/*
** ccio-dma.c:
**      DMA management routines for first generation cache-coherent machines.
**      Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
**
**      (c) Copyright 2000 Grant Grundler
**      (c) Copyright 2000 Ryan Bradetich
**      (c) Copyright 2000 Hewlett-Packard Company
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
**
**  "Real Mode" operation refers to U2/Uturn chip operation.
**  U2/Uturn were designed to perform coherency checks w/o using
**  the I/O MMU - basically what x86 does.
**
**  Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
**      CVSROOT=:pserver:[email protected]:/cvsroot/linux-parisc
**      cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
**
**  I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
**
**  Drawbacks of using Real Mode are:
**      o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
**      o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
**      o Ability to do scatter/gather in HW is lost.
**      o Doesn't work under PCX-U/U+ machines since they didn't follow
**        the coherency design originally worked out. Only PCX-W does.
*/

#include <linux/config.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/string.h>
#define PCI_DEBUG
#include <linux/pci.h>
#undef PCI_DEBUG

#include <asm/byteorder.h>
#include <asm/cache.h>          /* for L1_CACHE_BYTES */
#include <asm/uaccess.h>
#include <asm/pgalloc.h>
#include <asm/page.h>
#include <asm/dma.h>
#include <asm/io.h>
#include <asm/gsc.h>            /* for gsc_writeN()... */
#include <asm/hardware.h>       /* for register_module() */

/*
** Choose "ccio" since that's what HP-UX calls it.
** Make it easier for folks to migrate from one to the other :^)
*/
#define MODULE_NAME "ccio"

#undef DEBUG_CCIO_RES
#undef DEBUG_CCIO_RUN
#undef DEBUG_CCIO_INIT
#undef DEBUG_CCIO_RUN_SG

#include <linux/proc_fs.h>
#include <asm/runway.h>         /* for proc_runway_root */

#ifdef DEBUG_CCIO_INIT
#define DBG_INIT(x...)  printk(x)
#else
#define DBG_INIT(x...)
#endif

#ifdef DEBUG_CCIO_RUN
#define DBG_RUN(x...)   printk(x)
#else
#define DBG_RUN(x...)
#endif

#ifdef DEBUG_CCIO_RES
#define DBG_RES(x...)   printk(x)
#else
#define DBG_RES(x...)
#endif

#ifdef DEBUG_CCIO_RUN_SG
#define DBG_RUN_SG(x...) printk(x)
#else
#define DBG_RUN_SG(x...)
#endif

#define CCIO_INLINE     /* inline */
#define WRITE_U32(value, addr) gsc_writel(value, (u32 *)(addr))
#define READ_U32(addr) gsc_readl((u32 *)(addr))

#define U2_IOA_RUNWAY 0x580
#define U2_BC_GSC     0x501
#define UTURN_IOA_RUNWAY 0x581
#define UTURN_BC_GSC     0x502

#define IOA_NORMAL_MODE      0x00020080 /* IO_CONTROL to turn on CCIO        */
#define CMD_TLB_DIRECT_WRITE 35         /* IO_COMMAND for I/O TLB Writes     */
#define CMD_TLB_PURGE        33         /* IO_COMMAND to Purge I/O TLB entry */

struct ioa_registers {
       /* Runway Supervisory Set */
       volatile int32_t    unused1[12];
       volatile uint32_t   io_command;             /* Offset 12 */
       volatile uint32_t   io_status;              /* Offset 13 */
       volatile uint32_t   io_control;             /* Offset 14 */
       volatile int32_t    unused2[1];

       /* Runway Auxiliary Register Set */
       volatile uint32_t   io_err_resp;            /* Offset  0 */
       volatile uint32_t   io_err_info;            /* Offset  1 */
       volatile uint32_t   io_err_req;             /* Offset  2 */
       volatile uint32_t   io_err_resp_hi;         /* Offset  3 */
       volatile uint32_t   io_tlb_entry_m;         /* Offset  4 */
       volatile uint32_t   io_tlb_entry_l;         /* Offset  5 */
       volatile uint32_t   unused3[1];
       volatile uint32_t   io_pdir_base;           /* Offset  7 */
       volatile uint32_t   io_io_low_hv;           /* Offset  8 */
       volatile uint32_t   io_io_high_hv;          /* Offset  9 */
       volatile uint32_t   unused4[1];
       volatile uint32_t   io_chain_id_mask;       /* Offset 11 */
       volatile uint32_t   unused5[2];
       volatile uint32_t   io_io_low;              /* Offset 14 */
       volatile uint32_t   io_io_high;             /* Offset 15 */
};

struct ioc {
       struct ioa_registers *ioc_hpa;  /* I/O MMU base address */
       u8  *res_map;                   /* resource map, bit == pdir entry */
       u64 *pdir_base;                 /* physical base address */
       u32 res_hint;                   /* next available IOVP -
                                          circular search */
       u32 res_size;                   /* size of resource map in bytes */
       spinlock_t res_lock;

#ifdef CONFIG_PROC_FS
#define CCIO_SEARCH_SAMPLE 0x100
       unsigned long avg_search[CCIO_SEARCH_SAMPLE];
       unsigned long avg_idx;            /* current index into avg_search */
       unsigned long used_pages;
       unsigned long msingle_calls;
       unsigned long msingle_pages;
       unsigned long msg_calls;
       unsigned long msg_pages;
       unsigned long usingle_calls;
       unsigned long usingle_pages;
       unsigned long usg_calls;
       unsigned long usg_pages;

       unsigned short cujo20_bug;
#endif

       /* STUFF We don't need in performance path */
       u32 pdir_size;                  /* in bytes, determined by IOV Space size */
       u32 chainid_shift;              /* specify bit location of chain_id */
       struct ioc *next;               /* Linked list of discovered iocs */
       struct pci_dev *fakepci;        /* For GSC devices */
       struct parisc_device_id *iodc;  /* data about dev from firmware */
       const char *name;               /* device name from firmware */
};


