are constructed using Orest Shardt's
‘bezulate’ routine, which decomposes (possibly nonsimply connected)
regions bounded (according to the ‘zerowinding’ fill rule) by simple
cyclic paths (intersecting only at the endpoints) into subregions
bounded by cyclic paths of length ‘4’ or less.

  A more efficient routine also exists for drawing tessellations
composed of many 3D triangles, with specified vertices, and optional
normals or vertex colors:
void draw(picture pic=currentpicture, triple[] v, int[][] vi,
         triple[] n={}, int[][] ni=vi, material m=currentpen, pen[] p={},
         int[][] pi=vi, light light=currentlight);
  Here, the triple array ‘v’ lists the (typically distinct) vertices,
while the array ‘vi’ contains integer arrays of length 3 containing the
indices of the elements in ‘v’ that form the vertices of each triangle.
Similarly, the arguments ‘n’ and ‘ni’ contain optional normal data and
‘p’ and ‘pi’ contain optional pen vertex data.  If more than one normal
or pen is specified for a vertex, the last one is used.  An example of
this tessellation facility is given in ‘triangles.asy’.

  Arbitrary thick three-dimensional curves and line caps (which the
‘OpenGL’ standard does not require implementations to provide) are
constructed with
tube tube(path3 p, real width, render render=defaultrender);
this returns a tube structure representing a tube of diameter ‘width’
centered approximately on ‘g’.  The tube structure consists of a surface
‘s’ and the actual tube center, path3 ‘center’.  Drawing thick lines as
tubes can be slow to render, especially with the ‘Adobe Reader’
renderer.  The setting ‘thick=false’ can be used to disable this feature
and force all lines to be drawn with ‘linewidth(0)’ (one pixel wide,
regardless of the resolution).  By default, mesh and contour lines in
three-dimensions are always drawn thin, unless an explicit line width is
given in the pen parameter or the setting ‘thin’ is set to ‘false’.  The
pens ‘thin()’ and ‘thick()’ defined in ‘plain_pens.asy’ can also be used
to override these defaults for specific draw commands.

There are six choices for viewing 3D ‘Asymptote’ output:

 1. Use the native ‘Asymptote’ adaptive ‘OpenGL’-based renderer (with
    the command-line option ‘-V’ and the default settings
    ‘outformat=""’ and ‘render=-1’).  On ‘UNIX’ systems with graphics
    support for multisampling, the sample width can be controlled with
    the setting ‘multisample’.  The ratio of physical to logical screen
    pixels can be specified with the setting ‘devicepixelratio’.  An
    initial screen position can be specified with the pair setting
    ‘position’, where negative values are interpreted as relative to
    the corresponding maximum screen dimension.  The default settings
    import settings;
    leftbutton=new string[] {"rotate","zoom","shift","pan"};
    middlebutton=new string[] {""};
    rightbutton=new string[] {"zoom","rotateX","rotateY","rotateZ"};
    wheelup=new string[] {"zoomin"};
    wheeldown=new string[] {"zoomout"};
    bind the mouse buttons as follows:
       • Left: rotate
       • Shift Left: zoom
       • Ctrl Left: shift viewport
       • Alt Left: pan
       • Wheel Up: zoom in
       • Wheel Down: zoom out
       • Right: zoom
       • Shift Right: rotate about the X axis
       • Ctrl Right: rotate about the Y axis
       • Alt Right: rotate about the Z axis

    The keyboard bindings are:
       • h: home
       • f: toggle fitscreen
       • x: spin about the X axis
       • y: spin about the Y axis
       • z: spin about the Z axis
       • s: stop spinning
       • m: rendering mode (solid/patch/mesh)
       • e: export
       • c: show camera parameters
       • p: play animation
       • r: reverse animation
       • : step animation
       • +: expand
       • =: expand
       • >: expand
       • -: shrink
       • _: shrink
       • <: shrink
       • q: exit
       • Ctrl-q: exit

 2. Generate ‘WebGL’ interactive vector graphics output with the the
    command-line option and ‘-f html’ (or the setting
    ‘outformat="html"’).  The resulting 3D HTML file can then be viewed
    directly in any modern desktop or mobile browser, or even embedded
    within another web page:
    <iframe src="logo3.html" width="561" height="321" frameborder="0">
    </iframe>

    Normally, ‘WebGL’ files generated by ‘Asymptote’ are dynamically
    remeshed to fit the browser window dimensions.  However, the
    setting ‘absolute=true’ can be used to force the image to be
    rendered at its designed size (accounting for multiple device
    pixels per ‘css’ pixel).

    For specialized applications, the setting ‘keys=true’ can be used
    to generate an identifying key immediately before the ‘WebGL’ code
    for each generated object.  The default key, the ‘"line:column"’ of
    the associated function call of the top-level source code, can be
    overwritten by adding ‘KEY="x"’ as the first argument of the
    function call, where ‘x’ represents user-supplied text.

    The interactive ‘WebGL’ files produced by ‘Asymptote’ use the
    default mouse and (many of the same) key bindings as the ‘OpenGL’
    renderer.  Zooming via the mouse wheel of a ‘WebGL’ image embedded
    within another page is disabled until the image is activated by a
    click or touch event and will remain enabled until the ‘ESC’ key is
    pressed.

    By default, viewing the 3D HTML files generated by Asymptote
    requires network access to download the ‘AsyGL’ rendering library,
    which is normally cached by the browser for future use.  However,
    the setting ‘offline=true’ can be used to embed this small (about
    48kB) library within a stand-alone HTML file that can be viewed
    offline.

 3. Render the scene to a specified rasterized format ‘outformat’ at
    the resolution of ‘n’ pixels per ‘bp’, as specified by the setting
    ‘render=n’.  A negative value of ‘n’ is interpreted as ‘|2n|’ for
    EPS and PDF formats and ‘|n|’ for other formats.  The default value
    of ‘render’ is -1.  By default, the scene is internally rendered at
    twice the specified resolution; this can be disabled by setting
    ‘antialias=1’.  High resolution rendering is done by tiling the
    image.  If your graphics card allows it, the rendering can be made
    more efficient by increasing the maximum tile size ‘maxtile’ to
    your screen dimensions (indicated by ‘maxtile=(0,0)’.  If your
    video card generates unwanted black stripes in the output, try
    setting the horizontal and vertical components of ‘maxtiles’ to
    something less than your screen dimensions.  The tile size is also
    limited by the setting ‘maxviewport’, which restricts the maximum
    width and height of the viewport.  Some graphics drivers support
    batch mode (‘-noV’) rendering in an iconified window; this can be
    enabled with the setting ‘iconify=true’.

 4. Embed the 3D legacy PRC format in a PDF file and view the resulting
    PDF file with version ‘9.0’ or later of ‘Adobe Reader’.  This
    requires ‘settings.outformat="pdf"’ and ‘settings.prc=true’, which
    can be specified by the command-line options ‘-f pdf’ and ‘-f prc’,
    put in the ‘Asymptote’ configuration file (*note configuration
    file::), or specified in the script before module ‘three’ (or
    ‘graph3’) is imported.  The ‘media9’ LaTeX package is also required
    (*note embed::).  The example ‘100d.asy’ illustrates how one can
    generate a list of predefined views (see ‘100d.views’).  A
    stationary preview image with a resolution of ‘n’ pixels per ‘bp’
    can be embedded with the setting ‘render=n’; this allows the file
    to be viewed with other ‘PDF’ viewers.  Alternatively, the file
    ‘externalprc.tex’ illustrates how the resulting PRC and rendered
    image files can be extracted and processed in a separate ‘LaTeX’
    file.  However, see *note LaTeX usage:: for an easier way to embed
    three-dimensional ‘Asymptote’ pictures within ‘LaTeX’.  For
    specialized applications where only the raw PRC file is required,
    specify ‘settings.outformat="prc"’.  The PRC specification is
    available from
    <https://web.archive.org/web/20081204104459/http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp/API_References/PRCReference/PRC_Format_Specification/>

 5. Output a V3D portable compressed vector graphics file using
    ‘settings.outformat="v3d"’, which can be viewed with an external
    viewer or converted to an alternate 3D format using the Python
    ‘pyv3d’ library.  V3D content can be automatically embedded within
    a PDF file using the options ‘settings.outformat="pdf"’ and
    ‘settings.v3d=true’.  Alternatively, a V3D file ‘file.v3d’ may be
    manually embedded within a PDF file using the ‘media9’ ‘LaTeX’
    package:
    \includemedia[noplaybutton,width=100pt,height=200pt]{}{file.v3d}%
    An online ‘Javascript’-based V3D-aware ‘PDF’ viewer is available at
    <https://github.com/vectorgraphics/pdfv3dReader>.

    The V3D specification and the ‘pyv3d’ library are available at
    <https://github.com/vectorgraphics/v3d>.  A V3D file ‘file.v3d’ may
    be imported and viewed by ‘Asymptote’ either by specifying
    ‘file.v3d’ on the command line
    asy -V file.v3d
    or using the ‘v3d’ module and ‘importv3d’ function in interactive
    mode (or within an ‘Asymptote’ file):
    import v3d;
    importv3d("file.v3d");

 6. Project the scene to a two-dimensional vector (EPS or PDF) format
    with ‘render=0’.  Only limited support for hidden surface removal,
    lighting, and transparency is available with this approach (*note
    PostScript3D::).

  Automatic picture sizing in three dimensions is accomplished with
double deferred drawing.  The maximal desired dimensions of the scene in
each of the three dimensions can optionally be specified with the
routine
void size3(picture pic=currentpicture, real x, real y=x, real z=y,
         bool keepAspect=pic.keepAspect);
A simplex linear programming problem is then solved to produce a 3D
version of a frame (actually implemented as a 3D picture).  The result
is then fit with another application of deferred drawing to the viewport
dimensions corresponding to the usual two-dimensional picture ‘size’
parameters.  The global pair ‘viewportmargin’ may be used to add
horizontal and vertical margins to the viewport dimensions.
Alternatively, a minimum ‘viewportsize’ may be specified.  A 3D picture
‘pic’ can be explicitly fit to a 3D frame by calling
frame pic.fit3(projection P=currentprojection);
and then added to picture ‘dest’ about ‘position’ with
void add(picture dest=currentpicture, frame src, triple position=(0,0,0));

  For convenience, the ‘three’ module defines ‘O=(0,0,0)’, ‘X=(1,0,0)’,
‘Y=(0,1,0)’, and ‘Z=(0,0,1)’, along with a unitcircle in the XY plane:
path3 unitcircle3=X..Y..-X..-Y..cycle;

  A general (approximate) circle can be drawn perpendicular to the
direction ‘normal’ with the routine
path3 circle(triple c, real r, triple normal=Z);

  A circular arc centered at ‘c’ with radius ‘r’ from
‘c+r*dir(theta1,phi1)’ to ‘c+r*dir(theta2,phi2)’, drawing
counterclockwise relative to the normal vector
‘cross(dir(theta1,phi1),dir(theta2,phi2))’ if ‘theta2 > theta1’ or if
‘theta2 == theta1’ and ‘phi2 >= phi1’, can be constructed with
path3 arc(triple c, real r, real theta1, real phi1, real theta2, real phi2,
         triple normal=O);
  The normal must be explicitly specified if ‘c’ and the endpoints are
colinear.  If ‘r’ < 0, the complementary arc of radius ‘|r|’ is
constructed.  For convenience, an arc centered at ‘c’ from triple ‘v1’
to ‘v2’ (assuming ‘|v2-c|=|v1-c|’) in the direction CCW
(counter-clockwise) or CW (clockwise) may also be constructed with
path3 arc(triple c, triple v1, triple v2, triple normal=O,
         bool direction=CCW);
When high accuracy is needed, the routines ‘Circle’ and ‘Arc’ defined in
‘graph3’ may be used instead.  See *note GaussianSurface:: for an
example of a three-dimensional circular arc.

  The representation ‘O--O+u--O+u+v--O+v--cycle’ of the plane passing
through point ‘O’ with normal ‘cross(u,v)’ is returned by
path3 plane(triple u, triple v, triple O=O);
  A three-dimensional box with opposite vertices at triples ‘v1’ and
‘v2’ may be drawn with the function
path3[] box(triple v1, triple v2);
For example, a unit box is predefined as
path3[] unitbox=box(O,(1,1,1));
  ‘Asymptote’ also provides optimized definitions for the
three-dimensional paths ‘unitsquare3’ and ‘unitcircle3’, along with the
surfaces ‘unitdisk’, ‘unitplane’, ‘unitcube’, ‘unitcylinder’,
‘unitcone’, ‘unitsolidcone’, ‘unitfrustum(real t1, real t2)’,
‘unitsphere’, and ‘unithemisphere’.

These projections to two dimensions are predefined:
‘oblique’
‘oblique(real angle)’
    The point ‘(x,y,z)’ is projected to ‘(x-0.5z,y-0.5z)’.  If an
    optional real argument is given, the negative z axis is drawn at
    this angle in degrees.  The projection ‘obliqueZ’ is a synonym for
    ‘oblique’.

‘obliqueX’
‘obliqueX(real angle)’
    The point ‘(x,y,z)’ is projected to ‘(y-0.5x,z-0.5x)’.  If an
    optional real argument is given, the negative x axis is drawn at
    this angle in degrees.

‘obliqueY’
‘obliqueY(real angle)’
    The point ‘(x,y,z)’ is projected to ‘(x+0.5y,z+0.5y)’.  If an
    optional real argument is given, the positive y axis is drawn at
    this angle in degrees.

‘orthographic(triple camera, triple up=Z, triple target=O,
            real zoom=1, pair viewportshift=0, bool showtarget=true,
            bool center=true)’
    This projects from three to two dimensions using the view as seen
    at a point infinitely far away in the direction ‘unit(camera)’,
    orienting the camera so that, if possible, the vector ‘up’ points
    upwards.  Parallel lines are projected to parallel lines.  The
    bounding volume is expanded to include ‘target’ if
    ‘showtarget=true’.  If ‘center=true’, the target will be adjusted
    to the center of the bounding volume.

‘orthographic(real x, real y, real z, triple up=Z, triple target=O,
            real zoom=1, pair viewportshift=0, bool showtarget=true,
            bool center=true)’
    This is equivalent to
    orthographic((x,y,z),up,target,zoom,viewportshift,showtarget,center)

    The routine
    triple camera(real alpha, real beta);
    can be used to compute the camera position with the x axis below
    the horizontal at angle ‘alpha’, the y axis below the horizontal at
    angle ‘beta’, and the z axis up.

‘perspective(triple camera, triple up=Z, triple target=O,
           real zoom=1, real angle=0, pair viewportshift=0,
           bool showtarget=true, bool autoadjust=true,
           bool center=autoadjust)’
    This projects from three to two dimensions, taking account of
    perspective, as seen from the location ‘camera’ looking at
    ‘target’, orienting the camera so that, if possible, the vector
    ‘up’ points upwards.  If ‘autoadjust=true’, the camera will
    automatically be adjusted to lie outside the bounding volume for
    all possible interactive rotations about ‘target’.  If
    ‘center=true’, the target will be adjusted to the center of the
    bounding volume.

‘perspective(real x, real y, real z, triple up=Z, triple target=O,
           real zoom=1, real angle=0, pair viewportshift=0,
           bool showtarget=true, bool autoadjust=true,
           bool center=autoadjust)’
    This is equivalent to
    perspective((x,y,z),up,target,zoom,angle,viewportshift,showtarget,
                autoadjust,center)

The default projection, ‘currentprojection’, is initially set to
‘perspective(5,4,2)’.

  We also define standard orthographic views used in technical drawing:
projection LeftView=orthographic(-X,showtarget=true);
projection RightView=orthographic(X,showtarget=true);
projection FrontView=orthographic(-Y,showtarget=true);
projection BackView=orthographic(Y,showtarget=true);
projection BottomView=orthographic(-Z,showtarget=true);
projection TopView=orthographic(Z,showtarget=true);
The function
void addViews(picture dest=currentpicture, picture src,
             projection[][] views=SixViewsUS,
             bool group=true, filltype filltype=NoFill);
adds to picture ‘dest’ an array of views of picture ‘src’ using the
layout projection[][] ‘views’.  The default layout ‘SixViewsUS’ aligns
the projection ‘FrontView’ below ‘TopView’ and above ‘BottomView’, to
the right of ‘LeftView’ and left of ‘RightView’ and ‘BackView’.  The
predefined layouts are:
projection[][] ThreeViewsUS={{TopView},
                            {FrontView,RightView}};

projection[][] SixViewsUS={{null,TopView},
                          {LeftView,FrontView,RightView,BackView},
                          {null,BottomView}};

projection[][] ThreeViewsFR={{RightView,FrontView},
                            {null,TopView}};

projection[][] SixViewsFR={{null,BottomView},
                          {RightView,FrontView,LeftView,BackView},
                          {null,TopView}};

projection[][] ThreeViews={{FrontView,TopView,RightView}};

projection[][] SixViews={{FrontView,TopView,RightView},
                        {BackView,BottomView,LeftView}};

  A triple or path3 can be projected to a pair or path, with
‘project(triple, projection P=currentprojection)’ or ‘project(path3,
projection P=currentprojection)’.

  It is occasionally useful to be able to invert a projection, sending
a pair ‘z’ onto the plane perpendicular to ‘normal’ and passing through
‘point’:
triple invert(pair z, triple normal, triple point,
             projection P=currentprojection);
A pair ‘z’ on the projection plane can be inverted to a triple with the
routine
triple invert(pair z, projection P=currentprojection);
A pair direction ‘dir’ on the projection plane can be inverted to a
triple direction relative to a point ‘v’ with the routine
triple invert(pair dir, triple v, projection P=currentprojection).

  Three-dimensional objects may be transformed with one of the
following built-in transform3 types (the identity transformation is
‘identity4’):

‘shift(triple v)’
    translates by the triple ‘v’;
‘xscale3(real x)’
    scales by ‘x’ in the x direction;
‘yscale3(real y)’
    scales by ‘y’ in the y direction;
‘zscale3(real z)’
    scales by ‘z’ in the z direction;
‘scale3(real s)’
    scales by ‘s’ in the x, y, and z directions;
‘scale(real x, real y, real z)’
    scales by ‘x’ in the x direction, by ‘y’ in the y direction, and by
    ‘z’ in the z direction;
‘rotate(real angle, triple v)’
    rotates by ‘angle’ in degrees about the axis ‘O--v’;
‘rotate(real angle, triple u, triple v)’
    rotates by ‘angle’ in degrees about the axis ‘u--v’;
‘reflect(triple u, triple v, triple w)’
    reflects about the plane through ‘u’, ‘v’, and ‘w’.

  When not multiplied on the left by a transform3, three-dimensional
TeX Labels are drawn as Bezier surfaces directly on the projection
plane:
void label(picture pic=currentpicture, Label L, triple position,
          align align=NoAlign, pen p=currentpen,
          light light=nolight, string name="",
          render render=defaultrender, interaction interaction=
          settings.autobillboard ? Billboard : Embedded)
The optional ‘name’ parameter is used as a prefix for naming the label
patches in the PRC model tree.  The default interaction is ‘Billboard’,
which means that labels are rotated interactively so that they always
face the camera.  The interaction ‘Embedded’ means that the label
interacts as a normal ‘3D’ surface, as illustrated in the example
‘billboard.asy’.  Alternatively, a label can be transformed from the
‘XY’ plane by an explicit transform3 or mapped to a specified
two-dimensional plane with the predefined transform3 types ‘XY’, ‘YZ’,
‘ZX’, ‘YX’, ‘ZY’, ‘ZX’.  There are also modified versions of these
transforms that take an optional argument ‘projection
P=currentprojection’ that rotate and/or flip the label so that it is
more readable from the initial viewpoint.

