real stepfactor=2; // Maximum dynamic step size adjustment factor.

struct coefficients
{
 real[] steps;
 real[] factors;
 real[][] weights;
 real[] highOrderWeights;
 real[] lowOrderWeights;
}

struct RKTableau
{
 int order;
 coefficients a;
 void stepDependence(real h, real c, coefficients a) {}

 real pgrow;
 real pshrink;
 bool exponential;

 void operator init(int order, real[][] weights, real[] highOrderWeights,
                    real[] lowOrderWeights=new real[],
                    real[] steps=sequence(new real(int i) {
                        return sum(weights[i]);},weights.length),
                    void stepDependence(real, real, coefficients)=null) {
   this.order=order;
   a.steps=steps;
   a.factors=array(a.steps.length+1,1);
   a.weights=weights;
   a.highOrderWeights=highOrderWeights;
   a.lowOrderWeights=lowOrderWeights;
   if(stepDependence != null) {
     this.stepDependence=stepDependence;
     exponential=true;
   }
   pgrow=(order > 0) ? 1/order : 0;
   pshrink=(order > 1) ? 1/(order-1) : pgrow;
 }
}

real[] Coeff={1,1/2,1/6,1/24,1/120,1/720,1/5040,1/40320,1/362880,1/3628800,
             1/39916800.0,1/479001600.0,1/6227020800.0,1/87178291200.0,
             1/1307674368000.0,1/20922789888000.0,1/355687428096000.0,
             1/6402373705728000.0,1/121645100408832000.0,
             1/2432902008176640000.0,1/51090942171709440000.0,
             1/1124000727777607680000.0};

real phi1(real x) {return x != 0 ? expm1(x)/x : 1;}

// phi2(x)=(exp(x)-1-x)/(x^2);
// Use the identity phi2(2x)=0.25*(x*phi2(x)+1)^2+0.5*phi2(x);
real phi2(real x)
{
 if(fabs(x) > 1) return (exp(x)-x-1)/(x^2);
 x *= 0.125;
 real x2=x*x;
 real x3=x2*x;
 real x5=x2*x3;
 real y=Coeff[1]+x*Coeff[2]+x2*Coeff[3]+x3*Coeff[4]+x2*x2*Coeff[5]+
   x5*Coeff[6]+x3*x3*Coeff[7]+x5*x2*Coeff[8]+x5*x3*Coeff[9];
 y=0.25*(x*y+1.0)^2+0.5*y;
 y=(x*y+0.5)^2+0.5*y;
 return (2.0*x*y+0.5)^2+0.5*y;
}

// phi3(x)=(exp(x)-1-x-x^2/2)/(x^3)
// Use the identity phi3(2x)=0.125*phi2(x)*(x*phi2(x)+2)+0.25*phi3(x)
// where phi2(x)=x*phi3(x)+0.5
real phi3(real x)
{
 if(fabs(x) > 1.6) return (exp(x)-0.5*x^2-x-1)/x^3;
 x *= 0.125;
 real x2=x*x;
 real x3=x2*x;
 real x5=x2*x3;
 real y=Coeff[2]+x*Coeff[3]+x2*Coeff[4]+x3*Coeff[5]+
   x2*x2*Coeff[6]+x5*Coeff[7]+x3*x3*Coeff[8]+x5*x2*Coeff[9]+
   x5*x3*Coeff[10];
 real y2=x*y+0.5;
 y=0.125*y2*(x*y2+2)+0.25*y;
 y2=2*x*y+0.5;
 y=0.25*y2*(x*y2+1)+0.25*y;
 y2=4*x*y+0.5;
 return 0.25*y2*(2*x*y2+1)+0.25*y;
}

// phi4(x)=(exp(x)-1-x-x^2/2-x^3/6)/(x^4)
// Use the identity phi4(2x)=0.0625*(x*phi3(x)+0.5)^2+0.125*(phi3(x)+phi4(x));
// where phi3(x)=x*phi4(x)+1/6
real phi4(real x)
{
 if(fabs(x) > 1.6) return (exp(x)-Coeff[2]*x^3-0.5*x^2-x-1)/x^4;
 x *= 0.125;
 real x2=x*x;
 real x3=x2*x;
 real x4=x2*x2;
 real x5=x2*x3;
 real y=Coeff[3]+x*Coeff[4]+x2*Coeff[5]+x3*Coeff[6]+
   x4*Coeff[7]+x5*Coeff[8]+x3*x3*Coeff[9]+x5*x2*Coeff[10]+
   x4*x4*Coeff[11];
 real y3=x*y+Coeff[2];
 y=0.0625*(x*y3+0.5)^2+0.125*(y3+y);
 y3=2*x*y+Coeff[2];
 y=(0.5*x*y3+0.125)^2+0.125*(y3+y);
 y3=4*x*y+Coeff[2];
 return (x*y3+0.125)^2+0.125*(y3+y);
}

void expfactors(real x, coefficients a)
{
 for(int i=0; i < a.steps.length; ++i)
   a.factors[i]=exp(x*a.steps[i]);
 a.factors[a.steps.length]=exp(x);
}