/* Ratio of Host MEM to IOV Space size */
static unsigned long ccio_mem_ratio = 4;
static struct ioc *ioc_list;
static int ioc_count;

/**************************************************************
*
*   I/O Pdir Resource Management
*
*   Bits set in the resource map are in use.
*   Each bit can represent a number of pages.
*   LSbs represent lower addresses (IOVA's).
*
*   This was was copied from sba_iommu.c. Don't try to unify
*   the two resource managers unless a way to have different
*   allocation policies is also adjusted. We'd like to avoid
*   I/O TLB thrashing by having resource allocation policy
*   match the I/O TLB replacement policy.
*
***************************************************************/
#define IOVP_SIZE PAGE_SIZE
#define IOVP_SHIFT PAGE_SHIFT
#define IOVP_MASK PAGE_MASK

/* Convert from IOVP to IOVA and vice versa. */
#define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
#define CCIO_IOVP(iova) ((iova) & IOVP_MASK)

#define PDIR_INDEX(iovp)    ((iovp)>>IOVP_SHIFT)
#define MKIOVP(pdir_idx)    ((long)(pdir_idx) << IOVP_SHIFT)
#define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
#define ROUNDUP(x,y) ((x + ((y)-1)) & ~((y)-1))

/*
** Don't worry about the 150% average search length on a miss.
** If the search wraps around, and passes the res_hint, it will
** cause the kernel to panic anyhow.
*/
#define CCIO_SEARCH_LOOP(ioc, res_idx, mask_ptr, size)  \
      for(; res_ptr < res_end; ++res_ptr) { \
              if(0 == (*res_ptr & *mask_ptr)) { \
                      *res_ptr |= *mask_ptr; \
                      res_idx = (int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
                      ioc->res_hint = res_idx + (size >> 3); \
                      goto resource_found; \
              } \
      }

#define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
      u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
      u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
      u##size *mask_ptr = (u##size *)&mask; \
      CCIO_SEARCH_LOOP(ioc, res_idx, mask_ptr, size); \
      res_ptr = (u##size *)&(ioc)->res_map[0]; \
      CCIO_SEARCH_LOOP(ioa, res_idx, mask_ptr, size);

/*
** Find available bit in this ioa's resource map.
** Use a "circular" search:
**   o Most IOVA's are "temporary" - avg search time should be small.
** o keep a history of what happened for debugging
** o KISS.
**
** Perf optimizations:
** o search for log2(size) bits at a time.
** o search for available resource bits using byte/word/whatever.
** o use different search for "large" (eg > 4 pages) or "very large"
**   (eg > 16 pages) mappings.
*/

/**
* ccio_alloc_range - Allocate pages in the ioc's resource map.
* @ioc: The I/O Controller.
* @pages_needed: The requested number of pages to be mapped into the
* I/O Pdir...
*
* This function searches the resource map of the ioc to locate a range
* of available pages for the requested size.
*/
static int
ccio_alloc_range(struct ioc *ioc, unsigned long pages_needed)
{
       int res_idx;
       unsigned long mask;
#ifdef CONFIG_PROC_FS
       unsigned long cr_start = mfctl(16);
#endif

       ASSERT(pages_needed);
       ASSERT((pages_needed * IOVP_SIZE) <= DMA_CHUNK_SIZE);
       ASSERT(pages_needed <= BITS_PER_LONG);

       mask = ~(~0UL >> pages_needed);

       DBG_RES("%s() size: %d pages_needed %d mask 0x%08lx\n",
               __FUNCTION__, size, pages_needed, mask);

       /*
       ** "seek and ye shall find"...praying never hurts either...
       ** ggg sacrifices another 710 to the computer gods.
       */

       if(pages_needed <= 8) {
               CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
       } else if(pages_needed <= 16) {
               CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 16);
       } else if(pages_needed <= 32) {
               CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 32);
#ifdef __LP64__
       } else if(pages_needed <= 64) {
               CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 64);
#endif
       } else {
               panic(__FILE__ ": %s() Too many pages to map. pages_needed: %ld\n",
                     __FUNCTION__, pages_needed);
       }

       panic(__FILE__ ": %s() I/O MMU is out of mapping resources.\n",
             __FUNCTION__);

resource_found:

       DBG_RES("%s() res_idx %d mask 0x%08lx res_hint: %d\n",
               __FUNCTION__, res_idx, mask, ioc->res_hint);

#ifdef CONFIG_PROC_FS
       {
               unsigned long cr_end = mfctl(16);
               unsigned long tmp = cr_end - cr_start;
               /* check for roll over */
               cr_start = (cr_end < cr_start) ?  -(tmp) : (tmp);
       }
       ioc->avg_search[ioc->avg_idx++] = cr_start;
       ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;

       ioc->used_pages += pages_needed;
#endif

       /*
       ** return the bit address.
       */
       return res_idx << 3;
}

#define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
       u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
       u##size *mask_ptr = (u##size *)&mask; \
       ASSERT((*res_ptr & *mask_ptr) == *mask_ptr); \
       *res_ptr &= ~(*mask_ptr);

/**
* ccio_free_range - Free pages from the ioc's resource map.
* @ioc: The I/O Controller.
* @iova: The I/O Virtual Address.
* @pages_mapped: The requested number of pages to be freed from the
* I/O Pdir.
*
* This function frees the resouces allocated for the iova.
*/
static void
ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
{
       unsigned long mask;
       unsigned long iovp = CCIO_IOVP(iova);
       unsigned int res_idx = PDIR_INDEX(iovp) >> 3;

       ASSERT(pages_mapped);
       ASSERT((pages_mapped * IOVP_SIZE) <= DMA_CHUNK_SIZE);
       ASSERT(pages_mapped <= BITS_PER_LONG);

       mask = ~(~0UL >> pages_mapped);

       DBG_RES("%s():  res_idx: %d size: %d pages_mapped %d mask 0x%08lx\n",
               __FUNCTION__, res_idx, size, pages_mapped, mask);