  A transform3 that projects in the direction ‘dir’ onto the plane with
normal ‘n’ through point ‘O’ is returned by
transform3 planeproject(triple n, triple O=O, triple dir=n);
One can use
triple normal(path3 p);
to find the unit normal vector to a planar three-dimensional path ‘p’.
As illustrated in the example ‘planeproject.asy’, a transform3 that
projects in the direction ‘dir’ onto the plane defined by a planar path
‘p’ is returned by
transform3 planeproject(path3 p, triple dir=normal(p));

  The functions
surface extrude(path p, triple axis=Z);
surface extrude(Label L, triple axis=Z);
return the surface obtained by extruding path ‘p’ or Label ‘L’ along
‘axis’.

  Three-dimensional versions of the path functions ‘length’, ‘size’,
‘point’, ‘dir’, ‘accel’, ‘radius’, ‘precontrol’, ‘postcontrol’,
‘arclength’, ‘arctime’, ‘reverse’, ‘subpath’, ‘intersect’,
‘intersections’, ‘intersectionpoint’, ‘intersectionpoints’, ‘min’,
‘max’, ‘cyclic’, and ‘straight’ are also defined.

  The routine
real[] intersect(path3 p, surface s, real fuzz=-1);
returns a real array of length 3 containing the intersection times, if
any, of a path ‘p’ with a surface ‘s’.  The routine
real[][] intersections(path3 p, surface s, real fuzz=-1);
returns all (unless there are infinitely many) intersection times of a
path ‘p’ with a surface ‘s’ as a sorted array of real arrays of length
3, and
triple[] intersectionpoints(path3 p, surface s, real fuzz=-1);
returns the corresponding intersection points.  Here, the computations
are performed to the absolute error specified by ‘fuzz’, or if ‘fuzz <
0’, to machine precision.  The routine
real orient(triple a, triple b, triple c, triple d);
is a numerically robust computation of ‘dot(cross(a-d,b-d),c-d)’, which
is the determinant
|a.x a.y a.z 1|
|b.x b.y b.z 1|
|c.x c.y c.z 1|
|d.x d.y d.z 1|
  The result is negative (positive) if ‘a’, ‘b’, ‘c’ appear in
counterclockwise (clockwise) order when viewed from ‘d’ or zero if all
four points are coplanar.

  The routine
real insphere(triple a, triple b, triple c, triple d, triple e);
returns a positive (negative) value if ‘e’ lies inside (outside) the
sphere passing through points ‘a,b,c,d’ oriented so that
‘dot(cross(a-d,b-d),c-d)’ is positive, or zero if all five points are
cospherical.  The value returned is the determinant
|a.x a.y a.z a.x^2+a.y^2+a.z^2 1|
|b.x b.y b.z b.x^2+b.y^2+b.z^2 1|
|c.x c.y c.z c.x^2+c.y^2+c.z^2 1|
|d.x d.y d.z d.x^2+d.y^2+d.z^2 1|
|e.x e.y e.z e.x^2+e.y^2+e.z^2 1|

  Here is an example showing all five guide3 connectors:
import graph3;

size(200);

currentprojection=orthographic(500,-500,500);

triple[] z=new triple[10];

z[0]=(0,100,0); z[1]=(50,0,0); z[2]=(180,0,0);

for(int n=3; n <= 9; ++n)
 z[n]=z[n-3]+(200,0,0);

path3 p=z[0]..z[1]---z[2]::{Y}z[3]
&z[3]..z[4]--z[5]::{Y}z[6]
&z[6]::z[7]---z[8]..{Y}z[9];

draw(p,grey+linewidth(4mm),currentlight);

xaxis3(Label(XY()*"$x$",align=-3Y),red,above=true);
yaxis3(Label(XY()*"$y$",align=-3X),red,above=true);

                              [./join3]

  Three-dimensional versions of bars or arrows can be drawn with one of
the specifiers ‘None’, ‘Blank’, ‘BeginBar3’, ‘EndBar3’ (or equivalently
‘Bar3’), ‘Bars3’, ‘BeginArrow3’, ‘MidArrow3’, ‘EndArrow3’ (or
equivalently ‘Arrow3’), ‘Arrows3’, ‘BeginArcArrow3’, ‘EndArcArrow3’ (or
equivalently ‘ArcArrow3’), ‘MidArcArrow3’, and ‘ArcArrows3’.
Three-dimensional bars accept the optional arguments ‘(real size=0,
triple dir=O)’.  If ‘size=O’, the default bar length is used; if
‘dir=O’, the bar is drawn perpendicular to the path and the initial
viewing direction.  The predefined three-dimensional arrowhead styles
are ‘DefaultHead3’, ‘HookHead3’, ‘TeXHead3’.  Versions of the
two-dimensional arrowheads lifted to three-dimensional space and aligned
according to the initial viewpoint (or an optionally specified ‘normal’
vector) are also defined: ‘DefaultHead2(triple normal=O)’,
‘HookHead2(triple normal=O)’, ‘TeXHead2(triple normal=O)’.  These are
illustrated in the example ‘arrows3.asy’.

  Module ‘three’ also defines the three-dimensional margins
‘NoMargin3’, ‘BeginMargin3’, ‘EndMargin3’, ‘Margin3’, ‘Margins3’,
‘BeginPenMargin2’, ‘EndPenMargin2’, ‘PenMargin2’, ‘PenMargins2’,
‘BeginPenMargin3’, ‘EndPenMargin3’, ‘PenMargin3’, ‘PenMargins3’,
‘BeginDotMargin3’, ‘EndDotMargin3’, ‘DotMargin3’, ‘DotMargins3’,
‘Margin3’, and ‘TrueMargin3’.

  The routine
void pixel(picture pic=currentpicture, triple v, pen p=currentpen,
          real width=1);
can be used to draw on picture ‘pic’ a pixel of width ‘width’ at
position ‘v’ using pen ‘p’.

  Further three-dimensional examples are provided in the files
‘near_earth.asy’, ‘conicurv.asy’, and (in the ‘animations’ subdirectory)
‘cube.asy’.

  Limited support for projected vector graphics (effectively
three-dimensional nonrendered ‘PostScript’) is available with the
setting ‘render=0’.  This currently only works for piecewise planar
surfaces, such as those produced by the parametric ‘surface’ routines in
the ‘graph3’ module.  Surfaces produced by the ‘solids’ module will also
be properly rendered if the parameter ‘nslices’ is sufficiently large.

  In the module ‘bsp’, hidden surface removal of planar pictures is
implemented using a binary space partition and picture clipping.  A
planar path is first converted to a structure ‘face’ derived from
‘picture’.  A ‘face’ may be given to a two-dimensional drawing routine
in place of any ‘picture’ argument.  An array of such faces may then be
drawn, removing hidden surfaces:
void add(picture pic=currentpicture, face[] faces,
        projection P=currentprojection);
  Labels may be projected to two dimensions, using projection ‘P’, onto
the plane passing through point ‘O’ with normal ‘cross(u,v)’ by
multiplying it on the left by the transform
transform transform(triple u, triple v, triple O=O,
                   projection P=currentprojection);

  Here is an example that shows how a binary space partition may be
used to draw a two-dimensional vector graphics projection of three
orthogonal intersecting planes:
size(6cm,0);
import bsp;

real u=2.5;
real v=1;

currentprojection=oblique;

path3 y=plane((2u,0,0),(0,2v,0),(-u,-v,0));
path3 l=rotate(90,Z)*rotate(90,Y)*y;
path3 g=rotate(90,X)*rotate(90,Y)*y;

face[] faces;
filldraw(faces.push(y),project(y),yellow);
filldraw(faces.push(l),project(l),lightgrey);
filldraw(faces.push(g),project(g),green);

add(faces);

                             [./planes]


File: asymptote.info,  Node: obj,  Next: graph3,  Prev: three,  Up: Base modules

8.30 ‘obj’
==========

This module allows one to construct surfaces from simple obj files, as
illustrated in the example files ‘galleon.asy’ and ‘triceratops.asy’.


File: asymptote.info,  Node: graph3,  Next: grid3,  Prev: obj,  Up: Base modules

8.31 ‘graph3’
=============

This module implements three-dimensional versions of the functions in
‘graph.asy’.  To draw an x axis in three dimensions, use the routine
void xaxis3(picture pic=currentpicture, Label L="", axis axis=YZZero,
           real xmin=-infinity, real xmax=infinity, pen p=currentpen,
           ticks3 ticks=NoTicks3, arrowbar3 arrow=None,
           margin3 margin=NoMargin3, bool above=false,
           projection P=currentprojection);
Analogous routines ‘yaxis’ and ‘zaxis’ can be used to draw y and z axes
in three dimensions.  There is also a routine for drawing all three
axis:
void axes3(picture pic=currentpicture,
          Label xlabel="", Label ylabel="", Label zlabel="",
          bool extend=false,
          triple min=(-infinity,-infinity,-infinity),
          triple max=(infinity,infinity,infinity),
          pen p=currentpen, arrowbar3 arrow=None,
          margin3 margin=NoMargin3, projection P=currentprojection);

The predefined three-dimensional axis types are
axis YZEquals(real y, real z, triple align=O, bool extend=false);
axis XZEquals(real x, real z, triple align=O, bool extend=false);
axis XYEquals(real x, real y, triple align=O, bool extend=false);
axis YZZero(triple align=O, bool extend=false);
axis XZZero(triple align=O, bool extend=false);
axis XYZero(triple align=O, bool extend=false);
axis Bounds(int type=Both, int type2=Both, triple align=O, bool extend=false);
The optional ‘align’ parameter to these routines can be used to specify
the default axis and tick label alignments.  The ‘Bounds’ axis accepts
two type parameters, each of which must be one of ‘Min’, ‘Max’, or
‘Both’.  These parameters specify which of the four possible
three-dimensional bounding box edges should be drawn.

  The three-dimensional tick options are ‘NoTicks3’, ‘InTicks’,
‘OutTicks’, and ‘InOutTicks’.  These specify the tick directions for the
‘Bounds’ axis type; other axis types inherit the direction that would be
used for the ‘Bounds(Min,Min)’ axis.

  Here is an example of a helix and bounding box axes with ticks and
axis labels, using orthographic projection:
import graph3;

size(0,200);
size3(200,IgnoreAspect);

currentprojection=orthographic(4,6,3);

real x(real t) {return cos(2pi*t);}
real y(real t) {return sin(2pi*t);}
real z(real t) {return t;}

path3 p=graph(x,y,z,0,2.7,operator ..);

draw(p,Arrow3);

scale(true);

xaxis3(XZ()*"$x$",Bounds,red,InTicks(Label,2,2));
yaxis3(YZ()*"$y$",Bounds,red,InTicks(beginlabel=false,Label,2,2));
zaxis3(XZ()*"$z$",Bounds,red,InTicks);

                              [./helix]

  The next example illustrates three-dimensional x, y, and z axes,
without autoscaling of the axis limits:
import graph3;

size(0,200);
size3(200,IgnoreAspect);

currentprojection=perspective(dir(75,20));

scale(Linear,Linear,Log);

xaxis3("$x$",0,1,red,OutTicks(2,2));
yaxis3("$y$",0,1,red,OutTicks(2,2));
zaxis3("$z$",1,30,red,OutTicks(beginlabel=false));

                              [./axis3]

  One can also place ticks along a general three-dimensional axis:
import graph3;

size(0,100);

path3 g=yscale3(2)*unitcircle3;
currentprojection=perspective(10,10,10);

axis(Label("C",position=0,align=15X),g,InTicks(endlabel=false,8,end=false),
    ticklocate(0,360,new real(real v) {
        path3 h=O--max(abs(max(g)),abs(min(g)))*dir(90,v);
        return intersect(g,h)[0];},
      new triple(real t) {return cross(dir(g,t),Z);}));


                          [./generalaxis3]

  Surface plots of matrices and functions over the region ‘box(a,b)’ in
the XY plane are also implemented:
surface surface(real[][] f, pair a, pair b, bool[][] cond={});
surface surface(real[][] f, pair a, pair b, splinetype xsplinetype,
               splinetype ysplinetype=xsplinetype, bool[][] cond={});
surface surface(real[][] f, real[] x, real[] y,
               splinetype xsplinetype=null, splinetype ysplinetype=xsplinetype,
               bool[][] cond={})
surface surface(triple[][] f, bool[][] cond={});
surface surface(real f(pair z), pair a, pair b, int nx=nmesh, int ny=nx,
               bool cond(pair z)=null);
surface surface(real f(pair z), pair a, pair b, int nx=nmesh, int ny=nx,
               splinetype xsplinetype, splinetype ysplinetype=xsplinetype,
               bool cond(pair z)=null);
surface surface(triple f(pair z), real[] u, real[] v,
               splinetype[] usplinetype, splinetype[] vsplinetype=Spline,
               bool cond(pair z)=null);
surface surface(triple f(pair z), pair a, pair b, int nu=nmesh, int nv=nu,
               bool cond(pair z)=null);
surface surface(triple f(pair z), pair a, pair b, int nu=nmesh, int nv=nu,
               splinetype[] usplinetype, splinetype[] vsplinetype=Spline,
               bool cond(pair z)=null);
The final two versions draw parametric surfaces for a function f(u,v)
over the parameter space ‘box(a,b)’, as illustrated in the example
‘parametricsurface.asy’.  An optional splinetype ‘Spline’ may be
specified.  The boolean array or function ‘cond’ can be used to control
which surface mesh cells are actually drawn (by default all mesh cells
over ‘box(a,b)’ are drawn).

  One can also construct the surface generated by rotating a path ‘g’
between ‘angle1’ to ‘angle2’ (in degrees) sampled ‘n’ times about the
line ‘c--c+axis’:
surface surface(triple c, path3 g, triple axis, int n=nslice,
               real angle1=0, real angle2=360, pen color(int i, real j)=null);
The optional argument ‘color(int i, real j)’ can be used to override the
surface color at the point obtained by rotating vertex ‘i’ by angle ‘j’
(in degrees).

Surface lighting is illustrated in the example files
‘parametricsurface.asy’ and ‘sinc.asy’.  Lighting can be disabled by
setting ‘light=nolight’, as in this example of a Gaussian surface:
import graph3;

size(200,0);

currentprojection=perspective(10,8,4);

real f(pair z) {return 0.5+exp(-abs(z)^2);}

draw((-1,-1,0)--(1,-1,0)--(1,1,0)--(-1,1,0)--cycle);

draw(arc(0.12Z,0.2,90,60,90,25),ArcArrow3);

surface s=surface(f,(-1,-1),(1,1),nx=5,Spline);

xaxis3(Label("$x$"),red,Arrow3);
yaxis3(Label("$y$"),red,Arrow3);
zaxis3(XYZero(extend=true),red,Arrow3);

draw(s,lightgray,meshpen=black+thick(),nolight,render(merge=true));

label("$O$",O,-Z+Y,red);

                         [./GaussianSurface]
A mesh can be drawn without surface filling by specifying ‘nullpen’ for
the surfacepen.

  A vector field of ‘nu’\times‘nv’ arrows on a parametric surface ‘f’
over ‘box(a,b)’ can be drawn with the routine
picture vectorfield(path3 vector(pair v), triple f(pair z), pair a, pair b,
                   int nu=nmesh, int nv=nu, bool truesize=false,
                   real maxlength=truesize ? 0 : maxlength(f,a,b,nu,nv),
                   bool cond(pair z)=null, pen p=currentpen,
                   arrowbar3 arrow=Arrow3, margin3 margin=PenMargin3)
  as illustrated in the examples ‘vectorfield3.asy’ and
‘vectorfieldsphere.asy’.


File: asymptote.info,  Node: grid3,  Next: solids,  Prev: graph3,  Up: Base modules

8.32 ‘grid3’
============

This module, contributed by Philippe Ivaldi, can be used for drawing 3D
grids.  Here is an example (further examples can be found in ‘grid3.asy’
and at
<https://web.archive.org/web/20201130113133/http://www.piprime.fr/files/asymptote/grid3/>):
import grid3;

size(8cm,0,IgnoreAspect);
currentprojection=orthographic(0.5,1,0.5);

scale(Linear, Linear, Log);

limits((-2,-2,1),(0,2,100));

grid3(XYZgrid);

xaxis3(Label("$x$",position=EndPoint,align=S),Bounds(Min,Min),
      OutTicks());
yaxis3(Label("$y$",position=EndPoint,align=S),Bounds(Min,Min),OutTicks());
zaxis3(Label("$z$",position=EndPoint,align=(-1,0.5)),Bounds(Min,Min),
      OutTicks(beginlabel=false));


                            [./grid3xyz]


File: asymptote.info,  Node: solids,  Next: tube,  Prev: grid3,  Up: Base modules

8.33 ‘solids’
=============

This solid geometry module defines a structure ‘revolution’ that can be
used to fill and draw surfaces of revolution.  The following example
uses it to display the outline of a circular cylinder of radius 1 with
axis ‘O--1.5unit(Y+Z)’ with perspective projection:
import solids;

size(0,100);

revolution r=cylinder(O,1,1.5,Y+Z);
draw(r,heavygreen);

                        [./cylinderskeleton]

  Further illustrations are provided in the example files
‘cylinder.asy’, ‘cones.asy’, ‘hyperboloid.asy’, and ‘torus.asy’.

  The structure ‘skeleton’ contains the three-dimensional wireframe
used to visualize a volume of revolution:
struct skeleton {
 struct curve {
   path3[] front;
   path3[] back;
 }
 // transverse skeleton (perpendicular to axis of revolution)
 curve transverse;
 // longitudinal skeleton (parallel to axis of revolution)
 curve longitudinal;
}


File: asymptote.info,  Node: tube,  Next: flowchart,  Prev: solids,  Up: Base modules

8.34 ‘tube’
===========

This module extends the ‘tube’ surfaces constructed in
‘three_arrows.asy’ to arbitrary cross sections, colors, and spine
transformations.  The routine
surface tube(path3 g, coloredpath section,
            transform T(real)=new transform(real t) {return identity();},
            real corner=1, real relstep=0);
draws a tube along ‘g’ with cross section ‘section’, after applying the
transformation ‘T(t)’ at ‘point(g,t)’.  The parameter ‘corner’ controls
the number of elementary tubes at the angular points of ‘g’.  A nonzero
value of ‘relstep’ specifies a fixed relative time step (in the sense of
‘relpoint(g,t)’) to use in constructing elementary tubes along ‘g’.  The
type ‘coloredpath’ is a generalization of ‘path’ to which a ‘path’ can
be cast:
struct coloredpath
{
 path p;
 pen[] pens(real);
 int colortype=coloredSegments;
}
Here ‘p’ defines the cross section and the method ‘pens(real t)’ returns
an array of pens (interpreted as a cyclic array) used for shading the
tube patches at ‘relpoint(g,t)’.  If ‘colortype=coloredSegments’, the
tube patches are filled as if each segment of the section was colored
with the pen returned by ‘pens(t)’, whereas if ‘colortype=coloredNodes’,
the tube components are vertex shaded as if the nodes of the section
were colored.

  A ‘coloredpath’ can be constructed with one of the routines:
coloredpath coloredpath(path p, pen[] pens(real),
                       int colortype=coloredSegments);
coloredpath coloredpath(path p, pen[] pens=new pen[] {currentpen},
                       int colortype=coloredSegments);
coloredpath coloredpath(path p, pen pen(real));
In the second case, the pens are independent of the relative time.  In
the third case, the array of pens contains only one pen, which depends
of the relative time.