// First-Order Euler
RKTableau Euler=RKTableau(1,new real[][], new real[] {1});

// First-Order Exponential Euler
RKTableau E_Euler=RKTableau(1,new real[][], new real[] {1},
                           new void(real h, real c, coefficients a) {
                             real x=-c*h;
                             expfactors(x,a);
                             a.highOrderWeights[0]=phi1(x);
                           });

// Second-Order Runge-Kutta
RKTableau RK2=RKTableau(2,new real[][] {{1/2}},
                       new real[] {0,1}, // 2nd order
                       new real[] {1,0}); // 1st order

// Second-Order Exponential Runge-Kutta
RKTableau E_RK2=RKTableau(2,new real[][] {{1/2}},
                         new real[] {0,1}, // 2nd order
                         new real[] {1,0}, // 1st order
                         new void(real h, real c, coefficients a) {
                           real x=-c*h;
                           expfactors(x,a);
                           a.weights[0][0]=1/2*phi1(x/2);
                           real w=phi1(x);
                           a.highOrderWeights[0]=0;
                           a.highOrderWeights[1]=w;
                           a.lowOrderWeights[0]=w;
                         });

// Second-Order Predictor-Corrector
RKTableau PC=RKTableau(2,new real[][] {{1}},
                      new real[] {1/2,1/2}, // 2nd order
                      new real[] {1,0}); // 1st order

// Second-Order Exponential Predictor-Corrector
RKTableau E_PC=RKTableau(2,new real[][] {{1}},
                        new real[] {1/2,1/2}, // 2nd order
                        new real[] {1,0}, // 1st order
                        new void(real h, real c, coefficients a) {
                          real x=-c*h;
                          expfactors(x,a);
                          real w=phi1(x);
                          a.weights[0][0]=w;
                          a.highOrderWeights[0]=w/2;
                          a.highOrderWeights[1]=w/2;
                          a.lowOrderWeights[0]=w;
                        });

// Third-Order Classical Runge-Kutta
RKTableau RK3=RKTableau(3,new real[][] {{1/2},{-1,2}},
                       new real[] {1/6,2/3,1/6});

// Third-Order Bogacki-Shampine Runge-Kutta
RKTableau RK3BS=RKTableau(3,new real[][] {{1/2},{0,3/4}},
                         new real[] {2/9,1/3,4/9}, // 3rd order
                         new real[] {7/24,1/4,1/3,1/8}); // 2nd order

// Third-Order Exponential Bogacki-Shampine Runge-Kutta
RKTableau E_RK3BS=RKTableau(3,new real[][] {{1/2},{0,3/4}},
                           new real[] {2/9,1/3,4/9}, // 3rd order
                           new real[] {7/24,1/4,1/3,1/8}, // 2nd order
                           new void(real h, real c, coefficients a) {
                             real x=-c*h;
                             expfactors(x,a);
                             real w=phi1(x);
                             real w2=phi2(x);
                             a.weights[0][0]=1/2*phi1(x/2);
                             real a11=9/8*phi2(3/4*x)+3/8*phi2(x/2);
                             a.weights[1][0]=3/4*phi1(3/4*x)-a11;
                             a.weights[1][1]=a11;
                             real a21=1/3*w;
                             real a22=4/3*w2-2/9*w;
                             a.highOrderWeights[0]=w-a21-a22;
                             a.highOrderWeights[1]=a21;
                             a.highOrderWeights[2]=a22;
                             a.lowOrderWeights[0]=w-17/12*w2;
                             a.lowOrderWeights[1]=w2/2;
                             a.lowOrderWeights[2]=2/3*w2;
                             a.lowOrderWeights[3]=w2/4;
                           });

// Fourth-Order Classical Runge-Kutta
RKTableau RK4=RKTableau(4,new real[][] {{1/2},{0,1/2},{0,0,1}},
                       new real[] {1/6,1/3,1/3,1/6});