#ifdef CONFIG_PROC_FS
       ioc->used_pages -= pages_mapped;
#endif

       if(pages_mapped <= 8) {
               CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
       } else if(pages_mapped <= 16) {
               CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 16);
       } else if(pages_mapped <= 32) {
               CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 32);
#ifdef __LP64__
       } else if(pages_mapped <= 64) {
               CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 64);
#endif
       } else {
               panic(__FILE__ ":%s() Too many pages to unmap.\n",
                     __FUNCTION__);
       }
}

/****************************************************************
**
**          CCIO dma_ops support routines
**
*****************************************************************/

typedef unsigned long space_t;
#define KERNEL_SPACE 0

/*
** DMA "Page Type" and Hints
** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
**   set for subcacheline DMA transfers since we don't want to damage the
**   other part of a cacheline.
** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
**   This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
**   data can avoid this if the mapping covers full cache lines.
** o STOP_MOST is needed for atomicity across cachelines.
**   Apperently only "some EISA devices" need this.
**   Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
**   to use this hint iff the EISA devices needs this feature.
**   According to the U2 ERS, STOP_MOST enabled pages hurt performance.
** o PREFETCH should *not* be set for cases like Multiple PCI devices
**   behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
**   device can be fetched and multiply DMA streams will thrash the
**   prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
**   and Invalidation of Prefetch Entries".
**
** FIXME: the default hints need to be per GSC device - not global.
**
** HP-UX dorks: linux device driver programming model is totally different
**    than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
**    do special things to work on non-coherent platforms...linux has to
**    be much more careful with this.
*/
#define IOPDIR_VALID    0x01UL
#define HINT_SAFE_DMA   0x02UL  /* used for pci_alloc_consistent() pages */
#ifdef CONFIG_ISA       /* EISA support really */
#define HINT_STOP_MOST  0x04UL  /* LSL support */
#else
#define HINT_STOP_MOST  0x00UL  /* only needed for "some EISA devices" */
#endif
#define HINT_UDPATE_ENB 0x08UL  /* not used/supported by U2 */
#define HINT_PREFETCH   0x10UL  /* for outbound pages which are not SAFE */


/*
** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
** ccio_alloc_consistent() depends on this to get SAFE_DMA
** when it passes in BIDIRECTIONAL flag.
*/
static u32 hint_lookup[] = {
       [PCI_DMA_BIDIRECTIONAL]  HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
       [PCI_DMA_TODEVICE]       HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
       [PCI_DMA_FROMDEVICE]     HINT_STOP_MOST | IOPDIR_VALID,
       [PCI_DMA_NONE]           0,            /* not valid */
};

/**
* ccio_io_pdir_entry - Initialize an I/O Pdir.
* @pdir_ptr: A pointer into I/O Pdir.
* @sid: The Space Identifier.
* @vba: The virtual address.
* @hints: The DMA Hint.
*
* Given a virtual address (vba, arg2) and space id, (sid, arg1),
* load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
* entry consists of 8 bytes as shown below (MSB == bit 0):
*
*
* WORD 0:
* +------+----------------+-----------------------------------------------+
* | Phys | Virtual Index  |               Phys                            |
* | 0:3  |     0:11       |               4:19                            |
* |4 bits|   12 bits      |              16 bits                          |
* +------+----------------+-----------------------------------------------+
* WORD 1:
* +-----------------------+-----------------------------------------------+
* |      Phys    |  Rsvd  | Prefetch |Update |Rsvd  |Lock  |Safe  |Valid  |
* |     20:39    |        | Enable   |Enable |      |Enable|DMA   |       |
* |    20 bits   | 5 bits | 1 bit    |1 bit  |2 bits|1 bit |1 bit |1 bit  |
* +-----------------------+-----------------------------------------------+
*
* The virtual index field is filled with the results of the LCI
* (Load Coherence Index) instruction.  The 8 bits used for the virtual
* index are bits 12:19 of the value returned by LCI.
*/
void CCIO_INLINE
ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, void * vba, unsigned long hints)
{
       register unsigned long pa = (volatile unsigned long) vba;
       register unsigned long ci; /* coherent index */

       /* We currently only support kernel addresses */
       ASSERT(sid == KERNEL_SPACE);

       mtsp(sid,1);

       /*
       ** WORD 1 - low order word
       ** "hints" parm includes the VALID bit!
       ** "dep" clobbers the physical address offset bits as well.
       */
       pa = virt_to_phys(vba);
       asm volatile("depw  %1,31,12,%0" : "+r" (pa) : "r" (hints));
       ((u32 *)pdir_ptr)[1] = (u32) pa;

       /*
       ** WORD 0 - high order word
       */

#ifdef __LP64__
       /*
       ** get bits 12:15 of physical address
       ** shift bits 16:31 of physical address
       ** and deposit them
       */
       asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
       asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
       asm volatile ("depd  %1,35,4,%0" : "+r" (pa) : "r" (ci));
#else
       pa = 0;
#endif
       /*
       ** get CPU coherency index bits
       ** Grab virtual index [0:11]
       ** Deposit virt_idx bits into I/O PDIR word
       */
       asm volatile ("lci 0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba));
       asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
       asm volatile ("depw  %1,15,12,%0" : "+r" (pa) : "r" (ci));

       ((u32 *)pdir_ptr)[0] = (u32) pa;


       /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
       **        PCX-U/U+ do. (eg C200/C240)
       **        PCX-T'? Don't know. (eg C110 or similar K-class)
       **
       ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
       ** Hopefully we can patch (NOP) these out at boot time somehow.
       **
       ** "Since PCX-U employs an offset hash that is incompatible with
       ** the real mode coherence index generation of U2, the PDIR entry
       ** must be flushed to memory to retain coherence."
       */
       asm volatile("fdc 0(%0)" : : "r" (pdir_ptr));
       asm volatile("sync");
}