  The casting of ‘path’ to ‘coloredpath’ allows the use of a ‘path’
instead of a ‘coloredpath’; in this case the shading behavior is the
default shading behavior for a surface.

  An example of ‘tube’ is provided in the file ‘trefoilknot.asy’.
Further examples can be found at
<https://web.archive.org/web/20201130113133/http://www.piprime.fr/files/asymptote/tube>.


File: asymptote.info,  Node: flowchart,  Next: contour,  Prev: tube,  Up: Base modules

8.35 ‘flowchart’
================

This module provides routines for drawing flowcharts.  The primary
structure is a ‘block’, which represents a single block on the
flowchart.  The following eight functions return a position on the
appropriate edge of the block, given picture transform ‘t’:

pair block.top(transform t=identity());
pair block.left(transform t=identity());
pair block.right(transform t=identity());
pair block.bottom(transform t=identity());
pair block.topleft(transform t=identity());
pair block.topright(transform t=identity());
pair block.bottomleft(transform t=identity());
pair block.bottomright(transform t=identity());

To obtain an arbitrary position along the boundary of the block in user
coordinates, use:
pair block.position(real x, transform t=identity());

The center of the block in user coordinates is stored in ‘block.center’
and the block size in ‘PostScript’ coordinates is given by ‘block.size’.

A frame containing the block is returned by
frame block.draw(pen p=currentpen);

  The following block generation routines accept a Label, string, or
frame for their object argument:

“rectangular block with an optional header (and padding ‘dx’ around header and body):”
    block rectangle(object header, object body, pair center=(0,0),
                    pen headerpen=mediumgray, pen bodypen=invisible,
                    pen drawpen=currentpen,
                    real dx=3, real minheaderwidth=minblockwidth,
                    real minheaderheight=minblockwidth,
                    real minbodywidth=minblockheight,
                    real minbodyheight=minblockheight);
    block rectangle(object body, pair center=(0,0),
                    pen fillpen=invisible, pen drawpen=currentpen,
                    real dx=3, real minwidth=minblockwidth,
                    real minheight=minblockheight);

“parallelogram block:”
    block parallelogram(object body, pair center=(0,0),
                        pen fillpen=invisible, pen drawpen=currentpen,
                        real dx=3, real slope=2,
                        real minwidth=minblockwidth,
                        real minheight=minblockheight);

“diamond-shaped block:”
    block diamond(object body, pair center=(0,0),
                  pen fillpen=invisible, pen drawpen=currentpen,
                  real ds=5, real dw=1,
                  real height=20, real minwidth=minblockwidth,
                  real minheight=minblockheight);

“circular block:”
    block circle(object body, pair center=(0,0), pen fillpen=invisible,
                 pen drawpen=currentpen, real dr=3,
                 real mindiameter=mincirclediameter);

“rectangular block with rounded corners:”
    block roundrectangle(object body, pair center=(0,0),
                         pen fillpen=invisible, pen drawpen=currentpen,
                         real ds=5, real dw=0, real minwidth=minblockwidth,
                         real minheight=minblockheight);

“rectangular block with beveled edges:”
    block bevel(object body, pair center=(0,0), pen fillpen=invisible,
                pen drawpen=currentpen, real dh=5, real dw=5,
                real minwidth=minblockwidth, real minheight=minblockheight);

  To draw paths joining the pairs in ‘point’ with right-angled lines,
use the routine:
path path(pair point[] ... flowdir dir[]);
The entries in ‘dir’ identify whether successive segments between the
pairs specified by ‘point’ should be drawn in the ‘Horizontal’ or
‘Vertical’ direction.

  Here is a simple flowchart example (see also the example
‘controlsystem.asy’):

size(0,300);

import flowchart;

block block1=rectangle(Label("Example",magenta),
                      pack(Label("Start:",heavygreen),"",Label("$A:=0$",blue),
                           "$B:=1$"),(-0.5,3),palegreen,paleblue,red);
block block2=diamond(Label("Choice?",blue),(0,2),palegreen,red);
block block3=roundrectangle("Do something",(-1,1));
block block4=bevel("Don't do something",(1,1));
block block5=circle("End",(0,0));

draw(block1);
draw(block2);
draw(block3);
draw(block4);
draw(block5);

add(new void(picture pic, transform t) {
   blockconnector operator --=blockconnector(pic,t);
   //    draw(pic,block1.right(t)--block2.top(t));
   block1--Right--Down--Arrow--block2;
   block2--Label("Yes",0.5,NW)--Left--Down--Arrow--block3;
   block2--Right--Label("No",0.5,NE)--Down--Arrow--block4;
   block4--Down--Left--Arrow--block5;
   block3--Down--Right--Arrow--block5;
 });

                          [./flowchartdemo]


File: asymptote.info,  Node: contour,  Next: contour3,  Prev: flowchart,  Up: Base modules

8.36 ‘contour’
==============

This module draws contour lines.  To construct contours corresponding to
the values in a real array ‘c’ for a function ‘f’ on ‘box(a,b)’, use the
routine
guide[][] contour(real f(real, real), pair a, pair b,
                 real[] c, int nx=ngraph, int ny=nx,
                 interpolate join=operator --, int subsample=1);
The integers ‘nx’ and ‘ny’ define the resolution.  The default
resolution, ‘ngraph x ngraph’ (here ‘ngraph’ defaults to ‘100’) can be
increased for greater accuracy.  The default interpolation operator is
‘operator --’ (linear).  Spline interpolation (‘operator ..’) may
produce smoother contours but it can also lead to overshooting.  The
‘subsample’ parameter indicates the number of interior points that
should be used to sample contours within each ‘1 x 1’ box; the default
value of ‘1’ is usually sufficient.

  To construct contours for an array of data values on a uniform
two-dimensional lattice on ‘box(a,b)’, use
guide[][] contour(real[][] f, pair a, pair b, real[] c,
                 interpolate join=operator --, int subsample=1);

  To construct contours for an array of data values on a nonoverlapping
regular mesh specified by the two-dimensional array ‘z’,
guide[][] contour(pair[][] z, real[][] f, real[] c,
                 interpolate join=operator --, int subsample=1);

To construct contours for an array of values ‘f’ specified at
irregularly positioned points ‘z’, use the routine
guide[][] contour(pair[] z, real[] f, real[] c, interpolate join=operator --);
The contours themselves can be drawn with one of the routines
void draw(picture pic=currentpicture, Label[] L=new Label[],
         guide[][] g, pen p=currentpen);

void draw(picture pic=currentpicture, Label[] L=new Label[],
         guide[][] g, pen[] p);

  The following simple example draws the contour at value ‘1’ for the
function z=x^2+y^2, which is a unit circle:
import contour;
size(75);

real f(real a, real b) {return a^2+b^2;}
draw(contour(f,(-1,-1),(1,1),new real[] {1}));

                           [./onecontour]

  The next example draws and labels multiple contours for the function
z=x^2-y^2 with the resolution ‘100 x 100’, using a dashed pen for
negative contours and a solid pen for positive (and zero) contours:
import contour;

size(200);

real f(real x, real y) {return x^2-y^2;}
int n=10;
real[] c=new real[n];
for(int i=0; i < n; ++i) c[i]=(i-n/2)/n;

pen[] p=sequence(new pen(int i) {
   return (c[i] >= 0 ? solid : dashed)+fontsize(6pt);
 },c.length);

Label[] Labels=sequence(new Label(int i) {
   return Label(c[i] != 0 ? (string) c[i] : "",Relative(unitrand()),(0,0),
                UnFill(1bp));
 },c.length);

draw(Labels,contour(f,(-1,-1),(1,1),c),p);

                          [./multicontour]

  The next examples illustrates how contour lines can be drawn on color
density images, with and without palette quantization:
import graph;
import palette;
import contour;

size(10cm,10cm);

pair a=(0,0);
pair b=(2pi,2pi);

real f(real x, real y) {return cos(x)*sin(y);}

int N=200;
int Divs=10;
int divs=1;
int n=Divs*divs;

defaultpen(1bp);
pen Tickpen=black;
pen tickpen=gray+0.5*linewidth(currentpen);
pen[] Palette=quantize(BWRainbow(),n);

bounds range=image(f,Automatic,a,b,3N,Palette,n);

// Major contours
real[] Cvals=uniform(range.min,range.max,Divs);
draw(contour(f,a,b,Cvals,N,operator --),Tickpen+squarecap+beveljoin);

// Minor contours (if divs > 1)
real[] cvals;
for(int i=0; i < Cvals.length-1; ++i)
 cvals.append(uniform(Cvals[i],Cvals[i+1],divs)[1:divs]);
draw(contour(f,a,b,cvals,N,operator --),tickpen);

xaxis("$x$",BottomTop,LeftTicks,above=true);
yaxis("$y$",LeftRight,RightTicks,above=true);

palette("$f(x,y)$",range,point(SE)+(0.5,0),point(NE)+(1,0),Right,Palette,
       PaletteTicks("$%+#0.1f$",N=Divs,n=divs,Tickpen,tickpen));

                           [./fillcontour]

import graph;
import palette;
import contour;

size(10cm,10cm);

pair a=(0,0);
pair b=(2pi,2pi);

real f(real x, real y) {return cos(x)*sin(y);}

int N=200;
int Divs=10;
int divs=1;

defaultpen(1bp);
pen Tickpen=black;
pen tickpen=gray+0.5*linewidth(currentpen);
pen[] Palette=BWRainbow();

bounds range=image(f,Automatic,a,b,N,Palette);

// Major contours
real[] Cvals=uniform(range.min,range.max,Divs);
draw(contour(f,a,b,Cvals,N,operator --),Tickpen+squarecap+beveljoin);

// Minor contours (if divs > 1)
real[] cvals;
for(int i=0; i < Cvals.length-1; ++i)
 cvals.append(uniform(Cvals[i],Cvals[i+1],divs)[1:divs]);
draw(contour(f,a,b,cvals,N,operator --),tickpen+squarecap+beveljoin);

xaxis("$x$",BottomTop,LeftTicks,above=true);
yaxis("$y$",LeftRight,RightTicks,above=true);

palette("$f(x,y)$",range,point(SE)+(0.5,0),point(NE)+(1,0),Right,Palette,
       PaletteTicks("$%+#0.1f$",N=Divs,n=divs,Tickpen,tickpen));

                          [./imagecontour]

  Finally, here is an example that illustrates the construction of
contours from irregularly spaced data:
import contour;

size(200);

int n=100;

real f(real a, real b) {return a^2+b^2;}

srand(1);

real r() {return 1.1*(rand()/randMax*2-1);}

pair[] points=new pair[n];
real[] values=new real[n];

for(int i=0; i < n; ++i) {
 points[i]=(r(),r());
 values[i]=f(points[i].x,points[i].y);
}

draw(contour(points,values,new real[]{0.25,0.5,1},operator ..),blue);

                        [./irregularcontour]

  In the above example, the contours of irregularly spaced data are
constructed by first creating a triangular mesh from an array ‘z’ of
pairs:

int[][] triangulate(pair[] z);

size(200);
int np=100;
pair[] points;

real r() {return 1.2*(rand()/randMax*2-1);}

for(int i=0; i < np; ++i)
 points.push((r(),r()));

int[][] trn=triangulate(points);

for(int i=0; i < trn.length; ++i) {
 draw(points[trn[i][0]]--points[trn[i][1]]);
 draw(points[trn[i][1]]--points[trn[i][2]]);
 draw(points[trn[i][2]]--points[trn[i][0]]);
}

for(int i=0; i < np; ++i)
 dot(points[i],red);

                           [./triangulate]

  The example ‘Gouraudcontour.asy’ illustrates how to produce color
density images over such irregular triangular meshes.  ‘Asymptote’ uses
a robust version of Paul Bourke's Delaunay triangulation algorithm based
on the public-domain exact arithmetic predicates written by Jonathan
Shewchuk.


File: asymptote.info,  Node: contour3,  Next: smoothcontour3,  Prev: contour,  Up: Base modules

8.37 ‘contour3’
===============

This module draws surfaces described as the null space of real-valued
functions of (x,y,z) or ‘real[][][]’ matrices.  Its usage is illustrated
in the example file ‘magnetic.asy’.


File: asymptote.info,  Node: smoothcontour3,  Next: slopefield,  Prev: contour3,  Up: Base modules

8.38 ‘smoothcontour3’
=====================

This module, written by Charles Staats, draws implicitly defined
surfaces with smooth appearance.  The purpose of this module is similar
to that of ‘contour3’: given a real-valued function f(x,y,z), construct
the surface described by the equation f(x,y,z) = 0.  The
‘smoothcontour3’ module generally produces nicer results than
‘contour3’, but takes longer to compile.  Additionally, the algorithm
assumes that the function and the surface are both smooth; if they are
not, then ‘contour3’ may be a better choice.

  To construct the null surface of a function ‘f(triple)’ or
‘ff(real,real,real)’ over ‘box(a,b)’, use the routine
surface implicitsurface(real f(triple)=null,
                       real ff(real,real,real)=null,
                       triple a,
                       triple b,
                       int n=nmesh,
                       bool keyword overlapedges=false,
                       int keyword nx=n,
                       int keyword ny=n,
                       int keyword nz=n,
                       int keyword maxdepth=8,
                       bool usetriangles=true);
The optional parameter ‘overlapedges’ attempts to compensate for an
artifact that can cause the renderer to "see through" the boundary
between patches.  Although it defaults to ‘false’, it should usually be
set to ‘true’.  The example ‘genustwo.asy’ illustrates the use of this
function.  Additional examples, together with a more in-depth
explanation of the module's usage and pitfalls, are available at
<https://github.com/charlesstaats/smoothcontour3>.


File: asymptote.info,  Node: slopefield,  Next: ode,  Prev: smoothcontour3,  Up: Base modules

8.39 ‘slopefield’
=================

To draw a slope field for the differential equation dy/dx=f(x,y) (or
dy/dx=f(x)), use:
picture slopefield(real f(real,real), pair a, pair b,
                  int nx=nmesh, int ny=nx,
                  real tickfactor=0.5, pen p=currentpen,
                  arrowbar arrow=None);
Here, the points ‘a’ and ‘b’ are the lower left and upper right corners
of the rectangle in which the slope field is to be drawn, ‘nx’ and ‘ny’
are the respective number of ticks in the x and y directions,
‘tickfactor’ is the fraction of the minimum cell dimension to use for
drawing ticks, and ‘p’ is the pen to use for drawing the slope fields.
The return value is a picture that can be added to ‘currentpicture’ via
the ‘add(picture)’ command.

  The function
path curve(pair c, real f(real,real), pair a, pair b);
takes a point (‘c’) and a slope field-defining function ‘f’ and returns,
as a path, the curve passing through that point.  The points ‘a’ and ‘b’
represent the rectangular boundaries over which the curve is
interpolated.

  Both ‘slopefield’ and ‘curve’ alternatively accept a function ‘real
f(real)’ that depends on x only, as seen in this example:

import slopefield;

size(200);

real func(real x) {return 2x;}
add(slopefield(func,(-3,-3),(3,3),20));
draw(curve((0,0),func,(-3,-3),(3,3)),red);

                           [./slopefield1]


File: asymptote.info,  Node: ode,  Prev: slopefield,  Up: Base modules

8.40 ‘ode’
==========

The ‘ode’ module, illustrated in the example ‘odetest.asy’, implements a
number of explicit numerical integration schemes for ordinary
differential equations.


File: asymptote.info,  Node: Options,  Next: Interactive mode,  Prev: Base modules,  Up: Top

9 Command-line options
**********************

Type ‘asy -h’ to see the full list of command-line options supported by
‘Asymptote’:
Usage: ../asy [options] [file ...]

Options (negate boolean options by replacing - with -no):

-GPUblockSize n        Compute shader block size [8]
-GPUcompress           Compress GPU transparent fragment counts [false]
-GPUindexing           Compute indexing partial sums on GPU [true]
-GPUinterlock          Use fragment shader interlock [true]
-GPUlocalSize n        Compute shader local size [256]
-V,-View               View output; command-line only
-absolute              Use absolute WebGL dimensions [false]
-a,-align C|B|T|Z      Center, Bottom, Top, or Zero page alignment [C]
-aligndir pair         Directional page alignment (overrides align) [(0,0)]
-animating             [false]
-antialias n           Antialiasing width for rasterized output [2]
-auto3D                Automatically activate 3D scene [true]
-autobillboard         3D labels always face viewer by default [true]
-autoimport str        Module to automatically import
-autoplain             Enable automatic importing of plain [true]
-autoplay              Autoplay 3D animations [false]
-autorotate            Enable automatic PDF page rotation [false]
-axes3                 Show 3D axes in PDF output [true]
-batchMask             Mask fpu exceptions in batch mode [false]
-batchView             View output in batch mode [false]
-bw                    Convert all colors to black and white false
-cd directory          Set current directory; command-line only
-cmyk                  Convert rgb colors to cmyk false
-c,-command str        Command to autoexecute
-compact               Conserve memory at the expense of speed false
-compress              Compress images in PDF output [true]
-convertOptions str    []
-d,-debug              Enable debugging messages and traceback false
-devicepixelratio n    Ratio of physical to logical pixels [1]
-digits n              Default output file precision [7]
-divisor n             Garbage collect using purge(divisor=n) [2]
-dvipsOptions str      []
-dvisvgmMultipleFiles  dvisvgm supports multiple files [true]
-dvisvgmOptions str    [--optimize]
-embed                 Embed rendered preview image [true]
-e,-environment        Show summary of environment settings; command-line only
-exitonEOF             Exit interactive mode on EOF [true]
-fitscreen             Fit rendered image to screen [true]
-framerate frames/s    Animation speed [30]
-glOptions str         []
-globalread            Allow read from other directory true
-globalwrite           Allow write to other directory false
-gray                  Convert all colors to grayscale false
-gsOptions str         []
-h,-help               Show summary of options; command-line only
-historylines n        Retain n lines of history [1000]
-htmlviewerOptions str
                      []
-hyperrefOptions str   [setpagesize=false,unicode,pdfborder=0 0 0]
-ibl                   Enable environment map image-based lighting [false]
-iconify               Iconify rendering window [false]
-image str             Environment image name [snowyField]
-imageDir str          Environment image library directory [ibl]
-inlineimage           Generate inline embedded image [false]
-inlinetex             Generate inline TeX code [false]
-inpipe n              Input pipe [-1]
-interactiveMask       Mask fpu exceptions in interactive mode [true]
-interactiveView       View output in interactive mode [true]
-interactiveWrite      Write expressions entered at the prompt to stdout [true]
-interrupt             [false]
-k,-keep               Keep intermediate files [false]
-keepaux               Keep intermediate LaTeX .aux files [false]
-keys                  Generate WebGL keys false
-level n               Postscript level [3]
-l,-listvariables      List available global functions and variables [false]
-localhistory          Use a local interactive history file [false]
-loop                  Loop 3D animations [false]
-lossy                 Use single precision for V3D reals [false]
-lsp                   Interactive mode for the Language Server Protocol [false]
-m,-mask               Mask fpu exceptions; command-line only
-maxtile pair          Maximum rendering tile size [(1024,768)]
-maxviewport pair      Maximum viewport size [(0,0)]
-multiline             Input code over multiple lines at the prompt [false]
-multipleView          View output from multiple batch-mode files [false]
-multisample n         Multisampling width for screen images [4]
-offline               Produce offline html files [false]
-O,-offset pair        PostScript offset [(0,0)]
-f,-outformat format   Convert each output file to specified format
-o,-outname name       Alternative output directory/file prefix
-outpipe n             Output pipe [-1]
-paperheight bp        Default page height [0]
-paperwidth bp         Default page width [0]
-p,-parseonly          Parse file [false]
-pdfreload             Automatically reload document in pdfviewer [false]
-pdfreloadOptions str  []
-pdfreloaddelay usec   Delay before attempting initial pdf reload [750000]
-pdfviewerOptions str  []
-position pair         Initial 3D rendering screen position [(0,0)]
-prc                   Embed 3D PRC graphics in PDF output [false]
-prerender resolution  Prerender V3D objects (0 implies vector output) [0]
-prompt str            Prompt [> ]
-prompt2 str           Continuation prompt for multiline input  [..]
-psviewerOptions str   []
-q,-quiet              Suppress welcome text and noninteractive stdout [false]
-render n              Render 3D graphics using n pixels per bp (-1=auto) [-1]
-resizestep step       Resize step [1.2]
-reverse               reverse 3D animations [false]
-rgb                   Convert cmyk colors to rgb false
-safe                  Disable system call true
-scroll n              Scroll standard output n lines at a time [0]
-shiftHoldDistance n   WebGL touch screen distance limit for shift mode [20]
-shiftWaitTime ms      WebGL touch screen shift mode delay [200]
-spinstep deg/s        Spin speed [60]
-svgemulation          Emulate unimplemented SVG shading [true]
-tabcompletion         Interactive prompt auto-completion [true]
-tex engine            latex|pdflatex|xelatex|lualatex|tex|pdftex|luatex|context|none [latex]
-thick                 Render thick 3D lines [true]
-thin                  Render thin 3D lines [true]
-threads               Use POSIX threads for 3D rendering [true]
-toolbar               Show 3D toolbar in PDF output [true]
-s,-translate          Show translated virtual machine code [false]
-twice                 Run LaTeX twice (to resolve references) [false]
-twosided              Use two-sided 3D lighting model for rendering [true]
-u,-user str           General purpose user string
-v3d                   Embed 3D V3D graphics in PDF output [false]
-v,-verbose            Increase verbosity level (can specify multiple times) 0
-version               Show version; command-line only
-vibrateTime ms        WebGL shift mode vibrate duration [25]
-viewportmargin pair   Horizontal and vertical 3D viewport margin [(0.5,0.5)]
-wait                  Wait for child processes to finish before exiting [false]
-warn str              Enable warning; command-line only
-webgl2                Use webgl2 if available [false]
-where                 Show where listed variables are declared [false]
-wsl                   Run asy under the Windows Subsystem for Linux [false]
-xasy                  Interactive mode for xasy false
-zoomPinchCap limit    WebGL maximum zoom pinch [100]
-zoomPinchFactor n     WebGL zoom pinch sensitivity [10]
-zoomfactor factor     Zoom step factor [1.05]
-zoomstep step         Mouse motion zoom step [0.1]