// Fifth-Order Cash-Karp Runge-Kutta
RKTableau RK5=RKTableau(5,new real[][] {{1/5},
                                         {3/40,9/40},
                                           {3/10,-9/10,6/5},
                                             {-11/54,5/2,-70/27,35/27},
                                               {1631/55296,175/512,575/13824,
                                                   44275/110592,253/4096}},
 new real[] {37/378,0,250/621,125/594,
               0,512/1771},  // 5th order
 new real[] {2825/27648,0,18575/48384,13525/55296,
               277/14336,1/4}); // 4th order

// Fifth-Order Fehlberg Runge-Kutta
RKTableau RK5F=RKTableau(5,new real[][] {{1/4},
                                          {3/32,9/32},
                                            {1932/2197,-7200/2197,7296/2197},
                                              {439/216,-8,3680/513,-845/4104},
                                                {-8/27,2,-3544/2565,1859/4104,
                                                    -11/40}},
 new real[] {16/135,0,6656/12825,28561/56430,-9/50,2/55}, // 5th order
 new real[] {25/216,0,1408/2565,2197/4104,-1/5,0}); // 4th order

// Fifth-Order Dormand-Prince Runge-Kutta
RKTableau RK5DP=RKTableau(5,new real[][] {{1/5},
                                           {3/40,9/40},
                                             {44/45,-56/15,32/9},
                                               {19372/6561,-25360/2187,64448/6561,
                                                   -212/729},
                                                 {9017/3168,-355/33,46732/5247,49/176,
                                                     -5103/18656}},
 new real[] {35/384,0,500/1113,125/192,-2187/6784,
               11/84}, // 5th order
 new real[] {5179/57600,0,7571/16695,393/640,
               -92097/339200,187/2100,1/40}); // 4th order

real error(real error, real initial, real lowOrder, real norm, real diff)
{
 if(initial != 0 && lowOrder != initial) {
   static real epsilon=realMin/realEpsilon;
   real denom=max(abs(norm),abs(initial))+epsilon;
   return max(error,max(abs(diff)/denom));
 }
 return error;
}

void report(real old, real h, real t)
{
 write("Time step changed from "+(string) old+" to "+(string) h+" at t="+
       (string) t+".");
}

real adjust(real h, real error, real tolmin, real tolmax, RKTableau tableau)
{
 if(error > tolmax)
   h *= max((tolmin/error)^tableau.pshrink,1/stepfactor);
 else if(error > 0 && error < tolmin)
   h *= min((tolmin/error)^tableau.pgrow,stepfactor);
 return h;
}

struct solution
{
 real[] t;
 real[] y;
}

void write(solution S)
{
 for(int i=0; i < S.t.length; ++i)
   write(S.t[i],S.y[i]);
}

// Integrate dy/dt+cy=f(t,y) from a to b using initial conditions y,
// specifying either the step size h or the number of steps n.
solution integrate(real y, real c=0, real f(real t, real y), real a, real b=a,
                  real h=0, int n=0, bool dynamic=false, real tolmin=0,
                  real tolmax=0, real dtmin=0, real dtmax=realMax,
                  RKTableau tableau, bool verbose=false)
{
 solution S;
 S.t=new real[] {a};
 S.y=new real[] {y};

 if(h == 0) {
   if(b == a) return S;
   if(n == 0) abort("Either n or h must be specified");
   else h=(b-a)/n;
 }

 real F(real t, real y)=(c == 0 || tableau.exponential) ? f :
   new real(real t, real y) {return f(t,y)-c*y;};

 tableau.stepDependence(h,c,tableau.a);

 real t=a;
 real f0;
 if(tableau.a.lowOrderWeights.length == 0) dynamic=false;
 bool fsal=dynamic &&
   (tableau.a.lowOrderWeights.length > tableau.a.highOrderWeights.length);
 if(fsal) f0=F(t,y);

 real dt=h;
 while(t < b) {
   h=min(h,b-t);
   if(t+h == t) break;
   if(h != dt) {
     if(verbose) report(dt,h,t);
     tableau.stepDependence(h,c,tableau.a);
     dt=h;
   }

   real[] predictions={fsal ? f0 : F(t,y)};
   for(int i=0; i < tableau.a.steps.length; ++i)
     predictions.push(F(t+h*tableau.a.steps[i],
                        tableau.a.factors[i]*y+h*dot(tableau.a.weights[i],
                                                     predictions)));

   real highOrder=h*dot(tableau.a.highOrderWeights,predictions);
   real y0=tableau.a.factors[tableau.a.steps.length]*y;
   if(dynamic) {
     real f1;
     if(fsal) {
       f1=F(t+h,y0+highOrder);
       predictions.push(f1);
     }
     real lowOrder=h*dot(tableau.a.lowOrderWeights,predictions);
     real error;
     error=error(error,y,y0+lowOrder,y0+highOrder,highOrder-lowOrder);
     h=adjust(h,error,tolmin,tolmax,tableau);
     if(h >= dt) {
       t += dt;
       y=y0+highOrder;
       S.t.push(t);
       S.y.push(y);
       f0=f1;
     }
     h=min(max(h,dtmin),dtmax);
   } else {
     t += h;
     y=y0+highOrder;
     S.t.push(t);
     S.y.push(y);
   }
 }
 return S;
}

struct Solution
{
 real[] t;
 real[][] y;
}

void write(Solution S)
{
 for(int i=0; i < S.t.length; ++i) {
   write(S.t[i],tab);
   for(real y : S.y[i])
     write(y,tab);
   write();
 }
}