/**
* ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
* @ioc: The I/O Controller.
* @iovp: The I/O Virtual Page.
* @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
*
* Purge invalid I/O PDIR entries from the I/O TLB.
*
* FIXME: Can we change the byte_cnt to pages_mapped?
*/
static CCIO_INLINE void
ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
{
       u32 chain_size = 1 << ioc->chainid_shift;

       iovp &= IOVP_MASK;      /* clear offset bits, just want pagenum */
       byte_cnt += chain_size;

       while(byte_cnt > chain_size) {
               WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_hpa->io_command);
               iovp += chain_size;
               byte_cnt -= chain_size;
     }
}

/**
* ccio_mark_invalid - Mark the I/O Pdir entries invalid.
* @ioc: The I/O Controller.
* @iova: The I/O Virtual Address.
* @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
*
* Mark the I/O Pdir entries invalid and blow away the corresponding I/O
* TLB entries.
*
* FIXME: at some threshhold it might be "cheaper" to just blow
*        away the entire I/O TLB instead of individual entries.
*
* FIXME: Uturn has 256 TLB entries. We don't need to purge every
*        PDIR entry - just once for each possible TLB entry.
*        (We do need to maker I/O PDIR entries invalid regardless).
*
* FIXME: Can we change byte_cnt to pages_mapped?
*/
static CCIO_INLINE void
ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
{
       u32 iovp = (u32)CCIO_IOVP(iova);
       size_t saved_byte_cnt;

       /* round up to nearest page size */
       saved_byte_cnt = byte_cnt = ROUNDUP(byte_cnt, IOVP_SIZE);

       while(byte_cnt > 0) {
               /* invalidate one page at a time */
               unsigned int idx = PDIR_INDEX(iovp);
               char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);

               ASSERT(idx < (ioc->pdir_size / sizeof(u64)));
               pdir_ptr[7] = 0;        /* clear only VALID bit */
               /*
               ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
               **   PCX-U/U+ do. (eg C200/C240)
               ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
               **
               ** Hopefully someone figures out how to patch (NOP) the
               ** FDC/SYNC out at boot time.
               */
               asm volatile("fdc 0(%0)" : : "r" (pdir_ptr[7]));

               iovp     += IOVP_SIZE;
               byte_cnt -= IOVP_SIZE;
       }

       asm volatile("sync");
       ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
}

/****************************************************************
**
**          CCIO dma_ops
**
*****************************************************************/

/**
* ccio_dma_supported - Verify the IOMMU supports the DMA address range.
* @dev: The PCI device.
* @mask: A bit mask describing the DMA address range of the device.
*
* This function implements the pci_dma_supported function.
*/
static int
ccio_dma_supported(struct pci_dev *dev, dma_addr_t mask)
{
       if(dev == NULL) {
               printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
               BUG();
               return 0;
       }

       dev->dma_mask = mask;   /* save it */

       /* only support 32-bit devices (ie PCI/GSC) */
       return (int)(mask == 0xffffffffUL);
}

/**
* ccio_map_single - Map an address range into the IOMMU.
* @dev: The PCI device.
* @addr: The start address of the DMA region.
* @size: The length of the DMA region.
* @direction: The direction of the DMA transaction (to/from device).
*
* This function implements the pci_map_single function.
*/
static dma_addr_t
ccio_map_single(struct pci_dev *dev, void *addr, size_t size, int direction)
{
       int idx;
       struct ioc *ioc = ioc_list;
       unsigned long flags;
       dma_addr_t iovp;
       dma_addr_t offset;
       u64 *pdir_start;
       unsigned long hint = hint_lookup[direction];

       ASSERT(size > 0);

       /* save offset bits */
       offset = ((dma_addr_t) addr) & ~IOVP_MASK;

       /* round up to nearest IOVP_SIZE */
       size = ROUNDUP(size + offset, IOVP_SIZE);
       spin_lock_irqsave(&ioc->res_lock, flags);

#ifdef CONFIG_PROC_FS
       ioc->msingle_calls++;
       ioc->msingle_pages += size >> IOVP_SHIFT;
#endif

       idx = ccio_alloc_range(ioc, (size >> IOVP_SHIFT));
       iovp = (dma_addr_t)MKIOVP(idx);

       pdir_start = &(ioc->pdir_base[idx]);

       DBG_RUN("%s() 0x%p -> 0x%lx",
               __FUNCTION__, addr, (long)iovp | offset);

       /* If not cacheline aligned, force SAFE_DMA on the whole mess */
       if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
               hint |= HINT_SAFE_DMA;

       while(size > 0) {
               ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, addr, hint);

               DBG_RUN(" pdir %p %08x%08x\n",
                       pdir_start,
                       (u32) (((u32 *) pdir_start)[0]),
                       (u32) (((u32 *) pdir_start)[1]));
               ++pdir_start;
               addr += IOVP_SIZE;
               size -= IOVP_SIZE;
       }

       spin_unlock_irqrestore(&ioc->res_lock, flags);

       /* form complete address */
       return CCIO_IOVA(iovp, offset);
}

/**
* ccio_unmap_single - Unmap an address range from the IOMMU.
* @dev: The PCI device.
* @addr: The start address of the DMA region.
* @size: The length of the DMA region.
* @direction: The direction of the DMA transaction (to/from device).
*
* This function implements the pci_unmap_single function.
*/
static void
ccio_unmap_single(struct pci_dev *dev, dma_addr_t iova, size_t size,
                 int direction)
{
       struct ioc *ioc = ioc_list; /* XXX: Use appropriate IOC for this dev */
       unsigned long flags;
       dma_addr_t offset = iova & ~IOVP_MASK;

       DBG_RUN("%s() iovp 0x%lx/%x\n",
               __FUNCTION__, (long)iova, size);

       iova ^= offset;        /* clear offset bits */
       size += offset;
       size = ROUNDUP(size, IOVP_SIZE);

       spin_lock_irqsave(&ioc->res_lock, flags);

#ifdef CONFIG_PROC_FS
       ioc->usingle_calls++;
       ioc->usingle_pages += size >> IOVP_SHIFT;
#endif

       ccio_mark_invalid(ioc, iova, size);
       ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
       spin_unlock_irqrestore(&ioc->res_lock, flags);
}