  All boolean options can be negated by prepending ‘no’ to the option
name.

  If no arguments are given, ‘Asymptote’ runs in interactive mode
(*note Interactive mode::).  In this case, the default output file is
‘out.eps’.

  If ‘-’ is given as the file argument, ‘Asymptote’ reads from standard
input.

  If multiple files are specified, they are treated as separate
‘Asymptote’ runs.

  If the string ‘autoimport’ is nonempty, a module with this name is
automatically imported for each run as the final step in loading module
‘plain’.

  Default option values may be entered as ‘Asymptote’ code in a
configuration file named ‘config.asy’ (or the file specified by the
environment variable ‘ASYMPTOTE_CONFIG’ or ‘-config’ option).
‘Asymptote’ will look for this file in its usual search path (*note
Search paths::).  Typically the configuration file is placed in the
‘.asy’ directory in the user's home directory (‘%USERPROFILE%\.asy’
under ‘MSDOS’).  Configuration variables are accessed using the long
form of the option names:
import settings;
outformat="pdf";
batchView=false;
interactiveView=true;
batchMask=false;
interactiveMask=true;
  Command-line options override these defaults.  Most configuration
variables may also be changed at runtime.  The advanced configuration
variables ‘dvipsOptions’, ‘hyperrefOptions’, ‘convertOptions’,
‘gsOptions’, ‘htmlviewerOptions’, ‘psviewerOptions’, ‘pdfviewerOptions’,
‘pdfreloadOptions’, ‘glOptions’, and ‘dvisvgmOptions’ allow specialized
options to be passed as a string to the respective applications or
libraries.  The default value of ‘hyperrefOptions’ is
‘setpagesize=false,unicode,pdfborder=0 0 0’.

  If you insert
import plain;
settings.autoplain=true;
at the beginning of the configuration file, it can contain arbitrary
‘Asymptote’ code.

  The default output format is EPS for the (default) ‘latex’ and ‘tex’
tex engine and PDF for the ‘pdflatex’, ‘xelatex’, ‘context’, ‘luatex’,
and ‘lualatex’ tex engines.  Alternative output formats may be produced
using the ‘-f’ option (or ‘outformat’ setting).

  To produce SVG output, you will need ‘dvisvgm’ (version 3.2.1 or
later) from <https://dvisvgm.de>, which can display SVG output (used by
the ‘xasy’ editor) for embedded EPS, PDF, PNG, and JPEG images included
with the ‘graphic()’ function.  The generated output is optimized with
the default setting ‘settings.dvisvgmOptions="--optimize"’.

  ‘Asymptote’ can also produce any output format supported by the
‘ImageMagick’ ‘magick’ program (version 7 or later.  The optional
setting ‘-render n’ requests an output resolution of ‘n’ pixels per
‘bp’.  Antialiasing is controlled by the parameter ‘antialias’, which by
default specifies a sampling width of 2 pixels.  To give other options
to ‘magick’, use the ‘convertOptions’ setting or call ‘magick convert’
manually.  This example emulates how ‘Asymptote’ produces antialiased
‘tiff’ output at one pixel per ‘bp’:
asy -o - venn | magick convert -alpha Off -density 144x144 -geometry 50%x eps:- venn.tiff

  If the option ‘-nosafe’ is given, ‘Asymptote’ runs in unsafe mode.
This enables the ‘int system(string s)’ and ‘int system(string[] s)’
calls, allowing one to execute arbitrary shell commands.  The default
mode, ‘-safe’, disables this call.

  A ‘PostScript’ offset may be specified as a pair (in ‘bp’ units) with
the ‘-O’ option:
asy -O 0,0 file
The default offset is zero.  The pair ‘aligndir’ specifies an optional
direction on the boundary of the page (mapped to the rectangle
[-1,1]\times[-1,1]) to which the picture should be aligned; the default
value ‘(0,0)’ species center alignment.

  The ‘-c’ (‘command’) option may be used to execute arbitrary
‘Asymptote’ code on the command line as a string.  It is not necessary
to terminate the string with a semicolon.  Multiple ‘-c’ options are
executed in the order they are given.  For example
asy -c 2+2 -c "sin(1)" -c "size(100); draw(unitsquare)"
produces the output
4
0.841470984807897
and draws a unitsquare of size ‘100’.

  The ‘-u’ (‘user’) option may be used to specify arbitrary ‘Asymptote’
settings on the command line as a string.  It is not necessary to
terminate the string with a semicolon.  Multiple ‘-u’ options are
executed in the order they are given.  Command-line code like ‘-u
x=sqrt(2)’ can be executed within a module like this:
real x;
usersetting();
write(x);

  When the ‘-l’ (‘listvariables’) option is used with file arguments,
only global functions and variables defined in the specified file(s) are
listed.

  Additional debugging output is produced with each additional ‘-v’
option:
‘-v’
    Display top-level module and final output file names.
‘-vv’
    Also display imported and included module names and final ‘LaTeX’
    and ‘dvips’ processing information.
‘-vvv’
    Also output ‘LaTeX’ bidirectional pipe diagnostics.
‘-vvvv’
    Also output knot guide solver diagnostics.
‘-vvvvv’
    Also output ‘Asymptote’ traceback diagnostics.


File: asymptote.info,  Node: Interactive mode,  Next: GUI,  Prev: Options,  Up: Top

10 Interactive mode
*******************

Interactive mode is entered by executing the command ‘asy’ with no file
arguments.  When the ‘-multiline’ option is disabled (the default), each
line must be a complete ‘Asymptote’ statement (unless explicitly
continued by a final backslash character ‘\’); it is not necessary to
terminate input lines with a semicolon.  If one assigns
‘settings.multiline=true’, interactive code can be entered over multiple
lines; in this mode, the automatic termination of interactive input
lines by a semicolon is inhibited.  Multiline mode is useful for cutting
and pasting ‘Asymptote’ code directly into the interactive input buffer.

  Interactive mode can be conveniently used as a calculator:
expressions entered at the interactive prompt (for which a corresponding
‘write’ function exists) are automatically evaluated and written to
‘stdout’.  If the expression is non-writable, its type signature will be
printed out instead.  In either case, the expression can be referred to
using the symbol ‘%’ in the next line input at the prompt.  For example:
> 2+3
5
> %*4
20
> 1/%
0.05
> sin(%)
0.0499791692706783
> currentpicture
<picture currentpicture>
> %.size(200,0)
>

  The ‘%’ symbol, when used as a variable, is shorthand for the
identifier ‘operator answer’, which is set by the prompt after each
written expression evaluation.

  The following special commands are supported only in interactive mode
and must be entered immediately after the prompt:

‘help’
    view the manual;
‘erase’
    erase ‘currentpicture’;
‘reset’
    reset the ‘Asymptote’ environment to its initial state, except for
    changes to the settings module (*note settings::), the current
    directory (*note cd::), and breakpoints (*note Debugger::);
‘input FILE’
    does an interactive reset, followed by the command ‘include FILE’.
    If the file name ‘FILE’ contains nonalphanumeric characters,
    enclose it with quotation marks.  A trailing semi-colon followed by
    optional ‘Asymptote’ commands may be entered on the same line.
‘quit’
    exit interactive mode (‘exit’ is a synonym; the abbreviation ‘q’ is
    also accepted unless there exists a top-level variable named ‘q’).
    A history of the most recent 1000 (this number can be changed with
    the ‘historylines’ configuration variable) previous commands will
    be retained in the file ‘.asy/history’ in the user's home directory
    (unless the command-line option ‘-localhistory’ was specified, in
    which case the history will be stored in the file ‘.asy_history’ in
    the current directory).

  Typing ‘ctrl-C’ interrupts the execution of ‘Asymptote’ code and
returns control to the interactive prompt.

  Interactive mode is implemented with the GNU ‘readline’ library, with
command history and auto-completion.  To customize the key bindings,
see: <https://tiswww.case.edu/php/chet/readline/readline.html>

  The file ‘asymptote.py’ in the ‘Asymptote’ system directory provides
an alternative way of entering ‘Asymptote’ commands interactively,
coupled with the full power of ‘Python’.  Copy this file to your ‘Python
path’ and then execute from within ‘Python 3’ the commands
from asymptote import *
g=asy()
g.size(200)
g.draw("unitcircle")
g.send("draw(unitsquare)")
g.fill("unitsquare, blue")
g.clip("unitcircle")
g.label("\"$O$\", (0,0), SW")


File: asymptote.info,  Node: GUI,  Next: Command-Line Interface,  Prev: Interactive mode,  Up: Top

11 Graphical User Interface
***************************

* Menu:

* GUI installation::            Installing ‘xasy’
* GUI usage::                   Using ‘xasy’ to edit objects

In the event that adjustments to the final figure are required, the
preliminary Graphical User Interface (GUI) ‘xasy’ included with
‘Asymptote’ allows you to move graphical objects and draw new ones.  The
modified figure can then be saved as a normal ‘Asymptote’ file.


File: asymptote.info,  Node: GUI installation,  Next: GUI usage,  Up: GUI

11.1 GUI installation
=====================

As ‘xasy’ is written in the interactive scripting language ‘Python/Qt’,
it requires ‘Python’ (<https://www.python.org>), along with the ‘Python’
packages ‘pyqt5’, ‘cson’, and ‘numpy’:

pip3 install cson numpy pyqt5 PyQt5.sip

  Pictures are deconstructed into the SVG image format.  Since ‘Qt5’
does not support ‘SVG’ clipping, you will need the ‘rsvg-convert’
utility, which is part of the ‘librsvg2-tools’ package on ‘UNIX’ systems
and the ‘librsvg’ package on ‘MacOS X’; under ‘Microsoft Windows’, it is
available as

  <https://sourceforge.net/projects/tumagcc/files/rsvg-convert-2.40.20.7z>

  Ensure that ‘rsvg-convert’ is available in ‘PATH’, or specify the
location of ‘rsvg-convert’ in ‘rsvgConverterPath’ option within ‘xasy’'s
settings.

  Deconstruction of a picture into its components is fastest when using
the ‘LaTeX’ TeX engine.  The default setting ‘dvisvgmMultipleFiles=true’
speeds up deconstruction under PDF TeX engines.


File: asymptote.info,  Node: GUI usage,  Prev: GUI installation,  Up: GUI

11.2 GUI usage
==============

The arrow keys (or mouse wheel) are convenient for temporarily raising
and lowering objects within ‘xasy’, allowing an object to be selected.
Pressing the arrow keys will pan while the shift key is held and zoom
while the control key is held.  The mouse wheel will pan while the alt
or shift keys is held and zoom while the control key is held.  In
translate mode, an object can be dragged coarsely with the mouse or
positioned finely with the arrow keys while holding down the mouse
button.

  Deconstruction of compound objects (such as arrows) can be prevented
by enclosing them within the commands
void begingroup(picture pic=currentpicture);
void endgroup(picture pic=currentpicture);
  By default, the elements of a picture or frame will be grouped
together on adding them to a picture.  However, the elements of a frame
added to another frame are not grouped together by default: their
elements will be individually deconstructed (*note add::).


File: asymptote.info,  Node: Command-Line Interface,  Next: Language server protocol,  Prev: GUI,  Up: Top

12 Command-Line Interface
*************************

‘Asymptote’ code may be sent to the <https://asymptote.ualberta.ca>
server directly from the command line

  • SVG output:

    ‘curl --data-binary 'import venn;'
    'asymptote.ualberta.ca:10007?f=svg' | display -’

  • HTML output:

    ‘curl --data-binary
    @/usr/local/share/doc/asymptote/examples/Klein.asy
    'asymptote.ualberta.ca:10007' -o Klein.html’

  • V3D output:

    ‘curl --data-binary 'import teapot;'
    'asymptote.ualberta.ca:10007?f=v3d' -o teapot.v3d’

  • PDF output with rendered bitmap at 2 pixels per bp:

    ‘curl --data-binary 'import teapot;'
    'asymptote.ualberta.ca:10007?f=pdf' -o teapot.pdf’

  • PDF output with rendered bitmap at 4 pixels per bp:

    ‘curl --data-binary 'import teapot;'
    'asymptote.ualberta.ca:10007?f=pdf&render=4' -o teapot.pdf’

  • PRC output:

    ‘curl --data-binary 'import teapot;'
    'asymptote.ualberta.ca:10007?f=pdf&prc' -o teapot.pdf’

  • PRC output with rendered preview bitmap at 4 pixels per bp:

    ‘curl --data-binary 'import teapot;'
    'asymptote.ualberta.ca:10007?f=pdf&prc&render=4' -o teapot.pdf’

  The source code for the command-line interface is available at
<https://github.com/vectorgraphics/asymptote-http-server>.


File: asymptote.info,  Node: Language server protocol,  Next: PostScript to Asymptote,  Prev: Command-Line Interface,  Up: Top

13 Language server protocol
***************************

Under ‘UNIX’ and ‘MacOS X’, ‘Asymptote’ supports features of the
Language Server Protocol (LSP)
(https://en.wikipedia.org/wiki/Language_Server_Protocol), including
function signature and variable matching.  Under ‘MSWindows’,
‘Asymptote’ currently supports LSP only when compiled within the
‘Windows Subsystem for Linux’.

  ‘Emacs’ users can enable the ‘Asymptote’ language server protocol by
installing ‘lsp-mode’ using the following procedure:

  • Add to the ‘.emacs’ initialization file:
    (require 'package)
    (add-to-list 'package-archives '("melpa" . "https://melpa.org/packages/") t)
    (package-initialize)

  • Launch emacs and execute
    M-x package-refresh-contents
    M-x package-install
    and select ‘lsp-mode’.

  • Add to the ‘.emacs’ initialization file:
    (require 'lsp-mode)
    (add-to-list 'lsp-language-id-configuration '(asy-mode . "asymptote"))

    (lsp-register-client
     (make-lsp-client :new-connection (lsp-stdio-connection '("asy" "-lsp"))
                      :activation-fn (lsp-activate-on "asymptote")
                      :major-modes '(asy-mode)
                      :server-id 'asyls
                      )
     )

  • Launch emacs and execute
    M-x lsp


File: asymptote.info,  Node: PostScript to Asymptote,  Next: Help,  Prev: Language server protocol,  Up: Top

14 ‘PostScript’ to ‘Asymptote’
******************************

The excellent ‘PostScript’ editor ‘pstoedit’ (version 3.50 or later;
available from <https://sourceforge.net/projects/pstoedit/>) includes an
‘Asymptote’ backend.  Unlike virtually all other ‘pstoedit’ backends,
this driver includes native clipping, even-odd fill rule, ‘PostScript’
subpath, and full image support.  Here is an example:

‘asy -V /usr/local/share/doc/asymptote/examples/venn.asy’
pstoedit -f asy venn.eps test.asy
asy -V test

If the line widths aren't quite correct, try giving ‘pstoedit’ the
‘-dis’ option.  If the fonts aren't typeset correctly, try giving
‘pstoedit’ the ‘-dt’ option.


File: asymptote.info,  Node: Help,  Next: Debugger,  Prev: PostScript to Asymptote,  Up: Top

15 Help
*******

A list of frequently asked questions (FAQ) is maintained at
    <https://asymptote.sourceforge.io/FAQ>
Questions on installing and using ‘Asymptote’ that are not addressed in
the FAQ should be sent to the ‘Asymptote’ forum:
    <https://sourceforge.net/p/asymptote/discussion/409349>
Including an example that illustrates what you are trying to do will
help you get useful feedback.  ‘LaTeX’ problems can often be diagnosed
with the ‘-vv’ or ‘-vvv’ command-line options.  Contributions in the
form of patches or ‘Asymptote’ modules can be posted here:
    <https://sourceforge.net/p/asymptote/patches>
To receive announcements of upcoming releases, please subscribe to
‘Asymptote’ at
    <https://sourceforge.net/projects/asymptote/>
If you find a bug in ‘Asymptote’, please check (if possible) whether the
bug is still present in the latest ‘git’ developmental code (*note
Git::) before submitting a bug report.  New bugs can be reported at
    <https://github.com/vectorgraphics/asymptote/issues>
To see if the bug has already been fixed, check bugs with Status
‘Closed’ and recent lines in
    <https://asymptote.sourceforge.io/ChangeLog>

  ‘Asymptote’ can be configured with the optional GNU library
‘libsigsegv’, available from <https://www.gnu.org/software/libsigsegv/>,
which allows one to distinguish user-generated ‘Asymptote’ stack
overflows (*note stack overflow::) from true segmentation faults (due to
internal C++ programming errors; please submit the ‘Asymptote’ code that
generates such segmentation faults along with your bug report).


