The Linux Bootdisk HOWTO
 Graham Chapman, [email protected]
 v1.01, 6 February 1995

 This document describes how to create Linux boot, boot/root and util-
 ity maintenance disks. These disks could be used as rescue disks or to
 test new kernels.

 1.  Introduction


 1.1.  Why Build Boot Disks?

 Linux boot disks are useful in a number of situations, such as:

 o  Testing a new kernel.

 o  Recovering from disk or system failure. Such a failure could be
    anything from a lost boot sector to a disk head crash.

 There are several ways of producing boot disks:

 o  Use one from a distribution such as Slackware. This will at least
    allow you to boot.

 o  Use a rescue package to set up disks designed to be used as rescue
    disks.

 o  Learn what is required for each of the various types of disk to
    operate, then build your own.

 I choose the last option - learn how it works so that you can do it
 yourself. That way, if something breaks, you can work out what to do
 to fix it. Plus you learn a lot about how Linux works along the way.

 Experienced Linux users may find little of use in this document.
 However users new to Linux system administration who wish to protect
 against root disk loss and other mishaps may find it useful.

 A note on versions - this document has been updated to support the
 following packages and versions:

 o  Linux 1.1.73

 o  LILO 0.15

 Copyright (c) Graham Chapman 1995.

 Permission is granted for this material to be freely used and
 distributed, provided the source is acknowledged.  No warranty of any
 kind is provided. You use this material at your own risk.


 1.2.  Feedback and Credits

 I welcome any feedback, good or bad, on the content of this document.
 Please let me know if you find any errors or omissions.

 I thank the following people for correcting errors and providing
 useful suggestions for improvement:






         Randolph Bentson
         Bjxrn-Helge Mevik
         Johannes Stille





 1.3.  Change History

 v1.01, 6 February 1995

 o  Fix: DO NOT cp <kernel file> /dev/fd0 - this will overwrite any
    file system on the diskette.

 o  Fix: Put LILO boot.b and map files on target disk.

 o  Add: -dp flags to cp commands to avoid problems.

 o  Chg: restructure to try to improve readability.

 o  Add: can now use ext2 filesystem on root diskettes.

 o  Chg: can now separate boot and root diskettes.

 o  Add: credits section in Introduction.

 o  Add: FAQ.

 v1.0, 2 January 1995

 o  Converted to conform to HOWTO documentation standards.

 o  Added new section - Change History.

 o  Various minor corrections.

 v0.10, 1 November 1994 Original version, labelled "draft".


 2.  Disks


 2.1.  Summary of Disk Types

 I classify boot-related disks into 4 types. The discussion here and
 throughout this document uses the term "disk" to refer to diskettes
 unless otherwise specified. Most of the discussion could be equally
 well applied to hard disks.

 A summary of disk types and uses is:

    boot
       A disk containing a kernel which can be booted. The disk can
       contain a filesystem and use a boot loader to boot, or it can
       simply contain the kernel only at the start of the disk.  The
       disk can be used to boot the kernel using a root file system on
       another disk. This could be useful if you lost your boot loader
       due to, for example, an incorrect installation attempt.


    root
       A disk with a file system containing everything required to run
       a Linux system. It does not necessarily contain either a kernel
       or a boot loader.

       This disk can be used to run the system independently of any
       other disks, once the kernel has been booted. A special kernel
       feature allows a separate root disk to be mounted after booting,
       with the root disk being automatically copied to a ramdisk.

       You could use this type of disk to check another disk for
       corruption without mounting it, or to restore another disk
       following disk failure or loss of files.


    boot/root
       A disk which is the same as a root disk, but contains a kernel
       and a boot loader. It can be used to boot from, and to run the
       system. The advantage of this type of disk is that is it compact
       - everything required is on a single disk.  However the
       gradually increasing size of everything means that it won't
       necessarily always be possbile to fit everything on a single
       diskette.


    utility
       A disk which contains a file system, but is not intended to be
       mounted as a root file system. It is an additional data disk.
       You would use this type of disk to carry additional utilities
       where you have too much to fit on your root disk.

       The term "utility" only really applies to diskettes, where you
       would use a utility disk to store additional recovery utility
       software.


 2.2.  Boot


 2.2.1.  Overview

 All PC systems start the boot process by executing code in ROM to load
 the sector from sector 0, cylinder 0 of the boot drive and try and
 execute it. On most bootable disks, sector 0, cylinder 0 contains
 either:

 o  code from a boot loader such as LILO, which locates the kernel,
    loads it and executes it to start the boot proper.

 o  the start of an operating system kernel, such as Linux.

 If a Linux kernel has been written to a diskette as a raw device, then
 the first sector will be the first sector of the Linux kernel itself,
 and this sector will continue the boot process by loading the rest of
 the kernel and running Linux. For a more detailed description of the
 boot sector contents, see the documentation in lilo-01.5 or higher.

 An alternative method of storing a kernel on a boot disk is to create
 a filesystem, not as a root filesystem, but simply as a means of
 installing LILO and thus allowing boot-time command line options to be
 specified. For example, the same kernel could then be used to boot
 using a hard disk root filesystem, or a diskette root filesystem. This
 could be useful if you were trying to rebuild the hard disk
 filesystem, and wanted to repeatedly test results.


 2.2.2.  Setting Pointer to Root

 The kernel must somehow obtain a pointer to the drive and partititon
 to be mounted as the root drive. This can be provided in several ways:

 o  By setting ROOT_DEV = <device> in the Linux kernel makefile and
    rebuilding the kernel (for advice on how to rebuild the kernel,
    read the Linux FAQ and look in /usr/src/linux). Comments in the
    Linux makefile describe the valid values for <device>.

 o  By running the rdev utility:


              rdev <filename> <device>





 This will set the root device of the kernel contained in <filename> to
 be <device>. For example:


              rdev Image /dev/sda1





 This sets the root device in the kernel in Image to the first parti-
 tion on the first SCSI drive.

 There are some alternative ways of issuing the rdev command. Try:


              rdev -?




 and it will display command usage.

 There is usually no need to configure the root device for boot
 diskette use, because the kernel currently used to boot from probably
 already points to the root drive device. The need can arise, howoever,
 if you obtain a kernel from another machine, for example, from a
 distribution, or if you want to use the kernel to boot a root
 diskette. It never hurts to check, though. To use rdev to check the
 current root device in a kernel file, enter the command:


              rdev -r <filename>




 It is possible to change the root device set in a kernel by means
 other than using rdev. For details, see the FAQ at the end of this
 document.


 2.2.3.  Copying Kernel to Boot Diskette

 Once the kernel has been configured then it must be copied to the boot
 diskette.

 If the disk is not intended to contain a file system, then the kernel
 must be copied using the dd command, as follows:



         dd if=<filename> of=<device>

         where   <filename> is the name of the kernel
         and     <device> is the diskette raw device,
                 usually /dev/fd0




 The seek parameter to the dd command should NOT be used. The file must
 be copied to start at the boot sector (sector 0, cylinder 0), and
 omitting the seek parameter will do this.

 The output device name varies. Many systems have /dev/fd0 as an alias
 of one sort or another for the "real" device name for the default
 diskette drive. For example, where the default drive (i.e. "drive A:"
 in DOS) is a high density 3 1/2 inch diskette drive, the device name
 will be /dev/fd0H1440, but usually /dev/fd0 points to the same device.

 Where the kernel is to be copied to a boot disk containing a
 filesystem, then the disk is mounted at a suitable point in a
 currently-mounted filesystem, then the cp command is used. For
 example:


              mount -t ext2 /dev/fd0 /mnt
              cp Image /mnt
              umount /mnt





 2.3.  Root


 2.3.1.  Overview

 A root disk contains a complete working Linux system, but without
 necessarily including a kernel. In other words, the disk may not be
 bootable, but once the kernel is running, the root disk contains
 everything needed to support a full Linux system. To be able to do
 this, the disk must include the minimum requirements for a Linux
 system:

 o  File system.

 o  Minimum set of directories - dev, proc, bin, etc, lib, usr, tmp.

 o  Basic set of utilities - bash (to run a shell), ls, cp etc.

 o  Minimum set of config files - rc, inittab, fstab etc.

 o  Runtime library to provide basic functions used by utilities.