/**
* ccio_alloc_consistent - Allocate a consistent DMA mapping.
* @dev: The PCI device.
* @size: The length of the DMA region.
* @dma_handle: The DMA address handed back to the device (not the cpu).
*
* This function implements the pci_alloc_consistent function.
*/
static void *
ccio_alloc_consistent(struct pci_dev *dev, size_t size, dma_addr_t *dma_handle)
{
     void *ret;
#if 0
/* GRANT Need to establish hierarchy for non-PCI devs as well
** and then provide matching gsc_map_xxx() functions for them as well.
*/
       if(!hwdev) {
               /* only support PCI */
               *dma_handle = 0;
               return 0;
       }
#endif
       ret = (void *) __get_free_pages(GFP_ATOMIC, get_order(size));

       if (ret) {
               memset(ret, 0, size);
               *dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL);
       }

       return ret;
}

/**
* ccio_free_consistent - Free a consistent DMA mapping.
* @dev: The PCI device.
* @size: The length of the DMA region.
* @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
* @dma_handle: The device address returned from the ccio_alloc_consistent.
*
* This function implements the pci_free_consistent function.
*/
static void
ccio_free_consistent(struct pci_dev *dev, size_t size, void *cpu_addr,
                    dma_addr_t dma_handle)
{
       ccio_unmap_single(dev, dma_handle, size, 0);
       free_pages((unsigned long)cpu_addr, get_order(size));
}

/*
** Since 0 is a valid pdir_base index value, can't use that
** to determine if a value is valid or not. Use a flag to indicate
** the SG list entry contains a valid pdir index.
*/
#define PIDE_FLAG 0x80000000UL

/**
* ccio_fill_pdir - Insert coalesced scatter/gather chunks into the I/O Pdir.
* @ioc: The I/O Controller.
* @startsg: The scatter/gather list of coalesced chunks.
* @nents: The number of entries in the scatter/gather list.
* @hint: The DMA Hint.
*
* This function inserts the coalesced scatter/gather list chunks into the
* I/O Controller's I/O Pdir.
*/
static CCIO_INLINE int
ccio_fill_pdir(struct ioc *ioc, struct scatterlist *startsg, int nents,
              unsigned long hint)
{
       struct scatterlist *dma_sg = startsg;   /* pointer to current DMA */
       int n_mappings = 0;
       u64 *pdirp = 0;
       unsigned long dma_offset = 0;

       dma_sg--;
       while (nents-- > 0) {
               int cnt = sg_dma_len(startsg);
               sg_dma_len(startsg) = 0;

               DBG_RUN_SG(" %d : %08lx/%05x %p/%05x\n", nents,
                          (unsigned long)sg_dma_address(startsg), cnt,
                          startsg->address, startsg->length
               );

               /*
               ** Look for the start of a new DMA stream
               */
               if(sg_dma_address(startsg) & PIDE_FLAG) {
                       u32 pide = sg_dma_address(startsg) & ~PIDE_FLAG;
                       dma_offset = (unsigned long) pide & ~IOVP_MASK;
                       sg_dma_address(startsg) = 0;
                       dma_sg++;
                       sg_dma_address(dma_sg) = pide;
                       pdirp = &(ioc->pdir_base[pide >> IOVP_SHIFT]);
                       n_mappings++;
               }

               /*
               ** Look for a VCONTIG chunk
               */
               if (cnt) {
                       unsigned long vaddr = (unsigned long)startsg->address;
                       ASSERT(pdirp);

                       /* Since multiple Vcontig blocks could make up
                       ** one DMA stream, *add* cnt to dma_len.
                       */
                       sg_dma_len(dma_sg) += cnt;
                       cnt += dma_offset;
                       dma_offset=0;   /* only want offset on first chunk */
                       cnt = ROUNDUP(cnt, IOVP_SIZE);
#ifdef CONFIG_PROC_FS
                       ioc->msg_pages += cnt >> IOVP_SHIFT;
#endif
                       do {
                               ccio_io_pdir_entry(pdirp, KERNEL_SPACE,
                                                  (void *)vaddr, hint);
                               vaddr += IOVP_SIZE;
                               cnt -= IOVP_SIZE;
                               pdirp++;
                       } while (cnt > 0);
               }
               startsg++;
       }
       return(n_mappings);
}

/*
** First pass is to walk the SG list and determine where the breaks are
** in the DMA stream. Allocates PDIR entries but does not fill them.
** Returns the number of DMA chunks.
**
** Doing the fill seperate from the coalescing/allocation keeps the
** code simpler. Future enhancement could make one pass through
** the sglist do both.
*/

static CCIO_INLINE int
ccio_coalesce_chunks(struct ioc *ioc, struct scatterlist *startsg, int nents)
{
       struct scatterlist *vcontig_sg;    /* VCONTIG chunk head */
       unsigned long vcontig_len;         /* len of VCONTIG chunk */
       unsigned long vcontig_end;
       struct scatterlist *dma_sg;        /* next DMA stream head */
       unsigned long dma_offset, dma_len; /* start/len of DMA stream */
       int n_mappings = 0;

       while (nents > 0) {

               /*
               ** Prepare for first/next DMA stream
               */
               dma_sg = vcontig_sg = startsg;
               dma_len = vcontig_len = vcontig_end = startsg->length;
               vcontig_end += (unsigned long) startsg->address;
               dma_offset = (unsigned long) startsg->address & ~IOVP_MASK;

               /* PARANOID: clear entries */
               sg_dma_address(startsg) = 0;
               sg_dma_len(startsg) = 0;

               /*
               ** This loop terminates one iteration "early" since
               ** it's always looking one "ahead".
               */
               while(--nents > 0) {
                       unsigned long startsg_end;

                       startsg++;
                       startsg_end = (unsigned long)startsg->address +
                               startsg->length;

                       /* PARANOID: clear entries */
                       sg_dma_address(startsg) = 0;
                       sg_dma_len(startsg) = 0;