// Integrate a set of equations, dy/dt=f(t,y), from a to b using initial
// conditions y, specifying either the step size h or the number of steps n.
Solution integrate(real[] y, real[] f(real t, real[] y), real a, real b=a,
                  real h=0, int n=0, bool dynamic=false,
                  real tolmin=0, real tolmax=0, real dtmin=0,
                  real dtmax=realMax, RKTableau tableau, bool verbose=false)
{
 Solution S;
 S.t=new real[] {a};
 S.y=new real[][] {copy(y)};

 if(h == 0) {
   if(b == a) return S;
   if(n == 0) abort("Either n or h must be specified");
   else h=(b-a)/n;
 }
 real t=a;
 real[] f0;
 if(tableau.a.lowOrderWeights.length == 0) dynamic=false;
 bool fsal=dynamic &&
   (tableau.a.lowOrderWeights.length > tableau.a.highOrderWeights.length);
 if(fsal) f0=f(t,y);

 real dt=h;
 while(t < b) {
   h=min(h,b-t);
   if(t+h == t) break;
   if(h != dt) {
     if(verbose) report(dt,h,t);
     dt=h;
   }

   real[][] predictions={fsal ? f0 : f(t,y)};
   for(int i=0; i < tableau.a.steps.length; ++i)
     predictions.push(f(t+h*tableau.a.steps[i],
                        y+h*tableau.a.weights[i]*predictions));

   real[] highOrder=h*tableau.a.highOrderWeights*predictions;
   if(dynamic) {
     real[] f1;
     if(fsal) {
       f1=f(t+h,y+highOrder);
       predictions.push(f1);
     }
     real[] lowOrder=h*tableau.a.lowOrderWeights*predictions;
     real error;
     for(int i=0; i < y.length; ++i)
       error=error(error,y[i],y[i]+lowOrder[i],y[i]+highOrder[i],
                   highOrder[i]-lowOrder[i]);
     h=adjust(h,error,tolmin,tolmax,tableau);
     if(h >= dt) {
       t += dt;
       y += highOrder;
       S.t.push(t);
       S.y.push(y);
       f0=f1;
     }
     h=min(max(h,dtmin),dtmax);
   } else {
     t += h;
     y += highOrder;
     S.t.push(t);
     S.y.push(y);
   }
 }
 return S;
}

real[][] finiteDifferenceJacobian(real[] f(real[]), real[] t,
                                 real[] h=sqrtEpsilon*abs(t))
{
 real[] ft=f(t);
 real[][] J=new real[t.length][ft.length];
 real[] ti=copy(t);
 real tlast=ti[0];
 ti[0] += h[0];
 J[0]=(f(ti)-ft)/h[0];
 for(int i=1; i < t.length; ++i) {
   ti[i-1]=tlast;
   tlast=ti[i];
   ti[i] += h[i];
   J[i]=(f(ti)-ft)/h[i];
 }
 return transpose(J);
}

// Solve simultaneous nonlinear system by Newton's method.
real[] newton(int iterations=100, real[] f(real[]), real[][] jacobian(real[]),
             real[] t)
{
 real[] t=copy(t);
 for(int i=0; i < iterations; ++i)
   t += solve(jacobian(t),-f(t));
 return t;
}

real[] solveBVP(real[] f(real, real[]), real a, real b=a, real h=0, int n=0,
               bool dynamic=false, real tolmin=0, real tolmax=0, real dtmin=0,
               real dtmax=realMax, RKTableau tableau, bool verbose=false,
               real[] initial(real[]), real[] discrepancy(real[]),
               real[] guess, int iterations=100)
{
 real[] g(real[] t) {
   real[][] y=integrate(initial(t),f,a,b,h,n,dynamic,tolmin,tolmax,dtmin,dtmax,
                        tableau,verbose).y;return discrepancy(y[y.length-1]);
 }
 real[][] jacobian(real[] t) {return finiteDifferenceJacobian(g,t);}
 return initial(newton(iterations,g,jacobian,guess));
}