 Of course, any system only becomes useful when you can run something
 on it, and a root diskette usually only becomes useful when you can do
 something like:

 o  Check a file system on another drive, for example to check your
    root file system on your hard drive, you need to be able to boot
    Linux from another drive, as you can with a root diskette system.
    Then you can run fsck on your original root drive while it is not
    mounted.


 o  Restore all or part of your original root drive from backup using
    archive/compression utilities including cpio, tar, gzip and ftape.


 2.4.  Boot/Root

 This is essentially the same as the root disk, with the addition of a
 kernel and a boot loader such as LILO.

 With this configuration, a kernel file is copied to the root file
 system, and LILO is then run to install a configuration which points
 to the kernel file on the target disk. At boot time, LILO will boot
 the kernel from the target disk.

 Several files must be copied to the diskette for this method to work.
 Details of these files and the required LILO configuration, including
 a working sample, are given below in the section titled "LILO".


 2.4.1.  RAM Drives and Root Filesystems on Diskette

 For a diskette root filesystem to be efficient, you need to be able to
 run it from a ramdrive, i.e. an emulated disk drive in main memory.
 This avoids having the system run at a snail's pace, which a diskette
 would impose.

 There is an added benefit from using a ramdrive - the Linux kernel
 includes an automatic ramdisk root feature, whereby it will, under
 certain circumstances, automatically copy the contents of a root
 diskette to a RAM disk, and then switch the root drive to be the RAM
 disk instead of the diskette. This has two major benefits:

 o  The system runs a lot faster.

 o  The diskette drive is freed up to allow other diskettes to be used
    on a single-diskette drive system.

 The requirements for this feature to be invoked are:

 o  The file system on the diskette drive must be either a minix or an
    ext2 file system. The ext2 file system is generally the preferred
    file system to use. Note that if you have a Linux kernel earlier
    than 1.1.73, then you should see the comments in the section below
    titled "File Systems" to see whether your kernel will support ext2.
    If your kernel is old then you may have to use minix. This will not
    cause any significant problems.

 o  A RAM disk must be configured into the kernel, and it must be at
    least as big as the diskette drive.

 A RAM disk can be configured into the kernel in several ways:

 o  By uncommenting the RAMDISK macro in the Linux kernel makefile, so
    that it reads:


              RAMDISK = -DRAMDISK=1440




 to define a ramdisk of 1440 1K blocks, the size of a high-density
 diskette.

 o  By running the rdev utility, available on most Linux systems. This
    utility displays or sets values for several things in the kernel,
    including the desired size for a ramdisk. To configure a ramdisk of
    1440 blocks into a kernel in a file named Image, enter:


              rdev -r Image 1440




 this might change in the future, of course. To see what your version
 of rdev does, enter the command:


              rdev -?




 and it should display its options.

 o  By using the boot loader package LILO to configure it into your
    kernel at boot time. This can be done using the LILO configuration
    parameter:


              ramdisk = 1440




 to request a RAM drive of 1440 1K blocks at boot time.

 o  By interrupting a LILO automatic boot and adding ramdisk=1440 to
    the command line. For example, such a command line might be:


              vmlinux ramdisk=1440




 See the section on LILO for more details.

 o  By editing the kernel file and altering the values near the start
    of the file which record the ramdisk size. This is definitely a
    last resort, but can be done. See the FAQ near the end of this
    document for more details.

 The easiest of these methods is LILO configuration, because you need
 to set up a LILO configuration file anyway, so why not add the ramdisk
 size here?

 LILO configuration is briefly described in a section titled "LILO"
 below, but it is advisable to obtain the latest stable version of LILO
 from your nearest Linux mirror site, and read the documentation that
 comes with it.


 2.5.  Utility

 Often one disk is not sufficient to hold all the software you need to
 be able to perform rescue functions of analysing, repairing and
 restoring corrupted disk drives. By the time you include tar, gzip
 e2fsck, fdisk, Ftape and so on, there is enough for a whole new
 diskette, maybe even more if you want lots of tools.

 This means that a rescue set often requires a utility diskette, with a
 file system containing any extra files required. This file system can
 then be mounted at a convenient point, such as /usr, on the boot/root
 system.

 Creating a file system is fairly easy, and is described above in the
 section titled "File Systems" above.


 3.  Components


 3.1.  File Systems

 The Linux kernel now supports two file system types for root disks to
 be automatically copied to ramdisk. These are minix and ext2, of which
 ext2 is the preferred file system.  The ext2 support was added
 sometime between 1.1.17 and 1.1.57, I'm not sure exactly which. If you
 have a kernel within this range then edit
 /usr/src/linux/drivers/block/ramdisk.c and look for the word "ext2".
 If it is not found, then you will have to use a minix file system, and
 therefore the "mkfs" command to create it.

 To create an ext2 file system on a diskette on my system, I issue the
 following command:


              mke2fs /dev/fd0




 The mke2fs command will automatically detect the space available and
 configure itself accordingly. It does not therefore require any
 parameters.

 An easy way to test the result is to create a system using the above
 command or similar, and then attempt to mount the diskette. If it is
 an ext2 system, then the command:


              mount -t ext2 /dev/fd0 /<mount point>




 should work.


 3.2.  Kernel


 3.2.1.  Building a Custom Kernel

 In most cases it would be possible to copy your current kernel and
 boot the diskette from that. However there may be cases where you wish
 to build a separate one.

 One reason is size.  The kernel is one of the largest files in a
 minimum system, so if you want to build a boot/root diskette, then you
 will have to reduce the size of the kernel as much as possible.  The
 kernel now supports changing the diskette after booting and before
 mounting root, so it is not necessary any more to squeeze the kernel
 into the same disk as everything else, therefore these comments apply
 only if you choose to build a boot/root diskette.

 There are two ways of reducing kernel size:

 o  Building it with the minumum set of facilities necessary to support
    the desired system. This means leaving out everything you don't
    need. Networking is a good thing to leave out, as well as support
    for any disk drives and other devices which you don't need when
    running your boot/root system.

 o  Compressing it, using the standard compressed-kernel option
    included in the makefile:


              make zImage




 Refer to the documentation included with the kernel source for up-to-
 date information on building compressed kernels.  Note that the kernel
 source is usually in /usr/src/linux.

 Having worked out a minimum set of facilities to include in a kernel,
 you then need to work out what to add back in. Probably the most
 common uses for a boot/root diskette system would be to examine and
 restore a corrupted root file system, and to do this you may need
 kernel support.

 For example, if your backups are all held on tape using Ftape to
 access your tape drive, then, if you lose your current root drive and
 drives containing Ftape, then you will not be able to restore from
 your backup tapes. You will have to reinstall Linux, download and
 reinstall Ftape, and then try and read your backups.

 It is probably desirable to maintain a copy of the same version of
 backup utilities used to write the backups, so that you don't waste
 time trying to install versions that cannot read your backup tapes.

 The point here is that, whatever I/O support you have added to your
 kernel to support backups should also be added into your boot/root
 kernel. Note, though, that the Ftape module (or at least the one I
 have) is quite large and will not fit on your boot/root diskette. You
 will need to put it on a utility diskette - this is described below in
 the section titled "ADDING UTILITY DISKETTES".

 The procedure for actually building the kernel is described in the
 documentation that comes with the kernel. It is quite easy to follow,
 so start by looking in /usr/src/linux. Note that if you have trouble
 building a kernel, then you should probably not attempt to build
 boot/root systems anyway.