                       /*
                       ** Append the next transaction?
                       */
                       if(vcontig_end == (unsigned long) startsg->address) {
                               vcontig_len += startsg->length;
                               vcontig_end += startsg->length;
                               dma_len     += startsg->length;
                               continue;
                       }

                       /*
                       ** Not virtually contigous.
                       ** Terminate prev chunk.
                       ** Start a new chunk.
                       **
                       ** Once we start a new VCONTIG chunk, dma_offset
                       ** can't change. And we need the offset from the first
                       ** chunk - not the last one. Ergo Successive chunks
                       ** must start on page boundaries and dove tail
                       ** with it's predecessor.
                       */
                       sg_dma_len(vcontig_sg) = vcontig_len;

                       vcontig_sg = startsg;
                       vcontig_len = startsg->length;
                       break;
               }

               /*
               ** End of DMA Stream
               ** Terminate last VCONTIG block.
               ** Allocate space for DMA stream.
               */
               sg_dma_len(vcontig_sg) = vcontig_len;
               dma_len = ROUNDUP(dma_len + dma_offset, IOVP_SIZE);
               sg_dma_address(dma_sg) =
                       PIDE_FLAG
                       | (ccio_alloc_range(ioc, (dma_len >> IOVP_SHIFT)) << IOVP_SHIFT)
                       | dma_offset;
               n_mappings++;
       }

       return n_mappings;
}

/**
* ccio_map_sg - Map the scatter/gather list into the IOMMU.
* @dev: The PCI device.
* @sglist: The scatter/gather list to be mapped in the IOMMU.
* @nents: The number of entries in the scatter/gather list.
* @direction: The direction of the DMA transaction (to/from device).
*
* This function implements the pci_map_sg function.
*/
static int
ccio_map_sg(struct pci_dev *dev, struct scatterlist *sglist, int nents,
           int direction)
{
       struct ioc *ioc = ioc_list;
       int coalesced, filled = 0;
       unsigned long flags;
       unsigned long hint = hint_lookup[direction];

       DBG_RUN_SG("%s() START %d entries\n", __FUNCTION__, nents);

       /* Fast path single entry scatterlists. */
       if(nents == 1) {
               sg_dma_address(sglist)= ccio_map_single(dev, sglist->address,
                                                       sglist->length,
                                                       direction);
               sg_dma_len(sglist)= sglist->length;
               return 1;
       }

       spin_lock_irqsave(&ioc->res_lock, flags);

#ifdef CONFIG_PROC_FS
       ioc->msg_calls++;
#endif

       /*
       ** First coalesce the chunks and allocate I/O pdir space
       **
       ** If this is one DMA stream, we can properly map using the
       ** correct virtual address associated with each DMA page.
       ** w/o this association, we wouldn't have coherent DMA!
       ** Access to the virtual address is what forces a two pass algorithm.
       */
       coalesced = ccio_coalesce_chunks(ioc, sglist, nents);

       /*
       ** Program the I/O Pdir
       **
       ** map the virtual addresses to the I/O Pdir
       ** o dma_address will contain the pdir index
       ** o dma_len will contain the number of bytes to map
       ** o address contains the virtual address.
       */
       filled = ccio_fill_pdir(ioc, sglist, nents, hint);

       spin_unlock_irqrestore(&ioc->res_lock, flags);

       ASSERT(coalesced == filled);
       DBG_RUN_SG("%s() DONE %d mappings\n", __FUNCTION__, filled);

       return filled;
}

/**
* ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
* @dev: The PCI device.
* @sglist: The scatter/gather list to be unmapped from the IOMMU.
* @nents: The number of entries in the scatter/gather list.
* @direction: The direction of the DMA transaction (to/from device).
*
* This function implements the pci_unmap_sg function.
*/
static void
ccio_unmap_sg(struct pci_dev *dev, struct scatterlist *sglist, int nents,
             int direction)
{
       /* FIXME : see Multi-IOC below */
       struct ioc *ioc = ioc_list;

       DBG_RUN_SG("%s() START %d entries,  %p,%x\n",
               __FUNCTION__, nents, sglist->address, sglist->length);

#ifdef CONFIG_PROC_FS
       ioc->usg_calls++;
#endif

       while(sg_dma_len(sglist) && nents--) {

#ifdef CONFIG_PROC_FS
               ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
#endif
               ccio_unmap_single(dev, sg_dma_address(sglist),
                                 sg_dma_len(sglist), direction);
               ++sglist;
       }

       DBG_RUN_SG("%s() DONE (nents %d)\n", __FUNCTION__, nents);
}

static struct pci_dma_ops ccio_ops = {
       ccio_dma_supported,
       ccio_alloc_consistent,
       ccio_free_consistent,
       ccio_map_single,
       ccio_unmap_single,
       ccio_map_sg,
       ccio_unmap_sg,
       NULL,                   /* dma_sync_single : NOP for U2/Uturn */
       NULL,                   /* dma_sync_sg     : ditto */
};
#ifdef CONFIG_PROC_FS

static int proc_append(char *src, int len, char **dst, off_t *offset, int *max)
{
       if (len < *offset) {
               *offset -= len;
               return 0;
       }
       if (*offset > 0) {
               src += *offset;
               len -= *offset;
               *offset = 0;
       }
       if (len > *max) {
               len = *max;
       }
       memcpy(*dst, src, len);
       *dst += len;
       *max -= len;
       return (*max == 0);
}

static int ccio_proc_info(char *buf, char **start, off_t offset, int count,
               int *eof, void *data)
{
       int max = count;
       char tmp[80]; /* width of an ANSI-standard terminal */
       struct ioc *ioc = ioc_list;

       while (ioc != NULL) {
               unsigned int total_pages = ioc->res_size << 3;
               unsigned long avg = 0, min, max;
               int j;
               int len;

               len = sprintf(tmp, "%s\n", ioc->name);
               if (proc_append(tmp, len, &buf, &offset, &count))
                       break;

               len = sprintf(tmp, "Cujo 2.0 bug    : %s\n",
                       (ioc->cujo20_bug ? "yes" : "no"));
               if (proc_append(tmp, len, &buf, &offset, &count))
                       break;