File: asymptote.info,  Node: Debugger,  Next: Credits,  Prev: Help,  Up: Top

16 Debugger
***********

Asymptote now includes a line-based (as opposed to code-based) debugger
that can assist the user in following flow control.  To set a break
point in file ‘file’ at line ‘line’, use the command

void stop(string file, int line, code s=quote{});
The optional argument ‘s’ may be used to conditionally set the variable
‘ignore’ in ‘plain_debugger.asy’ to ‘true’.  For example, the first 10
instances of this breakpoint will be ignored (the variable ‘int count=0’
is defined in ‘plain_debugger.asy’):
stop("test",2,quote{ignore=(++count <= 10);});

  To set a break point in file ‘file’ at the first line containing the
string ‘text’, use

void stop(string file, string text, code s=quote{});
To list all breakpoints, use:
void breakpoints();
To clear a breakpoint, use:
void clear(string file, int line);
To clear all breakpoints, use:
void clear();

  The following commands may be entered at the debugging prompt:

‘h’
    help;
‘c’
    continue execution;

‘i’
    step to the next instruction;

‘s’
    step to the next executable line;

‘n’
    step to the next executable line in the current file;

‘f’
    step to the next file;

‘r’
    return to the file associated with the most recent breakpoint;

‘t’
    toggle tracing (‘-vvvvv’) mode;

‘q’
    quit debugging and end execution;

‘x’
    exit the debugger and run to completion.

Arbitrary ‘Asymptote’ code may also be entered at the debugging prompt;
however, since the debugger is implemented with ‘eval’, currently only
top-level (global) variables can be displayed or modified.

  The debugging prompt may be entered manually with the call
void breakpoint(code s=quote{});


File: asymptote.info,  Node: Credits,  Next: Index,  Prev: Debugger,  Up: Top

17 Acknowledgments
******************

Financial support for the development of ‘Asymptote’ was generously
provided by the Natural Sciences and Engineering Research Council of
Canada, the Pacific Institute for Mathematical Sciences, and the
University of Alberta Faculty of Science.

  We also would like to acknowledge the previous work of John D. Hobby,
author of the program ‘MetaPost’ that inspired the development of
‘Asymptote’, and Donald E. Knuth, author of TeX and ‘MetaFont’ (on which
‘MetaPost’ is based).

  The authors of ‘Asymptote’ are Andy Hammerlindl, John Bowman, and Tom
Prince.  Sean Healy designed the ‘Asymptote’ logo.  Other contributors
include Orest Shardt, Jesse Frohlich, Michail Vidiassov, Charles Staats,
Philippe Ivaldi, Olivier Guibé, Radoslav Marinov, Jeff Samuelson, Chris
Savage, Jacques Pienaar, Mark Henning, Steve Melenchuk, Martin Wiebusch,
Stefan Knorr, Supakorn "Jamie" Rassameemasmuang, Jacob Skitsko, Joseph
Chaumont, and Oliver Cheng.  Pedram Emami developed the ‘Asymptote Web
Application’ hosted at <https://asymptote.ualberta.ca>:

  <https://github.com/vectorgraphics/asymptoteWebApplication>


File: asymptote.info,  Node: Index,  Prev: Credits,  Up: Top

Index
*****

[index]
* Menu:

* -:                                     Arithmetic & logical.
                                                            (line   14)
* --:                                    Paths.              (line   16)
* -- <1>:                                Self & prefix operators.
                                                            (line    6)
* ---:                                   Bezier curves.      (line   84)
* -=:                                    Self & prefix operators.
                                                            (line    6)
* -c:                                    Options.            (line  222)
* -l:                                    Options.            (line  241)
* -u:                                    Options.            (line  232)
* -V:                                    Configuring.        (line    6)
* -V <1>:                                Drawing in batch mode.
                                                            (line   16)
* ::                                     Arithmetic & logical.
                                                            (line   61)
* :::                                    Bezier curves.      (line   70)
* !:                                     Arithmetic & logical.
                                                            (line   57)
* !=:                                    Structures.         (line   62)
* != <1>:                                Arithmetic & logical.
                                                            (line   37)
* ?:                                     Arithmetic & logical.
                                                            (line   61)
* ..:                                    Paths.              (line   16)
* .asy:                                  Search paths.       (line   12)
* *:                                     Pens.               (line   15)
* * <1>:                                 Arithmetic & logical.
                                                            (line   16)
* **:                                    Arithmetic & logical.
                                                            (line   31)
* *=:                                    Self & prefix operators.
                                                            (line    6)
* /:                                     Arithmetic & logical.
                                                            (line   18)
* /=:                                    Self & prefix operators.
                                                            (line    6)
* &:                                     Bezier curves.      (line   84)
* & <1>:                                 Arithmetic & logical.
                                                            (line   49)
* &&:                                    Arithmetic & logical.
                                                            (line   47)
* #:                                     Arithmetic & logical.
                                                            (line   20)
* %:                                     Arithmetic & logical.
                                                            (line   25)
* % <1>:                                 Interactive mode.   (line   16)
* %=:                                    Self & prefix operators.
                                                            (line    6)
* ^:                                     Arithmetic & logical.
                                                            (line   29)
* ^ <1>:                                 Arithmetic & logical.
                                                            (line   55)
* ^^:                                    Paths.              (line   23)
* ^=:                                    Self & prefix operators.
                                                            (line    6)
* +:                                     Pens.               (line   15)
* + <1>:                                 Arithmetic & logical.
                                                            (line   13)
* ++:                                    Self & prefix operators.
                                                            (line    6)
* +=:                                    Self & prefix operators.
                                                            (line    6)
* <:                                     Arithmetic & logical.
                                                            (line   39)
* <=:                                    Arithmetic & logical.
                                                            (line   41)
* ==:                                    Structures.         (line   62)
* == <1>:                                Arithmetic & logical.
                                                            (line   36)
* >:                                     Arithmetic & logical.
                                                            (line   45)
* >=:                                    Arithmetic & logical.
                                                            (line   43)
* |:                                     Arithmetic & logical.
                                                            (line   53)
* ||:                                    Arithmetic & logical.
                                                            (line   51)
* 2D graphs:                             graph.              (line    6)
* 3D graphs:                             graph3.             (line    6)
* 3D grids:                              grid3.              (line    6)
* 3D PostScript:                         three.              (line  684)
* a4:                                    Configuring.        (line   63)
* abort:                                 Data types.         (line  364)
* abs:                                   Data types.         (line   65)
* abs <1>:                               Data types.         (line  144)
* abs <2>:                               Mathematical functions.
                                                            (line   35)
* abs2:                                  Data types.         (line   65)
* abs2 <1>:                              Data types.         (line  144)
* absolute:                              Configuring.        (line   38)
* absolute <1>:                          three.              (line  254)
* accel:                                 Paths and guides.   (line  126)
* accel <1>:                             Paths and guides.   (line  132)
* accel <2>:                             three.              (line  585)
* access:                                Import.             (line    6)
* access <1>:                            Import.             (line   45)
* acknowledgments:                       Credits.            (line    6)
* acos:                                  Mathematical functions.
                                                            (line    6)
* aCos:                                  Mathematical functions.
                                                            (line   20)
* acosh:                                 Mathematical functions.
                                                            (line    6)
* add:                                   Frames and pictures.
                                                            (line  205)
* add <1>:                               Frames and pictures.
                                                            (line  219)
* add <2>:                               three.              (line  362)
* addViews:                              three.              (line  479)
* adjust:                                Pens.               (line  123)
* Ai:                                    Mathematical functions.
                                                            (line   51)
* Ai_deriv:                              Mathematical functions.
                                                            (line   51)
* Airy:                                  Mathematical functions.
                                                            (line   51)
* alias:                                 Structures.         (line   62)
* alias <1>:                             Arrays.             (line  183)
* Align:                                 label.              (line   20)
* aligndir:                              Options.            (line  214)
* all:                                   Arrays.             (line  350)
* Allow:                                 Pens.               (line  416)
* and:                                   Bezier curves.      (line   56)
* AND:                                   Arithmetic & logical.
                                                            (line   68)
* angle:                                 Data types.         (line   73)
* animate:                               Configuring.        (line   15)
* animate <1>:                           Files.              (line  163)
* animate <2>:                           animation.          (line   12)
* animation:                             animation.          (line    6)
* animation <1>:                         animation.          (line    6)
* annotate:                              annotate.           (line    6)
* antialias:                             three.              (line  281)
* antialias <1>:                         Options.            (line  188)
* append:                                Files.              (line   38)
* append <1>:                            Arrays.             (line   39)
* arc:                                   Paths and guides.   (line   24)
* Arc:                                   Paths and guides.   (line   37)
* arc <1>:                               three.              (line  373)
* ArcArrow:                              draw.               (line   30)
* ArcArrow3:                             three.              (line  651)
* ArcArrows:                             draw.               (line   30)
* ArcArrows3:                            three.              (line  651)
* arclength:                             Paths and guides.   (line  153)
* arclength <1>:                         three.              (line  585)
* arcpoint:                              Paths and guides.   (line  163)
* arctime:                               Paths and guides.   (line  157)
* arctime <1>:                           three.              (line  585)
* arguments:                             Default arguments.  (line    6)
* arithmetic operators:                  Arithmetic & logical.
                                                            (line    6)
* array:                                 Data types.         (line  284)
* array <1>:                             Arrays.             (line  112)
* array iteration:                       Programming.        (line   53)
* arrays:                                Arrays.             (line    6)
* arrow:                                 Drawing commands.   (line   34)
* Arrow:                                 draw.               (line   26)
* arrow <1>:                             label.              (line   77)
* arrow keys:                            Drawing in interactive mode.
                                                            (line   11)
* arrow keys <1>:                        GUI usage.          (line    6)
* Arrow3:                                three.              (line  651)
* arrowbar:                              draw.               (line   26)
* arrowhead:                             draw.               (line   50)
* arrows:                                draw.               (line   26)
* Arrows:                                draw.               (line   26)
* Arrows3:                               three.              (line  651)
* as:                                    Import.             (line   67)
* ascii:                                 Data types.         (line  309)
* ascii <1>:                             Data types.         (line  309)
* asin:                                  Mathematical functions.
                                                            (line    6)
* aSin:                                  Mathematical functions.
                                                            (line   20)
* asinh:                                 Mathematical functions.
                                                            (line    6)
* Aspect:                                Frames and pictures.
                                                            (line   45)
* assert:                                Data types.         (line  369)
* assignment:                            Programming.        (line   28)
* asy:                                   Data types.         (line  359)
* asy <1>:                               Import.             (line  106)
* asy-mode:                              Editing modes.      (line    6)
* asy.vim:                               Editing modes.      (line   32)
* asygl:                                 Configuring.        (line   69)
* asyinclude:                            LaTeX usage.        (line   42)
* Asymptote Web Application:             Description.        (line    6)
* ASYMPTOTE_CONFIG:                      Options.            (line  159)
* asymptote.sty:                         LaTeX usage.        (line    6)
* asymptote.xml:                         Editing modes.      (line   48)
* atan:                                  Mathematical functions.
                                                            (line    6)
* aTan:                                  Mathematical functions.
                                                            (line   20)
* atan2:                                 Mathematical functions.
                                                            (line    6)
* atanh:                                 Mathematical functions.
                                                            (line    6)
* atleast:                               Bezier curves.      (line   56)
* attach:                                Frames and pictures.
                                                            (line  264)
* attach <1>:                            LaTeX usage.        (line   47)
* attach <2>:                            graph.              (line  406)
* autoadjust:                            three.              (line  448)
* autoimport:                            Options.            (line  155)
* automatic scaling:                     graph.              (line  710)
* automatic scaling <1>:                 graph.              (line  710)
* autounravel:                           Autounravel.        (line    6)
* axialshade:                            fill.               (line   43)
* axis:                                  graph.              (line  924)
* axis <1>:                              graph.              (line 1006)
* axis <2>:                              graph3.             (line   69)
* axis <3>:                              graph3.             (line   85)
* azimuth:                               Data types.         (line  154)
* babel:                                 babel.              (line    6)
* background:                            three.              (line   76)
* background <1>:                        three.              (line   97)
* background color:                      Frames and pictures.
                                                            (line  168)
* BackView:                              three.              (line  472)
* Bar:                                   draw.               (line   19)
* Bar3:                                  three.              (line  651)
* Bars:                                  draw.               (line   19)
* Bars3:                                 three.              (line  651)
* barsize:                               draw.               (line   19)
* base modules:                          Base modules.       (line    6)
* basealign:                             Pens.               (line  181)
* baseline:                              label.              (line   97)
* batch mode:                            Drawing in batch mode.
                                                            (line    6)
* beep:                                  Data types.         (line  382)
* BeginArcArrow:                         draw.               (line   30)
* BeginArcArrow3:                        three.              (line  651)
* BeginArrow:                            draw.               (line   26)
* BeginArrow3:                           three.              (line  651)
* BeginBar:                              draw.               (line   19)
* BeginBar3:                             three.              (line  651)
* BeginDotMargin:                        draw.               (line   87)
* BeginDotMargin3:                       three.              (line  667)
* BeginMargin:                           draw.               (line   68)
* BeginMargin3:                          three.              (line  667)
* BeginPenMargin:                        draw.               (line   76)
* BeginPenMargin2:                       three.              (line  667)
* BeginPenMargin3:                       three.              (line  667)
* BeginPoint:                            label.              (line   62)
* Bessel:                                Mathematical functions.
                                                            (line   51)
* bevel:                                 flowchart.          (line   72)
* beveljoin:                             Pens.               (line  149)
* Bezier curves:                         Bezier curves.      (line    6)
* Bezier patch:                          three.              (line  141)
* Bezier triangle:                       three.              (line  141)
* bezulate:                              three.              (line  159)
* Bi:                                    Mathematical functions.
                                                            (line   51)
* Bi_deriv:                              Mathematical functions.
                                                            (line   51)
* Billboard:                             three.              (line  555)
* binary:                                Files.              (line   80)
* binary format:                         Files.              (line   80)
* binary operators:                      Arithmetic & logical.
                                                            (line    6)
* binarytree:                            binarytree.         (line    6)
* black stripes:                         three.              (line  281)
* Blank:                                 draw.               (line   26)
* block.bottom:                          flowchart.          (line   19)
* block.bottomleft:                      flowchart.          (line   19)
* block.bottomright:                     flowchart.          (line   19)
* block.center:                          flowchart.          (line   24)
* block.draw:                            flowchart.          (line   29)
* block.left:                            flowchart.          (line   19)
* block.position:                        flowchart.          (line   23)
* block.right:                           flowchart.          (line   19)
* block.top:                             flowchart.          (line   19)
* block.topleft:                         flowchart.          (line   19)
* block.topright:                        flowchart.          (line   19)
* bool:                                  Data types.         (line   14)
* bool3:                                 Data types.         (line   25)
* boolean operators:                     Arithmetic & logical.
                                                            (line    6)
* Bottom:                                graph.              (line  132)
* BottomTop:                             graph.              (line  138)
* BottomView:                            three.              (line  472)
* bounding box:                          Frames and pictures.
                                                            (line  168)
* bounds:                                palette.            (line   43)
* Bounds:                                graph3.             (line   24)
* box:                                   Frames and pictures.
                                                            (line  118)
* box <1>:                               three.              (line  395)
* box <2>:                               three.              (line  397)
* bp:                                    Drawing in batch mode.
                                                            (line   23)
* brace:                                 Paths and guides.   (line   51)
* break:                                 Programming.        (line   49)
* breakpoints:                           Debugger.           (line   21)
* brick:                                 Pens.               (line  338)
* broken axis:                           graph.              (line  821)
* bug reports:                           Help.               (line   19)
* buildcycle:                            Paths and guides.   (line  270)
* Button-1:                              GUI.                (line    6)
* Button-2:                              GUI.                (line    6)
* BWRainbow:                             palette.            (line   15)
* BWRainbow2:                            palette.            (line   18)
* C string:                              Data types.         (line  217)
* CAD:                                   CAD.                (line    6)
* camera:                                three.              (line  442)
* casts:                                 Casts.              (line    6)
* cbrt:                                  Mathematical functions.
                                                            (line    6)
* cd:                                    Files.              (line   26)
* ceil:                                  Mathematical functions.
                                                            (line   26)
* Center:                                label.              (line   67)
* center:                                three.              (line  425)
* checker:                               Pens.               (line  338)
* Chinese:                               Pens.               (line  297)
* choose:                                Mathematical functions.
                                                            (line   39)
* Ci:                                    Mathematical functions.
                                                            (line   51)
* circle:                                Paths and guides.   (line   10)
* Circle:                                Paths and guides.   (line   18)
* circle <1>:                            three.              (line  369)
* circle <2>:                            flowchart.          (line   61)
* circlebarframe:                        markers.            (line   18)
* CJK:                                   Pens.               (line  297)
* clamped:                               graph.              (line   36)
* clang:                                 Compiling from UNIX source.
                                                            (line   31)
* clear:                                 Files.              (line  101)
* clear <1>:                             Debugger.           (line   23)
* clip:                                  clip.               (line    6)
* CLZ:                                   Arithmetic & logical.
                                                            (line   68)
* cm:                                    Figure size.        (line   18)
* cmd:                                   Configuring.        (line   30)
* cmyk:                                  Pens.               (line   38)
* colatitude:                            Data types.         (line  159)
* color:                                 Pens.               (line   23)
* color <1>:                             graph3.             (line  136)
* coloredNodes:                          tube.               (line   25)
* coloredpath:                           tube.               (line   18)
* coloredSegments:                       tube.               (line   25)
* colorless:                             Pens.               (line   57)
* colors:                                Pens.               (line   54)
* comma:                                 Files.              (line   65)
* comma-separated-value mode:            Arrays.             (line  385)
* command-line interface:                Command-Line Interface.
                                                            (line    6)
* command-line options:                  Configuring.        (line   86)
* command-line options <1>:              Options.            (line    6)
* comment character:                     Files.              (line   16)
* compass directions:                    Labels.             (line   18)
* Compiling from UNIX source:            Compiling from UNIX source.
                                                            (line    6)
* complement:                            Arrays.             (line  149)
* concat:                                Arrays.             (line  179)
* conditional:                           Programming.        (line   28)
* conditional <1>:                       Arithmetic & logical.
                                                            (line   61)
* config:                                Configuring.        (line   69)
* config <1>:                            Options.            (line  159)
* configuration file:                    Configuring.        (line   15)
* configuration file <1>:                Options.            (line  159)
* configuring:                           Configuring.        (line    6)
* conj:                                  Data types.         (line   62)
* constructors:                          Structures.         (line   90)
* context:                               Options.            (line  188)
* continue:                              Programming.        (line   49)
* continue <1>:                          Debugger.           (line   31)
* contour:                               contour.            (line    6)
* contour3:                              contour3.           (line    6)
* controls:                              Bezier curves.      (line   45)
* controls <1>:                          three.              (line    6)
* controlSpecifier:                      Paths and guides.   (line  397)
* convert:                               Files.              (line  163)
* convertOptions:                        Options.            (line  174)
* Coons shading:                         fill.               (line   78)
* copy:                                  Arrays.             (line  176)
* cos:                                   Mathematical functions.
                                                            (line    6)
* Cos:                                   Mathematical functions.
                                                            (line   20)
* cosh:                                  Mathematical functions.
                                                            (line    6)
* cputime:                               Mathematical functions.
                                                            (line   89)
* crop:                                  graph.              (line  639)
* cropping graphs:                       graph.              (line  639)
* cross:                                 Data types.         (line  106)
* cross <1>:                             Data types.         (line  197)
* cross <2>:                             graph.              (line  480)
* crossframe:                            markers.            (line   22)
* crosshatch:                            Pens.               (line  355)
* csv:                                   Arrays.             (line  367)
* csv <1>:                               Arrays.             (line  385)
* CTZ:                                   Arithmetic & logical.
                                                            (line   68)
* cubicroots:                            Arrays.             (line  339)
* curl:                                  Bezier curves.      (line   66)
* curl <1>:                              three.              (line    6)
* curlSpecifier:                         Paths and guides.   (line  409)
* currentlight:                          three.              (line   76)
* currentpen:                            Pens.               (line    6)
* currentprojection:                     three.              (line  469)
* curve:                                 slopefield.         (line   20)
* custom axis types:                     graph.              (line  141)
* custom mark routine:                   graph.              (line  577)
* custom tick locations:                 graph.              (line  233)
* cut:                                   Paths and guides.   (line  251)
* cycle:                                 Figure size.        (line   29)
* cycle <1>:                             Paths.              (line   16)
* cycle <2>:                             three.              (line    6)
* cyclic:                                Paths and guides.   (line   85)
* cyclic <1>:                            Paths and guides.   (line  377)
* cyclic <2>:                            Arrays.             (line   39)
* cyclic <3>:                            three.              (line  585)
* Cyrillic:                              Pens.               (line  291)
* dashdotted:                            Pens.               (line  102)
* dashed:                                Pens.               (line  102)
* data types:                            Data types.         (line    6)
* date:                                  Data types.         (line  321)
* Debian:                                UNIX binary distributions.
                                                            (line   19)
* debugger:                              Debugger.           (line    6)
* declaration:                           Programming.        (line   28)
* deconstruct:                           GUI usage.          (line    6)
* default arguments:                     Default arguments.  (line    6)
* defaultformat:                         graph.              (line  175)
* DefaultHead:                           draw.               (line   50)
* DefaultHead3:                          three.              (line  651)
* defaultpen:                            Pens.               (line   49)
* defaultpen <1>:                        Pens.               (line  122)
* defaultpen <2>:                        Pens.               (line  127)
* defaultpen <3>:                        Pens.               (line  139)
* defaultpen <4>:                        Pens.               (line  245)
* defaultpen <5>:                        Pens.               (line  416)
* defaultpen <6>:                        Pens.               (line  440)
* defaultrender:                         three.              (line   46)
* deferred drawing:                      Deferred drawing.   (line    6)
* deferred drawing <1>:                  simplex2.           (line    6)
* degrees:                               Data types.         (line   78)
* degrees <1>:                           Mathematical functions.
                                                            (line   17)
* Degrees:                               Mathematical functions.
                                                            (line   17)
* delete:                                Files.              (line  158)
* delete <1>:                            Arrays.             (line   39)
* description:                           Description.        (line    6)
* devicepixelratio:                      three.              (line  197)
* diagonal:                              Arrays.             (line  324)
* diamond:                               flowchart.          (line   54)
* diffuse:                               three.              (line   76)
* diffusepen:                            three.              (line   66)
* dimension:                             Arrays.             (line  367)
* dimension <1>:                         Arrays.             (line  390)
* dir:                                   Search paths.       (line    9)
* dir <1>:                               Data types.         (line   90)
* dir <2>:                               Data types.         (line  181)
* dir <3>:                               Paths and guides.   (line  109)
* dir <4>:                               three.              (line  585)
* direction specifier:                   Bezier curves.      (line    6)
* directory:                             Files.              (line   26)
* dirSpecifier:                          Paths and guides.   (line  391)
* dirtime:                               Paths and guides.   (line  166)
* display:                               Configuring.        (line   15)
* do:                                    Programming.        (line   49)
* DOSendl:                               Files.              (line   65)
* DOSnewl:                               Files.              (line   65)
* dot:                                   draw.               (line  117)
* dot <1>:                               Data types.         (line  103)
* dot <2>:                               Data types.         (line  194)
* dot <3>:                               Arrays.             (line  279)
* dot <4>:                               Arrays.             (line  282)
* DotMargin:                             draw.               (line   83)
* DotMargin3:                            three.              (line  667)
* DotMargins:                            draw.               (line   89)
* DotMargins3:                           three.              (line  667)
* dotted:                                Pens.               (line  102)
* double deferred drawing:               three.              (line  347)
* double precision:                      Files.              (line   80)
* draw:                                  Drawing commands.   (line   34)
* draw <1>:                              draw.               (line    6)
* draw <2>:                              draw.               (line  147)
* Draw:                                  Frames and pictures.
                                                            (line  148)
* draw <3>:                              three.              (line  167)
* drawer:                                Deferred drawing.   (line   31)
* drawing commands:                      Drawing commands.   (line    6)
* drawline:                              math.               (line    9)
* drawtree:                              drawtree.           (line    6)
* dvips:                                 Configuring.        (line   69)
* dvipsOptions:                          Options.            (line  174)
* dvisvgm:                               Configuring.        (line   69)
* dvisvgm <1>:                           Options.            (line  193)
* dvisvgmMultipleFiles:                  GUI installation.   (line   24)
* dvisvgmOptions:                        Options.            (line  174)
* E:                                     Labels.             (line   18)
* E <1>:                                 Mathematical functions.
                                                            (line   51)
* Editing modes:                         Editing modes.      (line    6)
* Ei:                                    Mathematical functions.
                                                            (line   51)
* ellipse:                               Paths and guides.   (line   45)
* elliptic functions:                    Mathematical functions.
                                                            (line   51)
* else:                                  Programming.        (line   28)
* emacs:                                 Editing modes.      (line    6)
* embed:                                 embed.              (line    6)
* Embedded:                              three.              (line  555)
* emissivepen:                           three.              (line   66)
* empty:                                 Frames and pictures.
                                                            (line    7)
* EndArcArrow:                           draw.               (line   30)
* EndArcArrow3:                          three.              (line  651)
* EndArrow:                              draw.               (line   26)
* EndArrow3:                             three.              (line  651)
* EndBar:                                draw.               (line   19)
* EndBar3:                               three.              (line  651)
* EndDotMargin:                          draw.               (line   89)
* EndDotMargin3:                         three.              (line  667)
* endl:                                  Files.              (line   65)
* EndMargin:                             draw.               (line   69)
* EndMargin3:                            three.              (line  667)
* EndPenMargin:                          draw.               (line   78)
* EndPenMargin2:                         three.              (line  667)
* EndPenMargin3:                         three.              (line  667)
* EndPoint:                              label.              (line   62)
* envelope:                              label.              (line  111)
* environment variables:                 Configuring.        (line   90)
* eof:                                   Files.              (line  101)
* eof <1>:                               Arrays.             (line  364)
* eol:                                   Files.              (line  101)
* eol <1>:                               Arrays.             (line  364)
* EPS:                                   label.              (line   85)
* EPS <1>:                               Options.            (line  188)
* erase:                                 Drawing in interactive mode.
                                                            (line   11)
* erase <1>:                             Data types.         (line  257)
* erase <2>:                             Frames and pictures.
                                                            (line    7)
* erase <3>:                             Frames and pictures.
                                                            (line  272)
* erf:                                   Mathematical functions.
                                                            (line    6)
* erfc:                                  Mathematical functions.
                                                            (line    6)
* error:                                 Files.              (line   16)
* error <1>:                             Files.              (line  101)
* error bars:                            graph.              (line  531)
* errorbars:                             graph.              (line  480)
* eval:                                  Import.             (line  102)
* eval <1>:                              Import.             (line  112)
* evenodd:                               Paths.              (line   37)
* evenodd <1>:                           Pens.               (line  164)
* exit:                                  Data types.         (line  373)
* exit <1>:                              Interactive mode.   (line   54)
* exit <2>:                              Debugger.           (line   56)
* exp:                                   Mathematical functions.
                                                            (line    6)
* expi:                                  Data types.         (line   86)
* expi <1>:                              Data types.         (line  177)
* explicit:                              Casts.              (line    6)
* explicit casts:                        Casts.              (line   21)
* expm1:                                 Mathematical functions.
                                                            (line    6)
* exponential integral:                  Mathematical functions.
                                                            (line   51)
* extendcap:                             Pens.               (line  139)
* extension:                             Paths and guides.   (line  246)
* extension <1>:                         MetaPost.           (line   10)
* external:                              embed.              (line   11)
* extrude:                               three.              (line  579)
* F:                                     Mathematical functions.
                                                            (line   51)
* fabs:                                  Mathematical functions.
                                                            (line    6)
* face:                                  three.              (line  691)
* factorial:                             Mathematical functions.
                                                            (line   39)
* Fedora:                                UNIX binary distributions.
                                                            (line   15)
* feynman:                               feynman.            (line    6)
* fft:                                   Arrays.             (line  249)
* fft <1>:                               Arrays.             (line  263)
* fft <2>:                               Arrays.             (line  267)
* FFTW:                                  Compiling from UNIX source.
                                                            (line   45)
* file:                                  Files.              (line    6)
* file <1>:                              Debugger.           (line   44)
* fill:                                  draw.               (line  152)
* fill <1>:                              fill.               (line    6)
* fill <2>:                              fill.               (line   17)
* Fill:                                  Frames and pictures.
                                                            (line  134)
* filldraw:                              fill.               (line   11)
* FillDraw:                              Frames and pictures.
                                                            (line  124)
* filloutside:                           fill.               (line   27)
* fillrule:                              Pens.               (line  164)
* filltype:                              Frames and pictures.
                                                            (line  123)
* find:                                  Data types.         (line  242)
* find <1>:                              Arrays.             (line  158)
* findall:                               Arrays.             (line  163)
* firstcut:                              Paths and guides.   (line  262)
* fit3:                                  three.              (line  360)
* fixedscaling:                          Frames and pictures.
                                                            (line   68)
* floor:                                 Mathematical functions.
                                                            (line   26)
* flowchart:                             flowchart.          (line    6)
* flush:                                 Files.              (line   65)
* flush <1>:                             Files.              (line  101)
* fmod:                                  Mathematical functions.
                                                            (line    6)
* font:                                  Pens.               (line  259)
* font <1>:                              Pens.               (line  259)
* font <2>:                              Pens.               (line  288)
* font encoding:                         Pens.               (line  288)
* fontcommand:                           Pens.               (line  272)
* fontsize:                              Pens.               (line  245)
* for:                                   Programming.        (line   28)
* format:                                Data types.         (line  290)
* format <1>:                            Options.            (line  188)
* forum:                                 Help.               (line    6)
* frame:                                 Frames and pictures.
                                                            (line    7)
* freshnel0:                             three.              (line   66)
* from:                                  Import.             (line   16)
* FrontView:                             three.              (line  472)
* function declarations:                 Functions.          (line   82)
* Function shading:                      fill.               (line  100)
* function shading:                      fill.               (line  100)
* functions:                             Functions.          (line    6)
* functions <1>:                         Mathematical functions.
                                                            (line    6)
* functionshade:                         fill.               (line  100)
* gamma:                                 Mathematical functions.
                                                            (line    6)
* Gaussrand:                             Mathematical functions.
                                                            (line   39)
* geometry:                              geometry.           (line    6)
* getc:                                  Files.              (line   32)
* getint:                                Files.              (line  126)
* getpair:                               Files.              (line  126)
* getreal:                               Files.              (line  126)
* getstring:                             Files.              (line  126)
* gettriple:                             Files.              (line  126)
* git:                                   Git.                (line    6)
* globalwrite:                           Files.              (line   40)
* globalwrite <1>:                       Files.              (line  158)
* glOptions:                             three.              (line  281)
* glOptions <1>:                         Options.            (line  174)
* GNU Scientific Library:                Mathematical functions.
                                                            (line   51)
* gouraudshade:                          fill.               (line   63)
* Gradient:                              palette.            (line   25)
* gradient shading:                      fill.               (line   32)
* graph:                                 graph.              (line    6)
* graph3:                                graph3.             (line    6)
* graphic:                               label.              (line   85)
* graphic <1>:                           Options.            (line  193)
* graphical user interface:              GUI.                (line    6)
* graphwithderiv:                        graph.              (line  670)
* gray:                                  Pens.               (line   25)
* grayscale:                             Pens.               (line   25)
* Grayscale:                             palette.            (line    9)
* grid:                                  Pens.               (line  338)
* grid <1>:                              graph.              (line  766)
* grid3:                                 grid3.              (line    6)
* gs:                                    Configuring.        (line   15)
* GSL:                                   Compiling from UNIX source.
                                                            (line   45)
* gsl:                                   Mathematical functions.
                                                            (line   51)
* gsOptions:                             Options.            (line  174)
* GUI:                                   GUI.                (line    6)
* GUI installation:                      GUI installation.   (line    6)
* GUI usage:                             GUI usage.          (line    6)
* guide:                                 Paths and guides.   (line  315)
* guide3:                                three.              (line    6)
* hatch:                                 Pens.               (line  355)
* Headlamp:                              three.              (line   76)
* height:                                LaTeX usage.        (line   47)
* help:                                  Interactive mode.   (line   42)
* help <1>:                              Help.               (line    6)
* help <2>:                              Debugger.           (line   30)
* Hermite:                               graph.              (line   36)
* Hermite(splinetype splinetype:         graph.              (line   36)
* hex:                                   Data types.         (line  306)
* hex <1>:                               Pens.               (line   64)
* hexadecimal:                           Data types.         (line  306)
* hexadecimal <1>:                       Pens.               (line   62)
* hidden surface removal:                three.              (line  691)
* histogram:                             Mathematical functions.
                                                            (line   39)
* history:                               Files.              (line  151)
* history <1>:                           Interactive mode.   (line   54)
* historylines:                          Interactive mode.   (line   58)
* HookHead:                              draw.               (line   50)
* HookHead3:                             three.              (line  651)
* Horizontal:                            flowchart.          (line   77)
* HTML5:                                 three.              (line  246)
* htmlviewer:                            Configuring.        (line   15)
* htmlviewer <1>:                        Configuring.        (line   38)
* htmlviewerOptions:                     Options.            (line  174)
* hyperrefOptions:                       Options.            (line  174)
* hypot:                                 Mathematical functions.
                                                            (line    6)
* I:                                     Mathematical functions.
                                                            (line   51)
* i_scaled:                              Mathematical functions.
                                                            (line   51)
* ibl:                                   three.              (line  117)
* iconify:                               three.              (line  281)
* identity:                              Transforms.         (line   24)
* identity <1>:                          Mathematical functions.
                                                            (line    6)
* identity <2>:                          Arrays.             (line  321)
* identity4:                             three.              (line  523)
* if:                                    Programming.        (line   28)
* IgnoreAspect:                          Frames and pictures.
                                                            (line   50)
* image:                                 palette.            (line   33)
* image <1>:                             palette.            (line   61)
* image-based lighting:                  three.              (line  117)
* ImageMagick:                           Configuring.        (line   69)
* ImageMagick <1>:                       animation.          (line    6)
* ImageMagick <2>:                       Options.            (line  188)
* images:                                palette.            (line    6)
* implicit casts:                        Casts.              (line    6)
* implicit linear solver:                MetaPost.           (line   10)
* implicit scaling:                      Implicit scaling.   (line    6)
* implicitsurface:                       smoothcontour3.     (line   16)
* import:                                Import.             (line   45)
* importv3d:                             three.              (line  338)
* inches:                                Figure size.        (line   18)
* incircle:                              Data types.         (line  120)
* include:                               Import.             (line  131)
* including images:                      label.              (line   85)
* increasing:                            math.               (line   55)
* inf:                                   Data types.         (line   35)
* inheritance:                           Structures.         (line  146)
* initialized:                           Arrays.             (line   39)
* initializers:                          Variable initializers.
                                                            (line    6)
* inline:                                LaTeX usage.        (line   47)
* InOutTicks:                            graph3.             (line   38)
* input:                                 Files.              (line   10)
* input <1>:                             Files.              (line   12)
* input <2>:                             Interactive mode.   (line   45)
* input <3>:                             Interactive mode.   (line   49)
* input encoding:                        Pens.               (line  288)
* insert:                                Data types.         (line  253)
* insert <1>:                            Arrays.             (line   39)
* inside:                                Paths and guides.   (line  294)
* inside <1>:                            Paths and guides.   (line  299)
* inside <2>:                            Paths and guides.   (line  305)
* insphere:                              three.              (line  614)
* inst:                                  Debugger.           (line   35)
* installation:                          Installation.       (line    6)
* int:                                   Data types.         (line   30)
* integer division:                      Arithmetic & logical.
                                                            (line   20)
* integral:                              Mathematical functions.
                                                            (line   85)
* integrate:                             Mathematical functions.
                                                            (line   85)
* interactive mode:                      Drawing in interactive mode.
                                                            (line    6)
* interactive mode <1>:                  Interactive mode.   (line    6)
* interior:                              Paths and guides.   (line  290)
* interp:                                Arithmetic & logical.
                                                            (line   64)
* interpolate:                           interpolate.        (line    6)
* intersect:                             Paths and guides.   (line  195)
* intersect <1>:                         math.               (line   13)
* intersect <2>:                         three.              (line  585)
* intersectionpoint:                     Paths and guides.   (line  238)
* intersectionpoint <1>:                 math.               (line   17)
* intersectionpoint <2>:                 three.              (line  585)
* intersectionpoints:                    Paths and guides.   (line  242)
* intersectionpoints <1>:                three.              (line  585)
* intersectionpoints <2>:                three.              (line  598)
* intersections:                         Paths and guides.   (line  206)
* intersections <1>:                     Paths and guides.   (line  213)
* intersections <2>:                     three.              (line  585)
* intersections <3>:                     three.              (line  591)
* InTicks:                               graph3.             (line   38)
* intMax:                                Data types.         (line   30)
* intMin:                                Data types.         (line   30)
* inverse:                               Transforms.         (line   16)
* inverse <1>:                           Arrays.             (line  327)
* invert:                                three.              (line  513)
* invisible:                             Pens.               (line   43)
* isnan:                                 Data types.         (line   35)
* J:                                     Mathematical functions.
                                                            (line    6)
* J <1>:                                 Mathematical functions.
                                                            (line   51)
* Japanese:                              Pens.               (line  297)
* K:                                     Mathematical functions.
                                                            (line   51)
* k_scaled:                              Mathematical functions.
                                                            (line   51)
* Kate:                                  Editing modes.      (line   48)
* KDE editor:                            Editing modes.      (line   48)
* keepAspect:                            Frames and pictures.
                                                            (line   45)
* keepAspect <1>:                        Frames and pictures.
                                                            (line   50)
* keepAspect <2>:                        LaTeX usage.        (line   47)
* keyboard bindings::                    three.              (line  224)
* keys:                                  Arrays.             (line   39)
* keyword:                               Named arguments.    (line   37)
* keyword-only:                          Named arguments.    (line   37)
* keywords:                              Named arguments.    (line    6)
* Korean:                                Pens.               (line  297)
* label:                                 Labels.             (line    6)
* Label:                                 draw.               (line  135)