 3.3.  Devices

 A /dev directory containing a special file for all devices to be used
 by the system is mandatory for any Linux system. The directory itself
 is a normal directory, and can be created with the mkdir command in
 the normal way. The device special files, however, must be created in
 a special way, using the mknod command.

 There is a shortcut, though - copy your existing /dev directory
 contents, and delete the ones you don't want. The only requirement is
 that you copy the device special files using the -R option. This will
 copy the directory without attempting to copy the contents of the
 files. Note that if you use lower caser, as in "-r", there will be a
 vast difference, because you will probably end up copying the entire
 contents of all of your hard disks - or at least as much of them as
 will fit on a diskette! Therefore, take care, and use the command:


              cp -dpR /dev /mnt




 assuming that the diskette is mounted at /mnt. The dp switches ensure
 that symbolic links are copied as links (rather than the target file
 being copied) and that the original file attributes are preserved,
 thus preserving ownership information.

 If you want to do it the hard way, use ls -l to display the major and
 minor device numbers for the devices you want, and create them on the
 diskette using mknod.

 Many distributions include a shell script called MAKEDEV in the /dev
 directory. This shell script could be used to create the devices, but
 it is probably easier to just copy your existing ones, especially for
 rescue disk purposes.


 3.4.  Directories

 It might be possible to get away with just /dev, /proc and /etc to run
 a Linux system. I don't know - I've never tested it. However a
 reasonable minimum set of directories consists of the following:

    /dev
       Required to perform I/O with devices

    /proc
       Required by the ps command

    /etc
       System configuration files

    /bin
       Utility executables considered part of the system

    /lib
       Shared libraries to provide run-time support

    /mnt
       A mount point for maintenance on other disks

    /usr
       Additional utilities and applications

 Note that the directory tree presented here is for root diskette use
 only.  Refer to the Linux File System Standard for much better
 information on how file systems should be structured in "standard"
 Linux systems.

 Four of these directories can be created very easily:

 o  /dev is described above in the section titled DEVICES.

 o  /proc only needs to exist. Once the directory is created using
    mkdir, nothing more is required.

 o  Of the others, /mnt and /usr are included in this list only as
    mount points for use after the boot/root system is running.  Hence
    again, these directories only need to be created.

 The remaining 3 directories are described in the following sections.


 3.4.1.  /etc

 This directory must contain a number of configuration files. On most
 systems, these can be divided into 3 groups:

 o  Required at all times, e.g. rc, fstab, passwd.

 o  May be required, but no-one is too sure.

 o  Junk that crept in.

 Files which are not essential can be identified with the command:


              ls -ltru




 This lists files in reverse order of date last accessed, so if any
 files are not being accessed, then they can be omitted from a root
 diskette.

 On my root diskettes, I have the number of config files down to 15.
 This reduces my work to dealing with three sets of files:

 o  The ones I must configure for a boot/root system:


              rc      system startup script
              fstab   list of file systems to be mounted
              inittab parameters for the init process - the
                      first process started at boot time.





 o  the ones I should tidy up for a boot/root system:


              passwd  list of logins
              shadow  contains passwords




 These should be pruned on secure systems to avoid copying user's pass-
 words off the system, and so that when you boot from diskette,
 unwanted logins are rejected.

 o  The rest. They work at the moment, so I leave them alone.

 Out of this, I only really have to configure two files, and what they
 should contain is suprisingly small.

 o  rc should contain:


              #!/bin/sh
              /etc/mount -av
              /bin/hostname boot_root

 and I don't really need to run hostname - it just looks nicer if I do.
 Even mount is actually only needed to mount /proc to support the ps
 command - Linux will run without it.

 o  fstab should contain:


              /dev/fd0        /               ext2    defaults
              /proc           /proc           proc    defaults




 I don't think that the first entry is really needed, but I find that
 if I leave it out, mount won't mount /proc.

 Inittab should be ok as is, unless you want to ensure that users on
 serial ports cannot login. To prevent this, comment out all the
 entries for /etc/getty which include a ttys or ttyS device at the end
 of the line.  Leave in the tty ports so that you can login at the
 console.

 For the rest, just copy all the text files in your /etc directory,
 plus all the executables in your /etc directory that you cannot be
 sure you do not need. As a guide, consult the sample ls listing in
 "Sample Boot/Root ls-lR Directory Listing" - this is what I have, so
 probably it will be sufficient for you if you copy only those files.


 3.4.2.  /bin

 Here is a convenient point to place the extra utilities you need to
 perform basic operations, utilities such as ls, mv, cat, dd etc.

 See the section titled "Sample Boot/Root ls-lR Directory Listing" for
 the list of files that I place in my boot/root /bin directory. You may
 notice that it does not include any of the utilities required to
 restore from backup, such as cpio, tar, gzip etc. That is because I
 place these on a separate utility diskette, to save space on the
 boot/root diskette. Once I have booted my boot/root diskette, it then
 copies itself to the ramdisk leaving the diskette drive free to mount
 another diskette, the utility diskette. I usually mount this as /usr.

 Creation of a utility diskette is described below in the section
 titled "Adding Utility Diskettes".


 3.4.3.  /lib

 Two libraries are required to run many facilities under Linux:

 o  ld.so

 o  libc.so.4

 If they are not found in your /lib directory then the system will be
 unable to boot. If you're lucky you may see an error message telling
 you why.

 These should be present in you existing /lib directory. Note that
 libc.so.4 may be a symlink to a libc library with version number in
 the filename. If you issue the command:


              ls -l /lib

 you will see something like:


              libc.so.4 -> libc.so.4.5.21




 In this case, the libc library you want is libc.so.4.5.21.


 3.5.  LILO


 3.5.1.  Overview

 For the boot/root to be any use, it must be bootable. To achieve this,
 the easiest way (possibly the only way?) is to install a boot loader,
 which is a piece of executable code stored at sector 0, cylinder 0 of
 the diskette. See the section above titled "BOOT DISKETTE" for an
 overview of the boot process.

 LILO is a tried and trusted boot loader available from any Linux
 mirror site. It allows you to configure the boot loader, including:

 o  Which device is to be mounted as the root drive.

 o  Whether to use a ramdisk.


 3.5.2.  Sample LILO Configuration

 This provides a very convenient place to specify to the kernel how it
 should boot. My root/boot LILO configuration file, used with LILO
 0.15, is:


      ______________________________________________________________________
      boot = /dev/fd0
      install = ./mnt/boot.b
      map = ./mnt/lilo.map
      delay = 50
      message = ./mnt/lilo.msg
      timeout = 150
      compact
      image = ./mnt/vmlinux
              ramdisk = 1440
              root = /dev/fd0
      ______________________________________________________________________




 Note that boot.b, lilo.msg and the kernel must first have been copied
 to the diskette using a command similar to:


      ______________________________________________________________________
      cp /boot/boot.b ./mnt
      ______________________________________________________________________




 If this is not done, then LILO will not run correctly at boot time if
 the hard disk is not available, and there is little point setting up a
 rescue disk which requires a hard disk in order to boot.

 I run lilo using the command:


              /sbin/lilo -C <configfile>




 I run it from the directory containing the mnt directory where I have
 mounted the diskette. This means that I am telling LILO to install a
 boot loader on the boot device (/dev/fd0 in this case), to boot a
 kernel in the root directory of the diskette.

 I have also specified that I want the root device to be the diskette,
 and I want a RAM disk created of 1440 1K blocks, the same size as the
 diskette. Since I have created an ext2 file system on the diskette,
 this completes all the conditions required for Linux to automatically
 switch the root device to the ramdisk, and copy the diskette contents
 there as well.

 The ramdisk features of Linux are described further in the section
 above titled "RAM DRIVES AND BOOT/ROOT SYSTEMS".