               len = sprintf(tmp, "IO PDIR size    : %d bytes (%d entries)\n",
                       ((ioc->res_size << 3) * sizeof(u64)), total_pages);
               if (proc_append(tmp, len, &buf, &offset, &count))
                       break;

               len = sprintf(tmp, "IO PDIR entries : %ld free  %ld used (%d%%)\n",
                       total_pages - ioc->used_pages, ioc->used_pages,
                       (int)(ioc->used_pages * 100 / total_pages));
               if (proc_append(tmp, len, &buf, &offset, &count))
                       break;

               len = sprintf(tmp, "Resource bitmap : %d bytes (%d pages)\n",
                       ioc->res_size, ioc->res_size << 3);
               if (proc_append(tmp, len, &buf, &offset, &count))
                       break;

               min = max = ioc->avg_search[0];
               for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
                       avg += ioc->avg_search[j];
                       if(ioc->avg_search[j] > max)
                               max = ioc->avg_search[j];
                       if(ioc->avg_search[j] < min)
                               min = ioc->avg_search[j];
               }
               avg /= CCIO_SEARCH_SAMPLE;
               len = sprintf(tmp, "  Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
                       min, avg, max);
               if (proc_append(tmp, len, &buf, &offset, &count))
                       break;

               len = sprintf(tmp, "pci_map_single(): %8ld calls  %8ld pages (avg %d/1000)\n",
                       ioc->msingle_calls, ioc->msingle_pages,
                       (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
               if (proc_append(tmp, len, &buf, &offset, &count))
                       break;

               /* KLUGE - unmap_sg calls unmap_single for each mapped page */
               min = ioc->usingle_calls - ioc->usg_calls;
               max = ioc->usingle_pages - ioc->usg_pages;
               len = sprintf(tmp, "pci_unmap_single: %8ld calls  %8ld pages (avg %d/1000)\n",
                       min, max, (int)((max * 1000)/min));
               if (proc_append(tmp, len, &buf, &offset, &count))
                       break;

               len = sprintf(tmp, "pci_map_sg()    : %8ld calls  %8ld pages (avg %d/1000)\n",
                       ioc->msg_calls, ioc->msg_pages,
                       (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
               if (proc_append(tmp, len, &buf, &offset, &count))
                       break;

               len = sprintf(tmp, "pci_unmap_sg()  : %8ld calls  %8ld pages (avg %d/1000)\n\n\n",
                       ioc->usg_calls, ioc->usg_pages,
                       (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
               if (proc_append(tmp, len, &buf, &offset, &count))
                       break;

               ioc = ioc->next;
       }

       if (count == 0) {
               *eof = 1;
       }
       return (max - count);
}

static int ccio_resource_map(char *buf, char **start, off_t offset, int len,
               int *eof, void *data)
{
       struct ioc *ioc = ioc_list;

       buf[0] = '\0';
       while (ioc != NULL) {
               u32 *res_ptr = (u32 *)ioc->res_map;
               int j;

               for (j = 0; j < (ioc->res_size / sizeof(u32)); j++) {
                       if ((j & 7) == 0)
                               strcat(buf,"\n   ");
                       sprintf(buf, "%s %08x", buf, *res_ptr);
                       res_ptr++;
               }
               strcat(buf, "\n\n");
               ioc = ioc->next;
       }

       return strlen(buf);
}
#endif

#define CUJO_20_STEP       0x10000000   /* inc upper nibble */

/* Cujo 2.0 has a bug which will silently corrupt data being transferred
* to/from certain pages.  To avoid this happening, we mark these pages
* as `used', and ensure that nothing will try to allocate from them.
*/
void ccio_cujo20_fixup(struct parisc_device *dev, u32 iovp)
{
       unsigned int idx;
       struct ioc *ioc = ioc_list;
       u8 *res_ptr;

#ifdef CONFIG_PROC_FS
       ioc->cujo20_bug = 1;
#endif
       res_ptr = ioc->res_map;
       idx = PDIR_INDEX(iovp) >> 3;

       while (idx < ioc->res_size) {
               res_ptr[idx] |= 0xff;
               idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
       }
}

#if 0
/* GRANT -  is this needed for U2 or not? */

/*
** Get the size of the I/O TLB for this I/O MMU.
**
** If spa_shift is non-zero (ie probably U2),
** then calculate the I/O TLB size using spa_shift.
**
** Otherwise we are supposed to get the IODC entry point ENTRY TLB
** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
** I think only Java (K/D/R-class too?) systems don't do this.
*/
static int
ccio_get_iotlb_size(struct parisc_device *dev)
{
       if (dev->spa_shift == 0) {
               panic("%s() : Can't determine I/O TLB size.\n", __FUNCTION__);
       }
       return (1 << dev->spa_shift);
}
#else

/* Uturn supports 256 TLB entries */
#define CCIO_CHAINID_SHIFT      8
#define CCIO_CHAINID_MASK       0xff
#endif /* 0 */

/**
* ccio_ioc_init - Initalize the I/O Controller
* @ioc: The I/O Controller.
*
* Initalize the I/O Controller which includes setting up the
* I/O Page Directory, the resource map, and initalizing the
* U2/Uturn chip into virtual mode.
*/
static void
ccio_ioc_init(struct ioc *ioc)
{
       int i, iov_order;
       u32 iova_space_size;
       unsigned long physmem;

       /*
       ** Determine IOVA Space size from memory size.
       **
       ** Ideally, PCI drivers would register the maximum number
       ** of DMA they can have outstanding for each device they
       ** own.  Next best thing would be to guess how much DMA
       ** can be outstanding based on PCI Class/sub-class. Both
       ** methods still require some "extra" to support PCI
       ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
       */