* label <1>:                             label.              (line    6)
* Label <1>:                             label.              (line   21)
* Label <2>:                             graph.              (line  330)
* label <2>:                             three.              (line  549)
* labelmargin:                           label.              (line    6)
* labelpath:                             labelpath.          (line    6)
* labelpath3:                            labelpath3.         (line    6)
* labelx:                                graph.              (line  330)
* labely:                                graph.              (line  330)
* Landscape:                             Frames and pictures.
                                                            (line   92)
* language context:                      Pens.               (line  288)
* language server protocol:              Language server protocol.
                                                            (line    6)
* lastcut:                               Paths and guides.   (line  266)
* lasy-mode:                             Editing modes.      (line    6)
* latex:                                 Options.            (line  188)
* LaTeX NFSS fonts:                      Pens.               (line  259)
* LaTeX usage:                           LaTeX usage.        (line    6)
* latexmk:                               LaTeX usage.        (line   30)
* latitude:                              Data types.         (line  164)
* latticeshade:                          fill.               (line   32)
* layer:                                 Drawing commands.   (line   16)
* leastsquares:                          stats.              (line    6)
* leastsquares <1>:                      graph.              (line  947)
* Left:                                  graph.              (line  269)
* LeftRight:                             graph.              (line  275)
* LeftSide:                              label.              (line   67)
* LeftTicks:                             graph.              (line  160)
* LeftTicks <1>:                         graph.              (line  233)
* LeftView:                              three.              (line  472)
* legend:                                Drawing commands.   (line   34)
* legend <1>:                            draw.               (line   99)
* legend <2>:                            graph.              (line  424)
* Legendre:                              Mathematical functions.
                                                            (line   51)
* length:                                Data types.         (line   65)
* length <1>:                            Data types.         (line  144)
* length <2>:                            Data types.         (line  239)
* length <3>:                            Paths and guides.   (line   76)
* length <4>:                            Paths and guides.   (line  374)
* length <5>:                            Arrays.             (line   39)
* length <6>:                            three.              (line  585)
* letter:                                Configuring.        (line   63)
* lexorder:                              math.               (line   63)
* lexorder <1>:                          math.               (line   66)
* libcurl:                               Import.             (line   94)
* libm routines:                         Mathematical functions.
                                                            (line    6)
* libsigsegv:                            Functions.          (line  103)
* libsigsegv <1>:                        Help.               (line   27)
* light:                                 three.              (line   76)
* limits:                                graph.              (line  639)
* line:                                  Arrays.             (line  364)
* line <1>:                              Arrays.             (line  367)
* line <2>:                              Arrays.             (line  372)
* line mode:                             Arrays.             (line  364)
* linear:                                graph.              (line   36)
* Linear:                                graph.              (line  710)
* linecap:                               Pens.               (line  139)
* linejoin:                              Pens.               (line  149)
* lineskip:                              Pens.               (line  245)
* linetype:                              Pens.               (line  123)
* linewidth:                             Pens.               (line  127)
* locale:                                Data types.         (line  316)
* log:                                   Mathematical functions.
                                                            (line    6)
* Log:                                   graph.              (line  710)
* log-log graph:                         graph.              (line  744)
* log10:                                 Mathematical functions.
                                                            (line    6)
* log1p:                                 Mathematical functions.
                                                            (line    6)
* log2 graph:                            graph.              (line  800)
* logarithmic graph:                     graph.              (line  744)
* logical operators:                     Arithmetic & logical.
                                                            (line    6)
* longdashdotted:                        Pens.               (line  102)
* longdashed:                            Pens.               (line  102)
* longitude:                             Data types.         (line  169)
* loop:                                  Programming.        (line   28)
* LSP:                                   Language server protocol.
                                                            (line    6)
* lualatex:                              Options.            (line  188)
* luatex:                                Options.            (line  188)
* MacOS X binary distributions:          MacOS X binary distributions.
                                                            (line    6)
* MacOS X configuration:                 Compiling from UNIX source.
                                                            (line   31)
* magick:                                Configuring.        (line   69)
* magick <1>:                            Files.              (line  163)
* magick <2>:                            animation.          (line    6)
* magick <3>:                            Options.            (line  188)
* makepen:                               Pens.               (line  391)
* map:                                   Arrays.             (line  135)
* map <1>:                               Arrays.             (line  140)
* map <2>:                               map.                (line    6)
* Margin:                                draw.               (line   69)
* Margin3:                               three.              (line  667)
* Margin3 <1>:                           three.              (line  667)
* Margins:                               draw.               (line   70)
* margins:                               three.              (line  353)
* Margins3:                              three.              (line  667)
* mark:                                  graph.              (line  480)
* markangle:                             markers.            (line   35)
* marker:                                graph.              (line  480)
* markers:                               markers.            (line    6)
* marknodes:                             graph.              (line  480)
* markuniform:                           graph.              (line  480)
* mask:                                  Data types.         (line   35)
* material:                              three.              (line   66)
* math:                                  math.               (line    6)
* mathematical functions:                Mathematical functions.
                                                            (line    6)
* max:                                   Paths and guides.   (line  279)
* max <1>:                               Frames and pictures.
                                                            (line    7)
* max <2>:                               Arrays.             (line  230)
* max <3>:                               Arrays.             (line  240)
* max <4>:                               three.              (line  585)
* maxbound:                              Data types.         (line  134)
* maxbound <1>:                          Data types.         (line  205)
* maxtile:                               three.              (line  281)
* maxtimes:                              Paths and guides.   (line  233)
* maxviewport:                           three.              (line  281)
* metallic:                              three.              (line   66)
* MetaPost:                              MetaPost.           (line    6)
* MetaPost ... :                         Bezier curves.      (line   70)
* MetaPost cutafter:                     Paths and guides.   (line  267)
* MetaPost cutbefore:                    Paths and guides.   (line  263)
* MetaPost pickup:                       Pens.               (line    6)
* MetaPost whatever:                     MetaPost.           (line   10)
* Microsoft Windows:                     Microsoft Windows.  (line    6)
* MidArcArrow:                           draw.               (line   30)
* MidArcArrow3:                          three.              (line  651)
* MidArrow:                              draw.               (line   26)
* MidArrow3:                             three.              (line  651)
* MidPoint:                              label.              (line   62)
* midpoint:                              Paths and guides.   (line  180)
* min:                                   Paths and guides.   (line  275)
* min <1>:                               Frames and pictures.
                                                            (line    7)
* min <2>:                               Arrays.             (line  225)
* min <3>:                               Arrays.             (line  235)
* min <4>:                               three.              (line  585)
* minbound:                              Data types.         (line  131)
* minbound <1>:                          Data types.         (line  202)
* minipage:                              label.              (line  125)
* mintimes:                              Paths and guides.   (line  228)
* miterjoin:                             Pens.               (line  149)
* miterlimit:                            Pens.               (line  159)
* mktemp:                                Files.              (line   48)
* mm:                                    Figure size.        (line   18)
* mobile browser:                        three.              (line  246)
* mode:                                  Files.              (line   80)
* mode <1>:                              Files.              (line   98)
* monotonic:                             graph.              (line   36)
* mouse:                                 GUI.                (line    6)
* mouse bindings:                        three.              (line  205)
* mouse wheel:                           GUI usage.          (line    6)
* Move:                                  Pens.               (line  428)
* MoveQuiet:                             Pens.               (line  434)
* multisample:                           three.              (line  197)
* N:                                     Labels.             (line   18)
* name:                                  Files.              (line   98)
* named arguments:                       Named arguments.    (line    6)
* nan:                                   Data types.         (line   35)
* natural:                               graph.              (line   36)
* new:                                   Structures.         (line    6)
* new <1>:                               Arrays.             (line  100)
* new <2>:                               Arrays.             (line  103)
* newframe:                              Frames and pictures.
                                                            (line    7)
* newl:                                  Files.              (line   65)
* newpage:                               Drawing commands.   (line   27)
* newton:                                Mathematical functions.
                                                            (line   69)
* newton <1>:                            Mathematical functions.
                                                            (line   76)
* next:                                  Debugger.           (line   41)
* nobasealign:                           Pens.               (line  181)
* NoFill:                                Frames and pictures.
                                                            (line  142)
* noglobalread:                          Files.              (line   26)
* noglobalread <1>:                      Files.              (line   40)
* nolight:                               three.              (line   76)
* NoMargin:                              draw.               (line   67)
* NoMargin3:                             three.              (line  667)
* None:                                  draw.               (line   19)
* None <1>:                              draw.               (line   26)
* none:                                  Files.              (line   65)
* normal:                                three.              (line  571)
* nosafe:                                Options.            (line  209)
* NOT:                                   Arithmetic & logical.
                                                            (line   68)
* notaknot:                              graph.              (line   36)
* NoTicks:                               graph.              (line  160)
* NoTicks3:                              graph3.             (line   38)
* null:                                  Structures.         (line    6)
* nullpen:                               label.              (line   21)
* nullpen <1>:                           Frames and pictures.
                                                            (line  128)
* nullpen <2>:                           Frames and pictures.
                                                            (line  137)
* O:                                     three.              (line  365)
* obj:                                   obj.                (line    6)
* object:                                label.              (line  111)
* oblique:                               three.              (line  408)
* obliqueX:                              three.              (line  415)
* obliqueY:                              three.              (line  421)
* obliqueZ:                              three.              (line  408)
* ode:                                   ode.                (line    6)
* offset:                                Pens.               (line  123)
* offset <1>:                            Options.            (line  214)
* OmitTick:                              graph.              (line  223)
* OmitTickInterval:                      graph.              (line  223)
* OmitTickIntervals:                     graph.              (line  223)
* opacity:                               Pens.               (line  307)
* opacity <1>:                           three.              (line   66)
* open:                                  Files.              (line   12)
* OpenGL:                                three.              (line  197)
* operator:                              User-defined operators.
                                                            (line    6)
* operator --:                           graph.              (line   30)
* operator ..:                           graph.              (line   33)
* operator +(...string[] a).:            Data types.         (line  284)
* operator answer:                       Interactive mode.   (line   35)
* operator cast:                         Casts.              (line   38)
* operator ecast:                        Casts.              (line   65)
* operator init:                         Variable initializers.
                                                            (line    6)
* operator init <1>:                     Structures.         (line  104)
* operators:                             Operators.          (line    6)
* options:                               Options.            (line    6)
* OR:                                    Arithmetic & logical.
                                                            (line   68)
* orient:                                Data types.         (line  108)
* orient <1>:                            three.              (line  602)
* orientation:                           Frames and pictures.
                                                            (line   92)
* orthographic:                          three.              (line  425)
* outformat:                             three.              (line  197)
* outprefix:                             Frames and pictures.
                                                            (line   78)
* output:                                Files.              (line   38)
* output <1>:                            Options.            (line  188)
* OutTicks:                              graph3.             (line   38)
* overloading functions:                 Functions.          (line   58)
* overwrite:                             Pens.               (line  413)
* P:                                     Mathematical functions.
                                                            (line   51)
* pack:                                  label.              (line  109)
* packing:                               Rest arguments.     (line   30)
* pad:                                   Frames and pictures.
                                                            (line  174)
* pair:                                  Figure size.        (line    6)
* pair <1>:                              Data types.         (line   46)
* pairs:                                 Arrays.             (line  245)
* paperheight:                           Configuring.        (line   63)
* papertype:                             Configuring.        (line   63)
* paperwidth:                            Configuring.        (line   63)
* parallelogram:                         flowchart.          (line   47)
* parametric surface:                    graph3.             (line  102)
* parametrized curve:                    graph.              (line  639)
* partialsum:                            math.               (line   49)
* partialsum <1>:                        math.               (line   52)
* patch-dependent colors:                three.              (line  132)
* path:                                  Paths.              (line    6)
* path <1>:                              Paths and guides.   (line    7)
* path <2>:                              three.              (line   42)
* path <3>:                              flowchart.          (line   77)
* path markers:                          graph.              (line  480)
* path[]:                                Paths.              (line   23)
* path3:                                 three.              (line    6)
* path3 <1>:                             three.              (line   42)
* patterns:                              Pens.               (line  324)
* patterns <1>:                          patterns.           (line    6)
* PBR:                                   three.              (line   74)
* PDF:                                   Options.            (line  188)
* pdflatex:                              Options.            (line  188)
* pdfreloadOptions:                      Options.            (line  174)
* pdfviewer:                             Configuring.        (line   15)
* pdfviewerOptions:                      Options.            (line  174)
* pen:                                   Pens.               (line    6)
* PenMargin:                             draw.               (line   78)
* PenMargin2:                            three.              (line  667)
* PenMargin3:                            three.              (line  667)
* PenMargins:                            draw.               (line   79)
* PenMargins2:                           three.              (line  667)
* PenMargins3:                           three.              (line  667)
* periodic:                              graph.              (line   36)
* perl:                                  LaTeX usage.        (line   30)
* perpendicular:                         geometry.           (line    6)
* perspective:                           three.              (line  452)
* physically based rendering:            three.              (line   74)
* picture:                               Frames and pictures.
                                                            (line   25)
* picture alignment:                     Frames and pictures.
                                                            (line  219)
* picture.add:                           Deferred drawing.   (line   31)
* picture.addPoint:                      Deferred drawing.   (line   51)
* picture.calculateTransform:            Frames and pictures.
                                                            (line  106)
* picture.fit:                           Frames and pictures.
                                                            (line  101)
* picture.scale:                         Frames and pictures.
                                                            (line  111)
* piecewisestraight:                     Paths and guides.   (line   92)
* pixel:                                 three.              (line  674)
* Pl:                                    Mathematical functions.
                                                            (line   51)
* plain:                                 plain.              (line    6)
* planar:                                three.              (line  141)
* plane:                                 three.              (line  391)
* planeproject:                          three.              (line  568)
* point:                                 Paths and guides.   (line   95)
* point <1>:                             Paths and guides.   (line  380)
* point <2>:                             three.              (line  585)
* polar:                                 Data types.         (line  149)
* polargraph:                            graph.              (line   89)
* polygon:                               graph.              (line  480)
* pop:                                   Arrays.             (line   39)
* Portrait:                              Frames and pictures.
                                                            (line   92)
* position:                              three.              (line   76)
* position <1>:                          three.              (line  197)
* postcontrol:                           Paths and guides.   (line  146)
* postcontrol <1>:                       three.              (line  585)
* postfix operators:                     Self & prefix operators.
                                                            (line   19)
* postscript:                            Frames and pictures.
                                                            (line  285)
* PostScript fonts:                      Pens.               (line  275)
* PostScript subpath:                    Paths.              (line   23)
* pow10:                                 Mathematical functions.
                                                            (line    6)
* prc:                                   three.              (line  299)
* precision:                             Files.              (line  101)
* precontrol:                            Paths and guides.   (line  139)
* precontrol <1>:                        three.              (line  585)
* prefix operators:                      Self & prefix operators.
                                                            (line    6)
* private:                               Structures.         (line    6)
* programming:                           Programming.        (line    6)
* pstoedit:                              PostScript to Asymptote.
                                                            (line    6)
* psviewer:                              Configuring.        (line   15)
* psviewerOptions:                       Options.            (line  174)
* pt:                                    Figure size.        (line   18)
* public:                                Structures.         (line    6)
* push:                                  Arrays.             (line   39)
* Python usage:                          Interactive mode.   (line   72)
* quadraticroots:                        Arrays.             (line  330)
* quadraticroots <1>:                    Arrays.             (line  335)
* quarticroots:                          math.               (line   22)
* quick reference:                       Description.        (line   92)
* quit:                                  Drawing in interactive mode.
                                                            (line   11)
* quit <1>:                              Interactive mode.   (line   54)
* quit <2>:                              Debugger.           (line   53)
* quote:                                 Import.             (line  120)
* quotient:                              Arithmetic & logical.
                                                            (line    6)
* radialshade:                           fill.               (line   52)
* RadialShade:                           Frames and pictures.
                                                            (line  160)
* RadialShadeDraw:                       Frames and pictures.
                                                            (line  164)
* radians:                               Mathematical functions.
                                                            (line   17)
* radius:                                Paths and guides.   (line  135)
* radius <1>:                            three.              (line  585)
* Rainbow:                               palette.            (line   12)
* rand:                                  Mathematical functions.
                                                            (line   39)
* randMax:                               Mathematical functions.
                                                            (line   39)
* read:                                  Arrays.             (line  367)
* read <1>:                              Arrays.             (line  407)
* reading:                               Files.              (line   12)
* reading string arrays:                 Arrays.             (line  377)
* readline:                              Files.              (line  143)
* real:                                  Data types.         (line   35)
* realDigits:                            Data types.         (line   35)
* realEpsilon:                           Data types.         (line   35)
* realMax:                               Data types.         (line   35)
* realMin:                               Data types.         (line   35)
* realmult:                              Data types.         (line  100)
* realschur:                             Arrays.             (line  271)
* rectangle:                             flowchart.          (line   34)
* recursion:                             Functions.          (line  103)
* reference:                             Description.        (line   92)
* reflect:                               Transforms.         (line   42)
* Relative:                              label.              (line   57)
* Relative <1>:                          label.              (line   67)
* relpoint:                              Paths and guides.   (line  176)
* reltime:                               Paths and guides.   (line  172)
* remainder:                             Mathematical functions.
                                                            (line    6)
* rename:                                Files.              (line  160)
* render:                                three.              (line   46)
* render <1>:                            three.              (line  197)
* render <2>:                            Options.            (line  188)
* replace:                               Data types.         (line  270)
* resetdefaultpen:                       Pens.               (line  440)
* rest arguments:                        Rest arguments.     (line    6)
* restore:                               Frames and pictures.
                                                            (line  279)
* restricted:                            Structures.         (line    6)
* return:                                Debugger.           (line   47)
* reverse:                               Data types.         (line  266)
* reverse <1>:                           Paths and guides.   (line  183)
* reverse <2>:                           Paths and guides.   (line  383)
* reverse <3>:                           Arrays.             (line  145)
* reverse <4>:                           three.              (line  585)
* rewind:                                Files.              (line  101)
* rfind:                                 Data types.         (line  247)
* rgb:                                   Pens.               (line   30)
* rgb <1>:                               Pens.               (line   34)
* rgb <2>:                               Pens.               (line   62)
* Riemann zeta function:                 Mathematical functions.
                                                            (line   51)
* Right:                                 graph.              (line  272)
* RightSide:                             label.              (line   67)
* RightTicks:                            graph.              (line  160)
* RightTicks <1>:                        graph.              (line  233)
* RightView:                             three.              (line  472)
* Rotate:                                label.              (line   43)
* rotate:                                three.              (line  539)
* Rotate(pair z):                        label.              (line   46)
* round:                                 Mathematical functions.
                                                            (line   26)
* roundcap:                              Pens.               (line  139)
* roundedpath:                           roundedpath.        (line    6)
* roundjoin:                             Pens.               (line  149)
* roundrectangle:                        flowchart.          (line   66)
* RPM:                                   UNIX binary distributions.
                                                            (line    6)
* runtime imports:                       Import.             (line  102)
* Russian:                               Pens.               (line  291)
* S:                                     Labels.             (line   18)
* safe:                                  Options.            (line  209)
* save:                                  Frames and pictures.
                                                            (line  276)
* saveline:                              Files.              (line  143)
* Scale:                                 label.              (line   52)
* scale:                                 Pens.               (line  123)
* scale <1>:                             Transforms.         (line   34)
* scale <2>:                             Transforms.         (line   36)
* scale <3>:                             graph.              (line  710)
* Scale <1>:                             graph.              (line  727)
* scale <4>:                             three.              (line  538)
* scale3:                                three.              (line  536)
* scaled graph:                          graph.              (line  690)
* schur:                                 Arrays.             (line  271)
* schur <1>:                             Arrays.             (line  275)
* scientific graph:                      graph.              (line  387)
* scroll:                                Files.              (line  117)
* search:                                Arrays.             (line  166)
* search <1>:                            Arrays.             (line  172)
* search paths:                          Search paths.       (line    6)
* Seascape:                              Frames and pictures.
                                                            (line   98)
* secondary axis:                        graph.              (line  853)
* secondaryX:                            graph.              (line  853)
* secondaryY:                            graph.              (line  853)
* seconds:                               Data types.         (line  330)
* seek:                                  Files.              (line  101)
* seekeof:                               Files.              (line  101)
* segment:                               math.               (line   46)
* segmentation fault:                    Help.               (line   27)
* self operators:                        Self & prefix operators.
                                                            (line    6)
* sequence:                              Arrays.             (line  118)
* settings:                              Configuring.        (line   15)
* settings <1>:                          Options.            (line  159)
* sgn:                                   Mathematical functions.
                                                            (line   26)
* shading:                               fill.               (line   32)
* Shift:                                 label.              (line   40)
* shift:                                 Transforms.         (line   26)
* shift <1>:                             Transforms.         (line   28)
* shift <2>:                             Transforms.         (line   46)
* shift <3>:                             three.              (line  528)
* shiftless:                             Transforms.         (line   46)
* shininess:                             three.              (line   66)
* shipout:                               Frames and pictures.
                                                            (line   78)
* showtarget:                            three.              (line  425)
* Si:                                    Mathematical functions.
                                                            (line   51)
* signedint:                             Files.              (line   80)
* signedint <1>:                         Files.              (line   98)
* SimpleHead:                            draw.               (line   50)
* simplex:                               simplex.            (line    6)
* simplex2:                              simplex2.           (line    6)
* simpson:                               Mathematical functions.
                                                            (line   85)
* sin:                                   Mathematical functions.
                                                            (line    6)
* Sin:                                   Mathematical functions.
                                                            (line   20)
* single precision:                      Files.              (line   80)
* singleint:                             Files.              (line   80)
* singleint <1>:                         Files.              (line   98)
* singlereal:                            Files.              (line   80)
* singlereal <1>:                        Files.              (line   98)
* sinh:                                  Mathematical functions.
                                                            (line    6)
* SixViews:                              three.              (line  487)
* SixViewsFR:                            three.              (line  487)
* SixViewsUS:                            three.              (line  487)
* size:                                  Figure size.        (line    6)
* size <1>:                              Paths and guides.   (line   81)
* size <2>:                              Paths and guides.   (line  371)
* size <3>:                              Frames and pictures.
                                                            (line   34)
* size <4>:                              Frames and pictures.
                                                            (line   61)
* size <5>:                              three.              (line  585)
* size <6>:                              Options.            (line  188)
* size3:                                 three.              (line  350)
* Slant:                                 label.              (line   49)
* slant:                                 Transforms.         (line   38)
* sleep:                                 Data types.         (line  376)
* slice:                                 Paths and guides.   (line  251)
* slice <1>:                             Paths and guides.   (line  262)
* slices:                                Slices.             (line    6)
* slide:                                 slide.              (line    6)
* slope:                                 math.               (line   40)
* slope <1>:                             math.               (line   43)
* slopefield:                            slopefield.         (line    6)
* smoothcontour3:                        smoothcontour3.     (line    6)
* sncndn:                                Mathematical functions.
                                                            (line   51)
* solid:                                 Pens.               (line  102)
* solids:                                solids.             (line    6)
* solve:                                 Arrays.             (line  299)
* solve <1>:                             Arrays.             (line  315)
* sort:                                  Arrays.             (line  186)
* sort <1>:                              Arrays.             (line  190)
* sort <2>:                              Arrays.             (line  205)
* specular:                              three.              (line   76)
* specularfactor:                        three.              (line   76)
* specularpen:                           three.              (line   66)
* Spline:                                graph.              (line   33)
* Spline <1>:                            graph3.             (line  102)
* split:                                 Data types.         (line  279)
* sqrt:                                  Mathematical functions.
                                                            (line    6)
* squarecap:                             Pens.               (line  139)
* srand:                                 Mathematical functions.
                                                            (line   39)
* stack overflow:                        Functions.          (line  103)
* stack overflow <1>:                    Functions.          (line  103)
* stack overflow <2>:                    Help.               (line   27)
* static:                                Static.             (line    6)
* stats:                                 stats.              (line    6)
* stdin:                                 Files.              (line   52)
* stdout:                                Files.              (line   52)
* step:                                  Debugger.           (line   38)
* stickframe:                            markers.            (line   16)
* stop:                                  Debugger.           (line   10)
* straight:                              Paths and guides.   (line   88)
* Straight:                              graph.              (line   30)
* straight <1>:                          three.              (line  585)
* strftime:                              Data types.         (line  321)
* strftime <1>:                          Data types.         (line  346)
* string:                                Data types.         (line  208)
* string <1>:                            Data types.         (line  312)
* stroke:                                fill.               (line   36)
* stroke <1>:                            clip.               (line    6)
* strokepath:                            Paths and guides.   (line  310)
* strptime:                              Data types.         (line  330)
* struct:                                Structures.         (line    6)
* structures:                            Structures.         (line    6)
* subpath:                               Paths and guides.   (line  186)
* subpath <1>:                           three.              (line  585)
* subpictures:                           Frames and pictures.
                                                            (line  101)
* substr:                                Data types.         (line  262)
* sum:                                   Arrays.             (line  220)
* superpath:                             Paths.              (line   23)
* Suppress:                              Pens.               (line  420)
* SuppressQuiet:                         Pens.               (line  424)
* surface:                               three.              (line   46)
* surface <1>:                           three.              (line  117)
* surface <2>:                           three.              (line  141)
* surface <3>:                           three.              (line  155)
* surface <4>:                           graph3.             (line  102)
* surface <5>:                           graph3.             (line  131)
* SVG:                                   Options.            (line  193)
* system:                                Data types.         (line  354)
* system <1>:                            Options.            (line  209)
* syzygy:                                syzygy.             (line    6)
* tab:                                   Files.              (line   65)
* tab completion:                        Drawing in interactive mode.
                                                            (line   11)
* tan:                                   Mathematical functions.
                                                            (line    6)
* Tan:                                   Mathematical functions.
                                                            (line   20)
* tanh:                                  Mathematical functions.
                                                            (line    6)
* target:                                three.              (line  425)
* tell:                                  Files.              (line  101)
* template:                              Templated imports.  (line    6)
* tension:                               Bezier curves.      (line   56)
* tension <1>:                           three.              (line    6)
* tensionSpecifier:                      Paths and guides.   (line  403)
* tensor product shading:                fill.               (line   78)
* tensorshade:                           fill.               (line   78)
* tessellation:                          three.              (line  167)
* tex:                                   Frames and pictures.
                                                            (line  293)
* tex <1>:                               Options.            (line  188)
* TeX fonts:                             Pens.               (line  266)
* TeX string:                            Data types.         (line  208)
* texcommand:                            Configuring.        (line   69)
* TeXHead:                               draw.               (line   50)
* TeXHead3:                              three.              (line  651)
* texpath:                               Configuring.        (line   69)
* texpath <1>:                           label.              (line  122)
* texpreamble:                           Frames and pictures.
                                                            (line  302)
* texreset:                              Frames and pictures.
                                                            (line  306)
* textbook graph:                        graph.              (line  360)
* tgz:                                   UNIX binary distributions.
                                                            (line    6)
* thick:                                 three.              (line  179)
* thin:                                  three.              (line  179)
* this:                                  Structures.         (line    6)
* three:                                 three.              (line    6)
* ThreeViews:                            three.              (line  487)
* ThreeViewsFR:                          three.              (line  487)
* ThreeViewsUS:                          three.              (line  487)
* tick:                                  graph.              (line  330)
* ticks:                                 graph.              (line  160)
* Ticks:                                 graph.              (line  160)
* Ticks <1>:                             graph.              (line  233)
* tildeframe:                            markers.            (line   24)
* tile:                                  Pens.               (line  338)
* tilings:                               Pens.               (line  324)
* time:                                  Data types.         (line  321)
* time <1>:                              Data types.         (line  346)
* time <2>:                              math.               (line   26)
* time <3>:                              math.               (line   30)
* times:                                 Paths and guides.   (line  220)
* times <1>:                             Paths and guides.   (line  224)
* Top:                                   graph.              (line  135)
* TopView:                               three.              (line  472)
* trace:                                 Debugger.           (line   50)
* trailingzero:                          graph.              (line  175)
* transform:                             Transforms.         (line    6)
* transform <1>:                         three.              (line  560)
* transform3:                            three.              (line  523)
* transparency:                          Pens.               (line  307)
* transparent:                           three.              (line   97)
* transpose:                             Arrays.             (line  212)
* transpose <1>:                         Arrays.             (line  215)
* tree:                                  tree.               (line    6)
* trembling:                             trembling.          (line    6)
* triangle:                              geometry.           (line    6)
* triangles:                             three.              (line  167)
* triangulate:                           contour.            (line  189)
* tridiagonal:                           Arrays.             (line  286)
* trigonometric integrals:               Mathematical functions.
                                                            (line   51)
* triple:                                Data types.         (line  137)
* TrueMargin:                            draw.               (line   90)
* TrueMargin3:                           three.              (line  667)
* tube:                                  three.              (line  179)
* tube <1>:                              tube.               (line    6)
* tutorial:                              Tutorial.           (line    6)
* type1cm:                               Pens.               (line  245)
* typedef:                               Data types.         (line  385)
* typedef <1>:                           Functions.          (line   48)
* U3D:                                   embed.              (line   22)
* undefined:                             Paths and guides.   (line  283)
* unfill:                                fill.               (line  110)
* UnFill:                                Frames and pictures.
                                                            (line  153)
* UnFill <1>:                            Frames and pictures.
                                                            (line  156)
* uniform:                               Arrays.             (line  154)
* uninstall:                             Uninstall.          (line    6)
* unique:                                math.               (line   59)
* unit:                                  Data types.         (line   83)
* unit <1>:                              Data types.         (line  174)
* unitbox:                               Paths.              (line   44)
* unitbox <1>:                           three.              (line  397)
* unitcircle:                            Paths.              (line   17)
* unitcircle <1>:                        Paths.              (line   17)
* unitcircle <2>:                        three.              (line  365)
* unitrand:                              Mathematical functions.
                                                            (line   39)
* unitsize:                              Figure size.        (line   39)
* unitsize <1>:                          Frames and pictures.
                                                            (line   56)
* UNIX binary distributions:             UNIX binary distributions.
                                                            (line    6)
* unpacking:                             Rest arguments.     (line   39)
* unravel:                               Import.             (line   29)
* up:                                    three.              (line  425)
* update:                                Files.              (line   38)
* UpsideDown:                            Frames and pictures.
                                                            (line   92)
* UpsideDown <1>:                        Frames and pictures.
                                                            (line   99)
* URL:                                   Import.             (line   94)
* usepackage:                            Frames and pictures.
                                                            (line  309)
* user coordinates:                      Figure size.        (line   39)
* user-defined operators:                User-defined operators.
                                                            (line    6)
* using:                                 Data types.         (line  385)
* using <1>:                             Functions.          (line   48)
* usleep:                                Data types.         (line  379)
* v3d:                                   three.              (line  320)
* value:                                 math.               (line   34)
* value <1>:                             math.               (line   37)
* var:                                   Variable initializers.
                                                            (line   55)
* variable initializers:                 Variable initializers.
                                                            (line    6)
* vectorfield:                           graph.              (line 1022)
* vectorfield <1>:                       graph.              (line 1061)
* vectorfield3:                          graph3.             (line  170)
* vectorization:                         Arrays.             (line  343)
* verbatim:                              Frames and pictures.
                                                            (line  285)
* vertex-dependent colors:               three.              (line  132)
* Vertical:                              flowchart.          (line   77)
* Viewport:                              three.              (line   76)
* viewportheight:                        LaTeX usage.        (line   47)
* viewportmargin:                        three.              (line  353)
* viewportsize:                          three.              (line  353)
* viewportwidth:                         LaTeX usage.        (line   47)
* views:                                 three.              (line  299)
* vim:                                   Editing modes.      (line   32)
* virtual functions:                     Structures.         (line  146)
* void:                                  Data types.         (line   10)
* W:                                     Labels.             (line   18)
* warn:                                  Configuring.        (line   79)
* WebGL:                                 three.              (line  246)
* whatever:                              Paths and guides.   (line  246)
* Wheel:                                 palette.            (line   22)
* wheel mouse:                           GUI.                (line    6)
* while:                                 Programming.        (line   49)
* White:                                 three.              (line   76)
* white-space string delimiter mode:     Arrays.             (line  377)
* width:                                 LaTeX usage.        (line   47)
* windingnumber:                         Paths and guides.   (line  283)
* word:                                  Arrays.             (line  367)
* word <1>:                              Arrays.             (line  377)
* write:                                 Files.              (line   57)
* write <1>:                             Arrays.             (line  416)
* X:                                     three.              (line  365)
* xasy:                                  GUI.                (line    6)
* xaxis3:                                graph3.             (line    7)
* xdr:                                   Files.              (line   80)
* xelatex:                               Options.            (line  188)
* XEquals:                               graph.              (line  265)
* xequals:                               graph.              (line  278)
* xlimits:                               graph.              (line  639)
* XOR:                                   Arithmetic & logical.
                                                            (line   68)
* xpart:                                 Data types.         (line   94)
* xpart <1>:                             Data types.         (line  185)
* xscale:                                Transforms.         (line   30)
* xscale3:                               three.              (line  530)
* xtick:                                 graph.              (line  330)
* XY:                                    three.              (line  545)
* XY <1>:                                three.              (line  560)
* XYEquals:                              graph3.             (line   24)
* XYZero:                                graph3.             (line   24)
* XZEquals:                              graph3.             (line   24)
* XZero:                                 graph.              (line  260)
* XZZero:                                graph3.             (line   24)
* Y:                                     Mathematical functions.
                                                            (line    6)
* Y <1>:                                 Mathematical functions.
                                                            (line   51)
* Y <2>:                                 three.              (line  365)
* yaxis3:                                graph3.             (line    7)
* YEquals:                               graph.              (line  128)
* yequals:                               graph.              (line  278)
* ylimits:                               graph.              (line  639)
* ypart:                                 Data types.         (line   97)
* ypart <1>:                             Data types.         (line  188)
* yscale:                                Transforms.         (line   32)
* yscale3:                               three.              (line  532)
* ytick:                                 graph.              (line  330)
* YX:                                    three.              (line  560)
* YZ:                                    three.              (line  560)
* YZEquals:                              graph3.             (line   24)
* YZero:                                 graph.              (line  123)
* YZZero:                                graph3.             (line   24)
* Z:                                     three.              (line  365)
* zaxis3:                                graph3.             (line    7)
* zero_Ai:                               Mathematical functions.
                                                            (line   51)
* zero_Ai_deriv:                         Mathematical functions.
                                                            (line   51)
* zero_Bi:                               Mathematical functions.
                                                            (line   51)
* zero_Bi_deriv:                         Mathematical functions.
                                                            (line   51)
* zero_J:                                Mathematical functions.
                                                            (line   51)
* zeroTransform:                         Transforms.         (line   44)
* zerowinding:                           Pens.               (line  164)
* zeta:                                  Mathematical functions.
                                                            (line   51)
* zpart:                                 Data types.         (line  191)
* zscale3:                               three.              (line  534)
* ZX:                                    three.              (line  560)
* ZX <1>:                                three.              (line  560)
* ZY:                                    three.              (line  560)