 It is also worth considering using the "single" parameter to cause
 Linux to boot in single-user mode. This could be useful to prevent
 users logging in on serial ports.

 I also use the "DELAY" "MESSAGE" and "TIMEOUT" statements so that when
 I boot the disk, LILO will give me the opportunity to enter command
 line options if I wish. I don't need them at present, but I never know
 when I might want to set a different root device or mount a filesystem
 read-only.

 The message file I use contains the message:



      Linux Boot/Root Diskette
      ========================

      Enter a command line of the form:

            vmlinux [ command-line options]

      If nothing is entered, linux will be loaded with
      defaults after 15 seconds.




 This is simply a reminder to myself what my choices are.

 Readers are urged to read the LILO documentation carefully before
 atttempting to install anything. It is relatively easy to destroy
 partitions if you use the wrong "boot = " parameter. If you are
 inexperienced, do NOT run LILO until you are sure you understand it
 and you have triple-checked your parameters.


 3.5.3.  Removing LILO

 One other thing I might as well add here while I'm on the LILO topic:
 if you mess up lilo on a drive containing DOS, you can always replace
 the boot sector with the DOS boot loader by issuing the DOS command:
              FDISK /MBR




 where MBR stands for "Master Boot Record". Note that some purists
 disagree with this, and they may have grounds, but it works.


 3.5.4.  Useful LILO Options


 LILO has several useful options which are worth keeping in mind when
 building boot disks:

 o  Command line options - you can enter command line options to set
    the root device, ramdrive size, special device parameters, or other
    things. If you include the DELAY = nn statement in your LILO
    configuration file, then LILO will pause to allow you to select a
    kernel image to boot, and to enter, on the same line, any options.
    For example:


              vmlinux aha152x=0x340,11,3,1 ro




 will pass the aha152x parameters through to the aha152x scsi disk
 driver (provided that driver has been included when the kernel was
 built) and will ask for the root filesystem to be mounted read-only.

 o  Command line "lock" option - this option asks LILO to store the
    command line entered as the default command line to be used for all
    future boots. This is particularly useful where you have a device
    which cannot be autoselected. By using "lock" you can avoid having
    to type in the device parameter string every time you boot.  For
    example:


              vmlinux aha152x=0x340,11,3,1 root=/dev/sda8 ro lock




 o  APPEND configuration statement - this allows device parameter
    strings to be stored in the configuration, as an alternative to
    using the "lock" command line option. Note that any keywords of the
    form word=value MUST be enclosed in quotes. For example:


              APPEND = "aha152x=0x340,11,3,1"




 o  DELAY configuration statement - this pauses for DELAY tenths of
    seconds and allows the user to interrupt the automatic boot of the
    default command line, so that the user can enter an alternate
    command line.


 4.  Samples



 4.1.  Disk Directory Listings

 This lists the contents of files and directories that I keep on my
 hard disk to use when building boot/root and utility diskettes.  It
 shows which files I put in the /etc and /bin directories on my
 diskettes.

 The sample shell scripts in the next section use these directories and
 files as a model to build the diskettes.


 4.1.1.  Boot/Root Disk ls-lR Directory Listing

 The boot/root listing is of directory boot_disk:




















































 total 226
 drwxr-xr-x   2 root     root         1024 Oct  8 13:40 bin/
 drwxr-xr-x   2 root     root         3072 Sep  8 16:37 dev/
 drwxr-xr-x   2 root     root         1024 Oct  8 12:38 etc/
 drwxr-xr-x   2 root     root         1024 Sep 10 14:58 lib/
 -rw-r--r--   1 root     root       297956 Jan 25 21:55 vmlinux

 boot_disk/bin:
 total 366
 -rwxr-xr-x   1 root     root         4376 Sep  9 21:34 cat*
 -rwxr-xr-x   1 root     root         4112 Sep  9 21:34 chown*
 -rwxr-xr-x   1 root     root        12148 Sep  9 21:34 cp*
 -rwxr-xr-x   1 root     root         4376 Sep  9 21:34 cut*
 -rwxr-xr-x   1 root     root         7660 Sep  9 21:34 dd*
 -rwxr-xr-x   1 root     root         4696 Sep  9 21:34 df*
 -rwx--x--x   1 root     root         1392 Sep 10 14:13 hostname*
 -rwxr-xr-x   1 root     root         5252 Sep  9 21:34 ln*
 -rwsr-xr-x   1 root     root         6636 Sep  9 21:34 login*
 -rwxr-xr-x   1 root     root        13252 Sep  9 21:34 ls*
 -rwxr-xr-x   1 root     root         4104 Sep  9 21:34 mkdir*
 -rwxr-xr-x   1 root     root        21504 Sep 10 15:27 more*
 -rwxr-xr-x   1 root     root         6744 Sep  9 21:34 mv*
 -rwxr-xr-x   1 root     root         9780 Sep  9 21:34 ps*
 -rwxr-xr-x   1 root     root         5076 Sep  9 21:34 rm*
 -r-xr-xr-x   1 root     root        12604 Sep  9 21:34 sed*
 -rwxr-xr-x   1 root     root       222208 Sep  9 21:34 sh*
 -rws--x--x   1 root     root        16464 Sep  9 21:34 su*
 -rwxr-xr-x   1 root     root         1216 Sep  9 21:34 sync*

 boot_disk/dev:
 total 73
 -rwxr-xr-x   1 root     root         8331 Sep  8 16:31 MAKEDEV*
 crw-r--r--   1 root     root      10,   3 Sep  8 16:31 bmouseatixl
 crw-r--r--   1 root     root      10,   0 Sep  8 16:31 bmouselogitec
 crw-r--r--   1 root     root      10,   2 Sep  8 16:31 bmousems
 crw-r--r--   1 root     root      10,   1 Sep  8 16:31 bmouseps2
 crw-------   1 root     root       0,   0 Sep  8 16:31 boot0
 crw-r--r--   1 root     root       4,   0 Sep  8 16:31 console
 crw-r--r--   1 root     root       5,  64 Sep  8 16:31 cua0
 crw-r--r--   1 root     root       5,  65 Sep  8 16:31 cua1
 crw-r--r--   1 root     root       5,  66 Sep  8 16:31 cua2
 crw-r--r--   1 root     root       5,  67 Sep  8 16:31 cua3
 brw-r--r--   1 root     root       2,   0 Sep  8 16:31 fd0
 brw-r--r--   1 root     root       2,  12 Sep  8 16:31 fd0D360
 brw-r--r--   1 root     root       2,  16 Sep  8 16:31 fd0D720
 brw-r--r--   1 root     root       2,  28 Sep  8 16:31 fd0H1440
 brw-r--r--   1 root     root       2,  12 Sep  8 16:31 fd0H360
 brw-r--r--   1 root     root       2,  16 Sep  8 16:31 fd0H720
 brw-r--r--   1 root     root       2,  16 Sep  8 16:31 fd0Q720
 brw-r--r--   1 root     root       2,   4 Sep  8 16:31 fd0d360
 brw-r--r--   1 root     root       2,   8 Sep  8 16:31 fd0h1200
 brw-r--r--   1 root     root       2,  20 Sep  8 16:31 fd0h360
 brw-r--r--   1 root     root       2,  24 Sep  8 16:31 fd0h720
 brw-r--r--   1 root     root       2,  24 Sep  8 16:31 fd0q720
 brw-r--r--   1 root     root       2,   1 Sep  8 16:31 fd1
 brw-r--r--   1 root     root       2,  13 Sep  8 16:31 fd1D360
 brw-r--r--   1 root     root       2,  17 Sep  8 16:31 fd1D720
 brw-r--r--   1 root     root       2,  29 Sep  8 16:31 fd1H1440
 brw-------   1 root     root       2,  31 Sep  8 16:31 fd1H1722
 brw-r--r--   1 root     root       2,  13 Sep  8 16:31 fd1H360
 brw-r--r--   1 root     root       2,  17 Sep  8 16:31 fd1H720
 brw-r--r--   1 root     root       2,  17 Sep  8 16:31 fd1Q720
 brw-r--r--   1 root     root       2,   5 Sep  8 16:31 fd1d360
 brw-r--r--   1 root     root       2,   9 Sep  8 16:31 fd1h1200
 brw-r--r--   1 root     root       2,  21 Sep  8 16:31 fd1h360
 brw-r--r--   1 root     root       2,  25 Sep  8 16:31 fd1h720
 brw-r--r--   1 root     root       2,  25 Sep  8 16:31 fd1q720
 brw-r-----   1 root     root       3,   0 Sep  8 16:31 hda
 brw-r-----   1 root     root       3,   1 Sep  8 16:31 hda1
 brw-r-----   1 root     root       3,   2 Sep  8 16:31 hda2
 brw-r-----   1 root     root       3,   3 Sep  8 16:31 hda3
 brw-r-----   1 root     root       3,   4 Sep  8 16:31 hda4
 brw-r-----   1 root     root       3,   5 Sep  8 16:31 hda5
 brw-r-----   1 root     root       3,   6 Sep  8 16:31 hda6
 brw-r-----   1 root     root       3,   7 Sep  8 16:31 hda7
 brw-r-----   1 root     root       3,   8 Sep  8 16:31 hda8
 brw-r-----   1 root     root       3,  64 Sep  8 16:31 hdb
 brw-r-----   1 root     root       3,  65 Sep  8 16:31 hdb1
 brw-r-----   1 root     root       3,  66 Sep  8 16:31 hdb2
 brw-r-----   1 root     root       3,  67 Sep  8 16:31 hdb3
 brw-r-----   1 root     root       3,  68 Sep  8 16:31 hdb4
 brw-r-----   1 root     root       3,  69 Sep  8 16:31 hdb5
 brw-r-----   1 root     root       3,  70 Sep  8 16:31 hdb6
 brw-r-----   1 root     root       3,  71 Sep  8 16:31 hdb7
 brw-r-----   1 root     root       3,  72 Sep  8 16:31 hdb8
 crw-r-----   1 root     root       1,   2 Sep  8 16:31 kmem
 brw-------   1 root     root      12,   0 Sep  8 16:31 loop0
 brw-------   1 root     root      12,   1 Sep  8 16:31 loop1
 crw-r--r--   1 root     root       6,   0 Sep  8 16:31 lp0
 crw-r--r--   1 root     root       6,   1 Sep  8 16:31 lp1
 crw-r--r--   1 root     root       6,   2 Sep  8 16:31 lp2
 brw-r--r--   1 root     root      12,   0 Sep  8 16:31 mcd0
 crw-r-----   1 root     root       1,   1 Sep  8 16:31 mem
 crw-r--r--   1 root     root       5,  65 Sep  8 16:31 modem
 crw-r--r--   1 root     root       5,  64 Sep  8 16:31 mouse
 crw-r--r--   1 root     root      27,   4 Sep  8 16:31 nrft0
 crw-r--r--   1 root     root      27,   5 Sep  8 16:31 nrft1
 crw-r--r--   1 root     root      27,   6 Sep  8 16:31 nrft2
 crw-r--r--   1 root     root      27,   7 Sep  8 16:31 nrft3
 crw-------   1 root     root       9, 128 Sep  8 16:31 nrmt0
 crw-r--r--   1 root     root       1,   3 Sep  8 16:31 null
 crw-r-----   1 root     root       6,   0 Sep  8 16:31 par0
 crw-r-----   1 root     root       6,   1 Sep  8 16:31 par1
 crw-r-----   1 root     root       6,   2 Sep  8 16:31 par2
 crw-r-----   1 root     root       1,   4 Sep  8 16:31 port
 crw-r--r--   1 root     root      10,   1 Sep  8 16:31 ps2aux
 crw-r--r--   1 root     root       4, 128 Sep  8 16:31 ptyp0
 crw-r--r--   1 root     root       4, 129 Sep  8 16:31 ptyp1
 crw-r--r--   1 root     root       4, 130 Sep  8 16:31 ptyp2
 crw-r--r--   1 root     root       4, 131 Sep  8 16:31 ptyp3
 crw-r--r--   1 root     root       4, 132 Sep  8 16:31 ptyp4
 crw-r--r--   1 root     root       4, 133 Sep  8 16:31 ptyp5
 crw-r--r--   1 root     root       4, 134 Sep  8 16:31 ptyp6
 crw-r--r--   1 root     root       4, 135 Sep  8 16:31 ptyp7
 crw-r--r--   1 root     root       4, 136 Sep  8 16:31 ptyp8
 crw-r--r--   1 root     root       4, 137 Sep  8 16:31 ptyp9
 crw-r--r--   1 root     root       4, 138 Sep  8 16:31 ptypa
 crw-r--r--   1 root     root       4, 139 Sep  8 16:31 ptypb
 crw-r--r--   1 root     root       4, 140 Sep  8 16:31 ptypc
 crw-r--r--   1 root     root       4, 141 Sep  8 16:31 ptypd
 crw-r--r--   1 root     root       4, 142 Sep  8 16:31 ptype
 crw-r--r--   1 root     root       4, 143 Sep  8 16:31 ptypf
 brw-r-----   1 root     root       1,   0 Sep  8 16:31 ram
 crw-r--r--   1 root     root      27,   0 Sep  8 16:31 rft0
 crw-r--r--   1 root     root      27,   1 Sep  8 16:31 rft1
 crw-r--r--   1 root     root      27,   2 Sep  8 16:31 rft2
 crw-r--r--   1 root     root      27,   3 Sep  8 16:31 rft3
 crw-------   1 root     root       9,   0 Sep  8 16:31 rmt0
 brw-r-----   1 root     root       8,   0 Sep  8 16:31 sda
 brw-r-----   1 root     root       8,   1 Sep  8 16:31 sda1
 brw-r-----   1 root     root       8,   2 Sep  8 16:31 sda2
 brw-r-----   1 root     root       8,   3 Sep  8 16:31 sda3
 brw-r-----   1 root     root       8,   4 Sep  8 16:31 sda4
 brw-r-----   1 root     root       8,   5 Sep  8 16:31 sda5
 brw-r-----   1 root     root       8,   6 Sep  8 16:31 sda6
 brw-r-----   1 root     root       8,   7 Sep  8 16:31 sda7
 brw-r-----   1 root     root       8,   8 Sep  8 16:31 sda8
 brw-r-----   1 root     root       8,  16 Sep  8 16:31 sdb
 brw-r-----   1 root     root       8,  17 Sep  8 16:31 sdb1
 brw-r-----   1 root     root       8,  18 Sep  8 16:31 sdb2
 brw-r-----   1 root     root       8,  19 Sep  8 16:31 sdb3
 brw-r-----   1 root     root       8,  20 Sep  8 16:31 sdb4
 brw-r-----   1 root     root       8,  21 Sep  8 16:31 sdb5
 brw-r-----   1 root     root       8,  22 Sep  8 16:31 sdb6
 brw-r-----   1 root     root       8,  23 Sep  8 16:31 sdb7
 brw-r-----   1 root     root       8,  24 Sep  8 16:31 sdb8
 brw-------   1 root     root       8,  32 Sep  8 16:31 sdc
 brw-------   1 root     root       8,  33 Sep  8 16:31 sdc1
 brw-------   1 root     root       8,  34 Sep  8 16:31 sdc2
 brw-------   1 root     root       8,  35 Sep  8 16:31 sdc3
 brw-------   1 root     root       8,  36 Sep  8 16:31 sdc4
 brw-------   1 root     root       8,  37 Sep  8 16:31 sdc5
 brw-------   1 root     root       8,  38 Sep  8 16:31 sdc6
 brw-------   1 root     root       8,  39 Sep  8 16:31 sdc7
 brw-------   1 root     root       8,  40 Sep  8 16:31 sdc8
 brw-------   1 root     root       8,  48 Sep  8 16:31 sdd
 brw-------   1 root     root       8,  49 Sep  8 16:31 sdd1
 brw-------   1 root     root       8,  50 Sep  8 16:31 sdd2
 brw-------   1 root     root       8,  51 Sep  8 16:31 sdd3
 brw-------   1 root     root       8,  52 Sep  8 16:31 sdd4
 brw-------   1 root     root       8,  53 Sep  8 16:31 sdd5
 brw-------   1 root     root       8,  54 Sep  8 16:31 sdd6
 brw-------   1 root     root       8,  55 Sep  8 16:31 sdd7
 brw-------   1 root     root       8,  56 Sep  8 16:31 sdd8
 brw-------   1 root     root       8,  64 Sep  8 16:31 sde
 brw-------   1 root     root       8,  65 Sep  8 16:31 sde1
 brw-------   1 root     root       8,  66 Sep  8 16:31 sde2
 brw-------   1 root     root       8,  67 Sep  8 16:31 sde3
 brw-------   1 root     root       8,  68 Sep  8 16:31 sde4
 brw-------   1 root     root       8,  69 Sep  8 16:31 sde5
 brw-------   1 root     root       8,  70 Sep  8 16:31 sde6
 brw-------   1 root     root       8,  71 Sep  8 16:31 sde7
 brw-------   1 root     root       8,  72 Sep  8 16:31 sde8
 brw-r--r--   1 root     root      11,   0 Sep  8 16:31 sr0
 brw-r-----   1 root     root      11,   1 Sep  8 16:31 sr1
 brw-r-----   1 root     root      11,   2 Sep  8 16:31 sr2
 brw-r-----   1 root     root       3,   1 Sep  8 16:31 swap
 crw-r--r--   1 root     root       5,   0 Sep  8 16:31 tty
 crw-r--r--   1 root     root       4,   0 Sep  8 16:31 tty0
 crw-------   1 root     root       4,   1 Sep  8 16:31 tty1
 crw-r--r--   1 root     root       4,   2 Sep  8 16:31 tty2
 -rw-r--r--   1 root     root           20 Sep  8 16:31 tty21
 crw-r--r--   1 root     root       4,   3 Sep  8 16:31 tty3
 crw-r--r--   1 root     root       4,   4 Sep  8 16:31 tty4
 crw-r--r--   1 root     root       4,   5 Sep  8 16:31 tty5
 crw-r--r--   1 root     root       4,   6 Sep  8 16:31 tty6
 crw-------   1 root     root       4,   7 Sep  8 16:31 tty7
 crw-------   1 root     root       4,   8 Sep  8 16:31 tty8
 crw-r--r--   1 root     root       4,  64 Sep  8 16:31 ttyS0
 crw-r--r--   1 root     root       4,  65 Sep  8 16:31 ttyS1
 crw-r--r--   1 root     root       4,  66 Sep  8 16:31 ttyS2
 crw-r--r--   1 root     root       4, 192 Sep  8 16:31 ttyp0
 crw-r--r--   1 root     root       4, 193 Sep  8 16:31 ttyp1
 crw-r--r--   1 root     root       4, 194 Sep  8 16:31 ttyp2
 crw-r--r--   1 root     root       4, 195 Sep  8 16:31 ttyp3
 crw-r--r--   1 root     root       4, 196 Sep  8 16:31 ttyp4
 crw-r--r--   1 root     root       4, 197 Sep  8 16:31 ttyp5
 crw-r--r--   1 root     root       4, 198 Sep  8 16:31 ttyp6
 crw-r--r--   1 root     root       4, 199 Sep  8 16:31 ttyp7
 crw-r--r--   1 root     root       4, 200 Sep  8 16:31 ttyp8
 crw-r--r--   1 root     root       4, 201 Sep  8 16:31 ttyp9
 crw-r--r--   1 root     root       4, 202 Sep  8 16:31 ttypa
 crw-r--r--   1 root     root       4, 203 Sep  8 16:31 ttypb
 crw-r--r--   1 root     root       4, 204 Sep  8 16:31 ttypc
 crw-r--r--   1 root     root       4, 205 Sep  8 16:31 ttypd
 crw-r--r--   1 root     root       4, 206 Sep  8 16:31 ttype
 crw-r--r--   1 root     root       4, 207 Sep  8 16:31 ttypf
 -rw-------   1 root     root        63488 Sep  8 16:31 ttys0
 crw-r--r--   1 root     root       4,  67 Sep  8 16:31 ttys3
 crw-r--r--   1 root     root       1,   5 Sep  8 16:31 zero

 boot_disk/etc:
 total 173
 -rw-r--r--   1 root     root           53 Sep  8 18:48 boot.env
 -rwxr-xr-x   1 root     root        27408 Sep  8 18:48 e2fsck*
 -rwxr-xr-x   1 root     root        18540 Sep  8 18:48 fdisk*
 -rw-r--r--   1 root     root           69 Oct  8 12:27 fstab
 -r-x------   1 root     root        13312 Sep  8 18:48 getty*
 -rw-r--r--   1 root     root          334 Sep  8 18:48 group
 -rw-r--r--   1 root     root           12 Sep  8 18:48 host.conf
 -rw-r--r--   1 root     root           62 Sep  8 18:48 hosts
 -r-x------   1 root     root         6684 Sep  8 18:48 ifconfig*
 -rwxr-xr-x   1 root     root        11492 Sep  8 18:48 init*
 -rw-r--r--   1 root     root         1017 Sep  9 22:12 inittab
 -rw-r--r--   1 root     root            0 Oct  8 12:19 issue
 -rw-r-----   1 root     root         5137 Sep  8 18:48 login.defs
 -rwxr-xr-x   1 root     root        14028 Sep  8 18:48 mke2fs*
 -rwxr-x---   1 root     root         2436 Sep  8 18:48 mkswap*
 -rwxr-xr-x   1 root     root        11288 Sep  8 18:48 mount*
 -rw-r--r--   1 root     root          327 Sep  8 18:48 passwd
 -rwxr-xr-x   1 root     root          383 Sep 10 16:02 profile*
 -rw-r--r--   1 root     root           94 Sep  8 18:48 protocols
 -rwxr-xr-x   1 root     root          334 Oct  8 12:27 rc*
 -rwxr-xr-x   1 root     root         9220 Sep  8 18:48 reboot*
 -r-x------   1 root     root         4092 Sep  8 18:48 route*
 -rw-r--r--   1 root     root           20 Sep  8 18:48 securetty
 -rw-r--r--   1 root     root         9749 Sep  8 18:48 services
 -rw-r--r--   1 root     root           36 Sep  8 18:48 shells
 -rwxr-xr-x   1 root     root        13316 Sep  8 18:48 shutdown*
 -rwxr-xr-x   1 root     root         2496 Sep  8 18:48 swapoff*
 -rwxr-xr-x   1 root     root         2496 Sep  8 18:48 swapon*
 -rw-r--r--   1 root     root         5314 Sep  8 18:48 termcap
 -rwxr-xr-x   1 root     root         5412 Sep  8 18:48 umount*
 -rw-r--r--   1 root     root          224 Sep  8 18:48 utmp
 -rw-r--r--   1 root     root          280 Sep  8 18:48 wtmp

 boot_disk/lib:
 total 629
 -rwxr-xr-x   1 root     root        17412 Sep 10 14:58 ld.so*
 -rwxr-xr-x   1 root     root       623620 Sep  8 18:33 libc.so.4*

 <sect2>Utility Disk ls-lR Directory Listing
 <p>
 The utility listing is of directory util_disk:

 total 1
 drwxr-xr-x   2 root     root         1024 Sep 10 16:05 bin/

 util_disk/bin:
 total 897
 -rwxr-xr-x   1 root     root        41984 Sep 10 14:11 cpio*
 -rwxr-xr-x   1 root     root       504451 Sep  9 21:39 ftape.o*
 -rwxr-xr-x   1 root     root        63874 Sep  9 21:40 gzip*
 -rwxr-xr-x   1 root     root        13316 Sep  9 21:34 insmod*
 -rwxr-xr-x   1 root     root           58 Sep  9 21:34 lsmod*
 -rwxr-xr-x   1 root     root         3288 Sep  9 21:34 mknod*
 -rwxr-xr-x   1 root     root         9220 Sep  9 21:34 rmmod*
 -rwxr-xr-x   1 root     root       226308 Sep  9 22:13 tar*





 4.2.  Shell Scripts to Build Diskettes

 There are two shell scripts:

 o  mkroot - builds a root or boot/root diskette.

 o  mkutil - builds a utility diskette.

 Both are currently configured to run in the parent directory of
 boot_disk and util_disk, each of which contains everything to be
 copied to it's diskette. Note that these shell scripts will *NOT*
 automatically set up and copy all the files for you - you work out
 which files are needed, set up the directories and copy the files to
 those directories. The shell scripts are samples which will copy the
 contents of those directories. Note that they are primitive shell
 scripts and are not meant for the novice user.

 The scripts both contain configuration variables at the start which
 allow them to be easily configured to run anywhere.  First, set up the
 model directories and copy all the required files into them. Then
 check the configuration variables in the shell scripts and change them
 as required before running the scripts.


 4.2.1.  mkroot - Make Root or Boot/Root Diskette
































 ______________________________________________________________________
 # mkroot: make a boot/boot disk - creates a boot/root diskette
 #       by building a file system on it, then mounting it and
 #       copying required files from a model.
 #       Note: the model to copy from from must dirst be set up,
 #       then change the configuration variables below to suit
 #       your system.
 #
 # usage: mkroot [nokernel]
 #       if the parameter is omitted, then the kernel and LILO
 #       are copied.

 # Copyright (c) Graham Chapman 1994. All rights reserved.
 # Permission is granted for this material to be freely
 # used and distributed, provided the source is acknowledged.
 # No warranty of any kind is provided. You use this material
 # at your own risk.

 # Configuration variables...
 BOOTDISKDIR=./boot_disk       # name of boot disk directory
 MOUNTPOINT=./mnt              # temporary mount point for diskette
 LILODIR=/sbin                 # directory containing lilo
 LILOBOOT=/boot/boot.b         # lilo boot sector
 LILOMSG=./lilo.msg            # lilo message to display at boot time
 LILOCONFIG=./lilo.conf        # lilo parms for boot/root diskette
 DISKETTEDEV=/dev/fd0          # device name of diskette drive

 echo $0: create boot/root diskette
 echo Warning: data on diskette will be overwritten!
 echo Insert diskette in $DISKETTEDEV and and press any key...
 read anything

 mke2fs $DISKETTEDEV
 if [ $? -ne 0 ]
 then
         echo mke2fs failed
         exit
 fi

 mount -t ext2 $DISKETTEDEV $MOUNTPOINT
 if [ $? -ne 0 ]
 then
         echo mount failed
         exit
 fi

 # copy the directories containing files
 for i in bin etc lib
 do
         cp -dpr $BOOTDISKDIR/$i $MOUNTPOINT
 done

 # copy dev *without* trying to copy the files in it
 cp -dpR $BOOTDISKDIR/dev $MOUNTPOINT

 # create empty directories required
 mkdir $MOUNTPOINT/proc
 mkdir $MOUNTPOINT/tmp
 mkdir $MOUNTPOINT/mnt
 mkdir $MOUNTPOINT/usr

 # copy the kernel
 if [ "$1" != "nokernel" ]
 then
         echo "Copying kernel"
         cp $BOOTDISKDIR/vmlinux $MOUNTPOINT
         echo kernel copied

         # setup lilo
         cp $LILOBOOT $MOUNTPOINT
         cp $LILOMSG $MOUNTPOINT
         $LILODIR/lilo -C $LILOCONFIG
         echo LILO installed
 fi

 umount $MOUNTPOINT

 echo Root diskette complete
 ______________________________________________________________________





 4.2.2.  mkutil - Make Utility Diskette















































 ______________________________________________________________________
 # mkutil: make a utility diskette - creates a utility diskette
 #       by building a file system on it, then mounting it and
 #       copying required files from a model.
 #       Note: the model to copy from from must first be set up,
 #       then change the configuration variables below to suit
 #       your system.

 # Copyright (c) Graham Chapman 1994. All rights reserved.
 # Permission is granted for this material to be freely
 # used and distributed, provided the source is acknowledged.
 # No warranty of any kind is provided. You use this material
 # at your own risk.

 # Configuration variables...
 UTILDISKDIR=./util_disk       # name of directory containing model
 MOUNTPOINT=./mnt              # temporary mount point for diskette
 DISKETTEDEV=/dev/fd0          # device name of diskette drive

 echo $0: create utility diskette
 echo Warning: data on diskette will be overwritten!
 echo Insert diskette in $DISKETTEDEV and and press any key...
 read anything

 mke2fs $DISKETTEDEV
 if [ $? -ne 0 ]
 then
         echo mke2fs failed
         exit
 fi

 # Any file system type would do here
 mount -t ext2 $DISKETTEDEV $MOUNTPOINT
 if [ $? -ne 0 ]
 then
         echo mount failed
         exit
 fi

 # copy the directories containing files
 cp -dpr $UTILDISKDIR/bin $MOUNTPOINT

 umount $MOUNTPOINT

 echo Utility diskette complete
 ______________________________________________________________________





 5.  FAQ


 5.1.  Q. How can I make a boot disk with a XXX driver?

 The easiest way is to obtain a Slackware kernel from your nearest
 Slackware mirror site. Slackware kernels are generic kernels which
 atttempt to include drivers for as many devices as possible, so if you
 have a SCSI or IDE controller, chances are that a driver for it is
 included in the Slackware kernel.

 Go to the a1 directory and select either IDE or SCSI kernel depending
 on the type of controller you have. Check the xxxxkern.cfg file for
 the selected kernel to see the drivers which have been included in
 that kernel. If the device you want is in that list, then the
 corresponding kernel should boot your computer. Download the
 xxxxkern.tgz file and copy it to your boot diskette as described above
 in the section on making boot disks.

 You must then check the root device in the kernel, using the rdev
 command:


              rdev vmlinuz




 Rdev will then display the current root device in the kernel. If this
 is not the same as the root device you want, then use rdev to change
 it.  For example, the kernel I tried was set to /dev/sda2, but my root
 scsi partition is /dev/sda8. To use a root diskette, you would have to
 use the command:


              rdev vmlinuz /dev/fd0




 If you want to know how to set up a Slackware root disk as well,
 that's outside the scope of this HOWTO, so I suggest you check the
 Linux Install Guide or get the Slackware distribution. See the section
 in this HOWTO titled "References".


 5.2.  Q. How do I update my boot floppy with a new kernel?

 Just copy the kernel to your boot diskette using the dd command for a
 boot diskette without a filesystem, or the cp command for a boot/root
 disk. Refer to the section in this HOWTO titled "Boot" for details on
 creating a boot disk. The description applies equally to updating a
 kernel on a boot disk.


 5.3.  Q. How do I remove LILO so that I can use DOS to boot again?

 This is not really a Bootdisk topic, but it is asked so often, so: the
 answer is, use the DOS command:


              FDISK /MBR




 MBR stands for Master Boot Record, and it replaces the boot sector
 with a clean DOS one, without affecting the partition table. Some
 purists disagree with this, but even the author of LILO, Werner
 Almesberger, suggests it. It is easy, and it works.

 You can also use the dd command to copy the backup saved by LILO to
 the boot sector - refer to the LILO documentation if you wish to do
 this.


 5.4.  Q. How can I boot if I've lost my kernel AND my boot disk?

 If you don't have a boot disk standing by, then probably the easiest
 method is to obtain a Slackware kernel for your disk controller type
 (IDE or SCSI) as described above for "How do I make a boot disk with a
 XXX driver?". You can then boot your computer using this kernel, then
 repair whatever damage there is.

 The kernel you get may not have the root device set to the disk type
 and partition you want. For example, Slackware's generic scsi kernel
 has the root device set to /dev/sda2, whereas my root Linux partition
 happens to be /dev/sda8. In this case the root device in the kernel
 will have to be changed.

 You can still change the root device and ramdisk settings in the
 kernel even if all you have is a kernel, and some other operating
 system, such as DOS.

 Rdev changes kernel settings by changing the values at fixed offsets
 in the kernel file, so you can do the same if you have a hex editor
 available on whatever systems you do still have running - for example,
 Norton Utilities Disk Editor under DOS.  You then need to check and if
 necessary change the values in the kernel at the following offsets:


      0x01F8  Low byte of RAMDISK size
      0x01F9  High byte of RAMDISK size
      0x01FC  Minor device number - see below
      0X01FD  Major device number - see below




 The ramdisk size is the number of blocks of ramdisk to create.  If you
 want to boot from a root diskette then set this to decimal 1440, which
 is 0x05A0, thus set offset 0x01F8 to 0xA0 and offset 0x01F9 to 0x05.
 This will allocate enough space for a 1.4Mb diskette.

 The major and minor device numbers must be set to the device you want
 to mount your root filesystem on. Some useful values to select from
 are:


      device          major minor
      /dev/fd0            2     0   1st floppy drive
      /dev/hda1           3     1   partition 1 on 1st IDE drive
      /dev/sda1           8     1   partition 1 on 1st scsi drive
      /dev/sda8           8     8   partition 8 on 1st scsi drive




 Once you have set these values then you can write the file to a
 diskette using either Norton Utilities Disk Editor, or a program
 called rawrite.exe. This program is included in several distributions,
 including the SLS and Slackware distributions.  It is a DOS program
 which writes a file to the "raw" disk, starting at the boot sector,
 instead of writing it to the file system. If you use Norton Utilities,
 then you must write the file to a physical disk starting at the
 beginning of the disk.


 5.5.  Q. How can I make extra copies of boot/root diskettes?

 It is never desirable to have just one set of rescue disks - 2 or 3
 should be kept in case one is unreadable.

 The easiest way of making copies of any diskettes, including bootable
 and utility diskettes, is to use the dd command to copy the contents
 of the original diskette to a file on your hard drive, and then use
 the same command to copy the file back to a new diskette.  Note that
 you do not need to, and should not, mount the diskettes, because dd
 uses the raw device interface.

 To copy the original, enter the command:


              dd if=<device> of=<filename>
              where   <device> = the device name of the diskette
                      drive
              and     <filename> = the name of the file where you
                      want to copy to




 For example, to copy from /dev/fd0 to a temporary file called
 /tmp/diskette.copy, I would enter the command:


              dd if=/dev/fd0 of=/tmp/diskette.copy




 Omitting the "count" parameter, as we have done here, means that the
 whole diskette of 2880 (for a high-density) blocks will be copied.

 To copy the resulting file back to a new diskette, insert the new
 diskette and enter the reverse command:


              dd if=<filename> of=<device>




 Note that the above discussion assumes that you have only one diskette
 drive. If you have two of the same type, then you can copy diskettes
 using a command like:


              dd if=/dev/fd0 of=/dev/fd1





 5.6.  Q. How can I boot without typing in "ahaxxxx=nn,nn,nn" every
 time?

 Where a disk device cannot be autodetected it is necessary to supply
 the kernel with a command device parameter string, such as:


              aha152x=0x340,11,3,1




 This parameter string can be supplied in several ways using LILO:

 o  By entering it on the command line every time the system is booted
    via LILO. This is boring, though.

 o  By using the LILO "lock" keyword to make it store the command line
    as the default command line, so that LILO will use the same options
    every time it boots.

 o  By using the APPEND statement in the lilo config file. Note that
    the parameter string must be enclosed in quotes.

 For example, a sample command line using the above parameter string
 would be:


              vmlinux aha152x=0x340,11,3,1 root=/dev/sda1 lock




 This would pass the device parameter string through, and also ask the
 kernel to set the root device to /dev/sda1 and save the whole command
 line and reuse it for all future boots.

 A sample APPEND statement is:


              APPEND = "aha152x=0x340,11,3,1"




 Note that the parameter string must NOT be enclosed in quotes on the
 command line, but it MUST be enclosed in quotes in the APPEND
 statement.

 Note also that for the parameter string to be acted on, the kernel
 must contain the driver for that disk type. If it does not, then there
 is nothing listening for the parameter string, and you will have to
 rebuild the kernel to include the required driver. For details on
 rebuilding the kernel, cd to /usr/src/linux and read the README, and
 read the Linux FAQ and Installation HOWTO. Alternatively you could
 obtain a generic kernel for the disk type and install that.

 Readers are strongly urged to read the LILO documentation before
 experimenting with LILO installation. Incautious use of the "BOOT"
 statement can damage partitions.


 6.  References

 In this section, vvv is used in package names in place of the version,
 to avoid referring here to specific versions. When retrieving a
 package, always get the latest version unless you have good reasons
 for not doing so.


 6.1.  LILO - Linux Loader

 Written by Werner Almesberger. Excellent boot loader, and the
 documentation includes information on the boot sector contents and the
 early stages of the boot process.

 Ftp from: tsx-11.mit.edu:/pub/linux/packages/lilo/lilo.vvv.tar.gz also
 on sunsite and mirror sites.


 6.2.  Linux FAQ and HOWTOs

 These are available from many sources. Look at the usenet newsgroups
 news.answers and comp.os.linux.announce.

 Ftp from: sunsite.unc.edu:/pub/Linux/docs

 o  FAQ is in /pub/linux/docs/faqs/linux-faq

 o  HOWTOs are in /pub/Linux/docs/HOWTO

 For WWW, start at the Linux documentation home page:


      http://sunsite.unc.edu/mdw/linux.html




 If desperate, send mail to:


              [email protected]




 with the word "help" in the message, then follow the mailed
 instructions.

 Note: if you haven't read the Linux FAQ and related documents such as
 the Linux Installation HOWTO and the Linux Install Guide, then you
 should not be trying to build boot diskettes.


 6.3.  Rescue Shell Scripts

 Written by Thomas Heiling. This contains shell scripts to produce boot
 and boot/root diskettes. It has some dependencies on specific versions
 of other software such as LILO, and so might need some effort to
 convert to your system, but it might be useful as a starting point if
 you wanted more comprehensive shell scripts than are provided in this
 document.

 Ftp from: sunsite.unc.edu:/pub/Linux/system/Recovery/rescue.tgz


 6.4.  SAR - Search and Rescue

 Written by Karel Kubat. SAR produces a rescue diskette, using several
 techniques to minimize the space required on the diskette.  The manual
 includes a description of the Linux boot/login process.

 Ftp from: ftp.icce.rug.nl:/pub/unix/SAR-vvv.tar.gz

 The manual is available via WWW from:

 http://www.icce.rug.nl/karel/programs/SAR.html


 6.5.  Slackware Distribution

 Apart from being one of the more popular Linux distributions around,
 it is also a good place to get a generic kernel. It is available from
 almost everywhere, so there is little point in putting addresses here.