       /* limit IOVA space size to 1MB-1GB */

       physmem = num_physpages << PAGE_SHIFT;
       if(physmem < (ccio_mem_ratio * 1024 * 1024)) {
               iova_space_size = 1024 * 1024;
#ifdef __LP64__
       } else if(physmem > (ccio_mem_ratio * 512 * 1024 * 1024)) {
               iova_space_size = 512 * 1024 * 1024;
#endif
       } else {
               iova_space_size = (u32)(physmem / ccio_mem_ratio);
       }

       /*
       ** iova space must be log2() in size.
       ** thus, pdir/res_map will also be log2().
       */

       /* We could use larger page sizes in order to *decrease* the number
       ** of mappings needed.  (ie 8k pages means 1/2 the mappings).
       **
       ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
       **   since the pages must also be physically contiguous - typically
       **   this is the case under linux."
       */

       iov_order = get_order(iova_space_size) >> (IOVP_SHIFT - PAGE_SHIFT);
       ASSERT(iov_order <= (30 - IOVP_SHIFT));   /* iova_space_size <= 1GB */
       ASSERT(iov_order >= (20 - IOVP_SHIFT));   /* iova_space_size >= 1MB */
       iova_space_size = 1 << (iov_order + IOVP_SHIFT);

       ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);

       ASSERT(ioc->pdir_size < 4 * 1024 * 1024);   /* max pdir size < 4MB */

       /* Verify it's a power of two */
       ASSERT((1 << get_order(ioc->pdir_size)) == (ioc->pdir_size >> PAGE_SHIFT));

       DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits) PDIR size 0x%0x",
               __FUNCTION__, ioc->ioc_hpa, physmem>>20, iova_space_size>>20,
                iov_order + PAGE_SHIFT, ioc->pdir_size);

       ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL,
                                                get_order(ioc->pdir_size));
       if(NULL == ioc->pdir_base) {
               panic(__FILE__ ":%s() could not allocate I/O Page Table\n", __FUNCTION__);
       }
       memset(ioc->pdir_base, 0, ioc->pdir_size);

       ASSERT((((unsigned long)ioc->pdir_base) & PAGE_MASK) == (unsigned long)ioc->pdir_base);
       DBG_INIT(" base %p", ioc->pdir_base);

       /* resource map size dictated by pdir_size */
       ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
       DBG_INIT("%s() res_size 0x%x\n", __FUNCTION__, ioc->res_size);

       ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL,
                                             get_order(ioc->res_size));
       if(NULL == ioc->res_map) {
               panic(__FILE__ ":%s() could not allocate resource map\n", __FUNCTION__);
       }
       memset(ioc->res_map, 0, ioc->res_size);

       /* Initialize the res_hint to 16 */
       ioc->res_hint = 16;

       /* Initialize the spinlock */
       spin_lock_init(&ioc->res_lock);

       /*
       ** Chainid is the upper most bits of an IOVP used to determine
       ** which TLB entry an IOVP will use.
       */
       ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
       DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);

       /*
       ** Initialize IOA hardware
       */
       WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift,
                 &ioc->ioc_hpa->io_chain_id_mask);

       WRITE_U32(virt_to_phys(ioc->pdir_base),
                 &ioc->ioc_hpa->io_pdir_base);

       /*
       ** Go to "Virtual Mode"
       */
       WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_hpa->io_control);

       /*
       ** Initialize all I/O TLB entries to 0 (Valid bit off).
       */
       WRITE_U32(0, &ioc->ioc_hpa->io_tlb_entry_m);
       WRITE_U32(0, &ioc->ioc_hpa->io_tlb_entry_l);

       for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
               WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
                         &ioc->ioc_hpa->io_command);
       }
}

int do_native_bus_walk(unsigned long io_io_low);

/**
* ccio_probe - Determine if ccio should claim this device.
* @dev: The device which has been found
*
* Determine if ccio should claim this chip (return 0) or not (return 1).
* If so, initialize the chip and tell other partners in crime they
* have work to do.
*/
static int ccio_probe(struct parisc_device *dev)
{
       int i, start_index, num_devices;
       unsigned long io_io_low;
       struct ioc *ioc, **ioc_p = &ioc_list;

       ioc = kmalloc(sizeof(struct ioc), GFP_KERNEL);

       if (ioc == NULL) {
               printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
               return 1;
       }
       memset(ioc, 0, sizeof(struct ioc));

       printk(KERN_INFO MODULE_NAME " found %s at 0x%lx\n",
                       dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn",
                       dev->hpa);

       for (i = 0; i < ioc_count; i++) {
               ioc_p = &(*ioc_p)->next;
       }
       *ioc_p = ioc;

       ioc->iodc = &dev->id;
       ioc->name = dev->name;
       ioc->ioc_hpa = (struct ioa_registers *)dev->hpa;
       ccio_ioc_init(ioc);

       hppa_dma_ops = &ccio_ops;

       if (ioc_count == 0) {
               /* XXX: Create separate entries for each ioc */
               create_proc_read_entry(MODULE_NAME, S_IRWXU, proc_runway_root,
                               ccio_proc_info, NULL);
               create_proc_read_entry(MODULE_NAME"-bitmap", S_IRWXU,
                               proc_runway_root, ccio_resource_map, NULL);
       }

       ioc_count++;

       io_io_low = READ_U32(&ioc->ioc_hpa->io_io_low) << 16;
#ifdef __LP64__
       /* Need to sign extend these io addresses */
       io_io_low |= 0xffffffff00000000UL;
#endif
       printk(KERN_INFO "io_io_low: 0x%lx\n", io_io_low);
       start_index = get_num_pa_dev();
       num_devices = do_native_bus_walk(io_io_low);
       print_pa_devices(start_index, num_devices);
       return 0;
}

/* We *can't* support JAVA (T600). Venture there at your own risk. */
static struct parisc_device_id ccio_tbl[] = {
       { HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
       { HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
       { 0, }
};

static struct parisc_driver ccio_driver = {
       name:           "U2/Uturn",
       id_table:       ccio_tbl,
       probe:          ccio_probe,
};

/**
* ccio_init - ccio initalization procedure.
*
* Register this driver.
*/
void __init ccio_init(void)
{
       register_parisc_driver(&ccio_driver);
}