Tag Table:
Node: Top573
Node: Description7655
Node: Installation12070
Node: UNIX binary distributions13215
Node: MacOS X binary distributions14370
Node: Microsoft Windows14982
Node: Configuring16219
Node: Search paths20734
Node: Compiling from UNIX source21826
Node: Editing modes24405
Node: Git26968
Node: Building the documentation27468
Node: Uninstall28034
Node: Tutorial28395
Node: Drawing in batch mode29266
Node: Drawing in interactive mode30173
Node: Figure size31244
Node: Labels32931
Node: Paths33823
Ref: unitcircle34463
Node: Drawing commands36416
Node: draw38284
Ref: arrows39535
Node: fill45841
Ref: gradient shading46923
Node: clip51798
Node: label52575
Ref: Label53489
Ref: baseline57403
Ref: envelope58139
Node: Bezier curves59691
Node: Programming63658
Ref: array iteration65593
Node: Data types65760
Ref: format77398
Node: Paths and guides82388
Ref: circle82650
Ref: extension93002
Node: Pens100195
Ref: fillrule108334
Ref: basealign109292
Ref: transparency114657
Ref: makepen118418
Ref: overwrite119324
Node: Transforms120583
Node: Frames and pictures122678
Ref: size124292
Ref: unitsize125386
Ref: shipout126515
Ref: filltype129001
Ref: add132630
Ref: add about133603
Ref: tex136721
Ref: deferred drawing137632
Node: Deferred drawing137632
Node: Files140923
Ref: cd141958
Ref: scroll147374
Node: Variable initializers150483
Node: Structures153357
Node: Operators159425
Node: Arithmetic & logical159741
Node: Self & prefix operators162279
Node: User-defined operators163139
Node: Implicit scaling164152
Node: Functions164715
Ref: stack overflow168050
Node: Default arguments168336
Node: Named arguments169090
Node: Rest arguments171740
Node: Mathematical functions174897
Node: Arrays181057
Ref: sort189177
Ref: tridiagonal192735
Ref: solve194050
Node: Slices198520
Node: Casts202525
Node: Import204939
Node: Templated imports210581
Node: Static212417
Node: Autounravel215395
Node: When fields are autounraveled216850
Node: Where autounravel is legal217763
Ref: Where autounravel is legal-Footnote-1218593
Node: LaTeX usage218868
Node: Base modules225469
Node: plain228034
Node: simplex228687
Node: simplex2228895
Node: math229193
Node: interpolate232089
Node: geometry232380
Node: trembling233076
Node: stats233353
Node: patterns233624
Node: markers233867
Node: map235767
Node: tree236187
Node: binarytree236371
Node: drawtree237046
Node: syzygy237255
Node: feynman237537
Node: roundedpath237823
Node: animation238113
Ref: animate238561
Node: embed239737
Node: slide240747
Node: MetaPost241090
Node: babel241866
Node: labelpath242114
Node: labelpath3242978
Node: annotate243305
Node: CAD243795
Node: graph244113
Ref: ticks251728
Ref: pathmarkers265916
Ref: marker266390
Ref: markuniform266756
Ref: errorbars268663
Ref: automatic scaling273840
Node: palette285660
Ref: images285782
Ref: image290303
Ref: logimage290824
Ref: penimage291934
Ref: penfunctionimage292197
Node: three292973
Ref: PostScript3D326436
Node: obj328230
Node: graph3328491
Ref: GaussianSurface334518
Node: grid3335696
Node: solids336532
Node: tube337556
Node: flowchart339939
Node: contour344658
Node: contour3351139
Node: smoothcontour3351463
Node: slopefield353230
Node: ode354775
Node: Options355044
Ref: configuration file363540
Ref: settings363540
Ref: texengines364888
Ref: magick364888
Node: Interactive mode368283
Ref: history370512
Node: GUI371883
Node: GUI installation372453
Node: GUI usage373610
Node: Command-Line Interface374677
Node: Language server protocol376122
Node: PostScript to Asymptote377603
Node: Help378432
Node: Debugger380162
Node: Credits382010
Node: Index383268

End Tag Table


Local Variables:
coding: utf-8
End: