Tuesday, June 1, 1999

This is the SQL::Statement module with shared libraries compiled for
MacPerl.  Shared libraries run only on PPC and CFM68K versions, not
non-CFM 68K versions.

This was compiled with MPW and Codewarrior.  Passed all tests.
I have no 68K machine so I can't test the CFM68K version.  Let me
know of any problems.

We used a slightly modified alloca.c I found in Matthias Neeracher's
MPW port of patch.

Best installed using cpan-mac, either with the CPAN shell,
or the installme droplet.  From the CPAN shell, type:

   cpan> install CNANDOR/SQL-Stmnt-0.1012-bin-1-Mac.tgz

Also, see the MMP page:

   http://pudge.net/mmp/

--
Chris Nandor          mailto:[email protected]         http://pudge.net/
%PGPKey = ('B76E72AD', [1024, '0824090B CE73CA10  1FF77F13 8180B6B6'])

#===================================

NAME
   SQL::Statement - SQL parsing and processing engine

SYNOPSIS
       require SQL::Statement;

       # Create a parser
       my($parser) = SQL::Statement->new('Ansi');

       # Parse an SQL statement
       $@ = '';
       my ($stmt) = eval {
           SQL::Statement->new("SELECT id, name FROM foo WHERE id > 1",
                               $parser);
       };
       if ($@) {
           die "Cannot parse statement: $@";
       }

       # Query the list of result columns;
       my $numColums = $stmt->columns();  # Scalar context
       my @columns = $stmt->columns();    # Array context
       # @columns now contains SQL::Statement::Column instances

       # Likewise, query the tables being used in the statement:
       my $numTables = $stmt->tables();   # Scalar context
       my @tables = $stmt->tables();      # Array context
       # @tables now contains SQL::Statement::Table instances

       # Query the WHERE clause; this will retrieve an
       # SQL::Statement::Op instance
       my $where = $stmt->where();

       # Evaluate the WHERE clause with concrete data, represented
       # by an SQL::Eval object
       my $result = $stmt->eval_where($eval);

       # Execute a statement:
       $stmt->execute($data, $params);

DESCRIPTION
   For installing the module, see the section on "INSTALLATION" below.

   The SQL::Statement module implements a small, abstract SQL engine. This
   module is not usefull itself, but as a base class for deriving concrete
   SQL engines. The implementation is designed to work fine with the DBI
   driver DBD::CSV, thus probably not so well suited for a larger
   environment, but I'd hope it is extendable without too much problems.

   By parsing an SQL query you create an SQL::Statement instance. This
   instance offers methods for retrieving syntax, for WHERE clause and
   statement evaluation.

 Creating a parser object

   What's accepted as valid SQL, depends on the parser object. There is a
   set of so-called features that the parsers may have or not. Usually you
   start with a builtin parser:

       my $parser = SQL::Parser->new($name, [ \%attr ]);

   Currently two parsers are builtin: The *Ansi* parser implements a proper
   subset of ANSI SQL. (At least I hope so. :-) The *SQL::Statement* parser
   is used by the DBD:CSV driver.

   You can query or set individual features. Currently available are:

   create.type_blob
   create.type_real
   create.type_text
           These enable the respective column types in a *CREATE TABLE*
           clause. They are all disabled in the *Ansi* parser, but enabled
           in the *SQL::Statement* parser. Example:

   select.join
           This enables the use of multiple tables in a SELECT statement,
           for example

             SELECT a.id, b.name FROM a, b WHERE a.id = b.id AND a.id = 2

   To enable or disable a feature, for example *select.join*, use the
   following:

     # Enable feature
     $parser->feature("select", "join", 1);
     # Disable feature
     $parser->feature("select", "join", 0);

   Of course you can query features:

     # Query feature
     my $haveSelectJoin = $parser->feature("select", "join");

   The `new' method allows a shorthand for setting features. For example,
   the following is equivalent to the *SQL::Statement* parser:

     $parser = SQL::Statement->new('Ansi',
                                   { 'create' => { 'type_text' => 1,
                                                   'type_real' => 1,
                                                   'type_blob' => 1 },
                                     'select' => { 'join' => 0 }});

 Parsing a query

   A statement can be parsed with

       my $stmt = SQL::Statement->new($query, $parser);

   In case of syntax errors or other problems, the method throws a Perl
   exception. Thus, if you want to catch exceptions, the above becomes

       $@ = '';
       my $stmt = eval { SQL::Statement->new($query, $parser) };
       if ($@) { print "An error occurred: $@"; }

   The accepted SQL syntax is restricted, though easily extendable. See the
   section on "SQL syntax" below. See the section on "Creating a parser
   object" above.

 Retrieving query information

   The following methods can be used to obtain information about a query:

   command Returns the SQL command, currently one of *SELECT*, *INSERT*,
           *UPDATE*, *DELETE*, *CREATE* or *DROP*, the last two referring
           to *CREATE TABLE* and *DROP TABLE*. See the section on "SQL
           syntax" below. Example:

               my $command = $stmt->command();

   columns my $numColumns = $stmt->columns(); # Scalar context my @columnList =
           $stmt->columns(); # Array context my($col1, $col2) = ($stmt-
           >columns(0), $stmt->columns(1));

           This method is used to retrieve column lists. The meaning
           depends on the query command:

               SELECT $col1, $col2, ... $colN FROM $table WHERE ...
               UPDATE $table SET $col1 = $val1, $col2 = $val2, ...
                   $colN = $valN WHERE ...
               INSERT INTO $table ($col1, $col2, ..., $colN) VALUES (...)

           When used without arguments, the method returns a list of the
           columns $col1, $col2, ..., $colN, you may alternatively use a
           column number as argument. Note that the column list may be
           empty, like in

               INSERT INTO $table VALUES (...)

           and in *CREATE* or *DROP* statements.

           But what does "returning a column" mean? It is returning an
           SQL::Statement::Column instance, a class that implements the
           methods `table' and `name', both returning the respective
           scalar. For example, consider the following statements:

               INSERT INTO foo (bar) VALUES (1)
               SELECT bar FROM foo WHERE ...
               SELECT foo.bar FROM foo WHERE ...

           In all these cases exactly one column instance would be returned
           with

               $col->name() eq 'bar'
               $col->table() eq 'foo'

   tables  my $tableNum = $stmt->tables(); # Scalar context my @tables = $stmt-
           >tables(); # Array context my($table1, $table2) = ($stmt-
           >tables(0), $stmt->tables(1));

           Similar to `columns', this method returns instances of
           `SQL::Statement::Table'. For *UPDATE*, *DELETE*, *INSERT*,
           *CREATE* and *DROP*, a single table will always be returned.
           *SELECT* statements can return more than one table, in case of
           joins. Table objects offer a single method, `name' which returns
           the table name.

   params  my $paramNum = $stmt->params(); # Scalar context my @params = $stmt-
           >params(); # Array context my($p1, $p2) = ($stmt->params(0),
           $stmt->params(1));

           The `params' method returns information about the input
           parameters used in a statement. For example, consider the
           following:

               INSERT INTO foo VALUES (?, ?)

           This would return two instances of SQL::Statement::Param. Param
           objects implement a single method, `$param-'num()>, which
           retrieves the parameter number. (0 and 1, in the above example).
           As of now, not very usefull ... :-)

   row_values
               my $rowValueNum = $stmt->row_values(); # Scalar context
               my @rowValues = $stmt->row_values();   # Array context
               my($rval1, $rval2) = ($stmt->row_values(0),
                                     $stmt->row_values(1));

           This method is used for statements like

               UPDATE $table SET $col1 = $val1, $col2 = $val2, ...
                   $colN = $valN WHERE ...
               INSERT INTO $table (...) VALUES ($val1, $val2, ..., $valN)

           to read the values $val1, $val2, ... $valN. It returns scalar
           values or SQL::Statement::Param instances.

   Order   my $orderNum = $stmt->order(); # Scalar context my @order = $stmt-
           >order(); # Array context my($o1, $o2) = ($stmt->order(0),
           $stmt->order(1));

           In *SELECT* statements you can use this for looking at the ORDER
           clause. Example:

               SELECT * FROM FOO ORDER BY id DESC, name

           In this case, `order' could return 2 instances of
           SQL::Statement::Order. You can use the methods `$o->table()',
           `$o->column()' and `$o->desc()' to examine the order object.

   where   my $where = $stmt->where();

           This method is used to examine the syntax tree of the `WHERE'
           clause. It returns undef (if no WHERE clause was used) or an
           instance of SQL::Statement::Op. The Op instance offers 4
           methods:

   op                  returns the operator, one of `AND', `OR', `=', `<>',
                       `>=', `>', `<=', `<', `LIKE', `CLIKE' or `IS'.

   arg1
   arg2                returns the left-hand and right-hand sides of the
                       operator. This can be a scalar value, an
                       SQL::Statement::Param object or yet another
                       SQL::Statement::Op instance.

   neg                 returns a TRUE value, if the operation result must be
                       negated after evalution.

           To evaluate the *WHERE* clause, fetch the topmost Op instance
           with the `where' method. Then evaluate the left-hand and right-
           hand side of the operation, perhaps recursively. Once that is
           done, apply the operator and finally negate the result, if
           required.

   To illustrate the above, consider the following WHERE clause:

       WHERE NOT (id > 2 AND name = 'joe') OR name IS NULL

   We can represent this clause by the following tree:

                 (id > 2)   (name = 'joe')
                        \   /
             NOT         AND
                            \      (name IS NULL)
                             \    /
                               OR

   Thus the WHERE clause would return an SQL::Statement::Op instance with
   the op() field set to 'OR'. The arg2() field would return another
   SQL::Statement::Op instance with arg1() being the SQL::Statement::Column
   instance representing id, the arg2() field containing the value undef
   (NULL) and the op() field being 'IS'.

   The arg1() field of the topmost Op instance would return an Op instance
   with op() eq 'AND' and neg() returning TRUE. The arg1() and arg2()
   fields would be Op's representing "id > 2" and "name = 'joe'".

   Of course there's a ready-for-use method for WHERE clause evaluation:

 Evaluating a WHERE clause

   The WHERE clause evaluation depends on an object being used for fetching
   parameter and column values. Usually this can be an SQL::Eval object,
   but in fact it can be any object that supplies the methods

       $val = $eval->param($paramNum);
       $val = $eval->column($table, $column);

   See the SQL::Eval manpage for a detailed description of these methods.
   Once you have such an object, you can call a

       $match = $stmt->eval_where($eval);

 Evaluating queries

   So far all methods have been concrete. However, the interface for
   executing and evaluating queries is abstract. That means, for using them
   you have to derive a subclass from SQL::Statement that implements at
   least certain missing methods and/or overwrites others. See the
   `test.pl' script for an example subclass.

   Something that all methods have in common is that they simply throw a
   Perl exception in case of errors.

   execute After creating a statement, you must execute it by calling the
           `execute' method. Usually you put an eval statement around this
           call:

               $@ = '';
               my $rows = eval { $self->execute($data); };
               if ($@) { die "An error occurred!"; }

           In case of success the method returns the number of affected
           rows or -1, if unknown. Additionally it sets the attributes

               $self->{'NUM_OF_FIELDS'}
               $self->{'NUM_OF_ROWS'}
               $self->{'data'}

           the latter being an array ref of result rows. The argument $data
           is for private use by concrete subclasses and will be passed
           through to all methods. (It is intentionally not implemented as
           attribute: Otherwise we might well become self referencing data
           structures which could prevent garbage collection.)

   CREATE
   DROP
   INSERT
   UPDATE
   DELETE
   SELECT  Called by `execute' for doing the real work. Usually they create an
           SQL::Eval object by calling `$self-'open_tables()>, call `$self-
           'verify_columns()> and then do their job. Finally they return
           the triple

               ($self->{'NUM_OF_ROWS'}, $self->{'NUM_OF_FIELDS'},
                $self->{'data'})

           so that execute can setup these attributes. Example:

               ($self->{'NUM_OF_ROWS'}, $self->{'NUM_OF_FIELDS'},
                $self->{'data'}) = $self->SELECT($data);

   verify_columns
           Called for verifying the row names that are used in the
           statement. Example:

               $self->verify_columns($eval, $data);

   open_tables
           Called for creating an SQL::Eval object. In fact what it returns
           doesn't need to be derived from SQL::Eval, it's completely
           sufficient to implement the same interface of methods. See the
           SQL::Eval manpage for details. The arguments `$data',
           `$createMode' and `$lockMode' are corresponding to those of
           SQL::Eval::Table::open_table and usually passed through.
           Example:

               my $eval = $self->open_tables($data, $createMode, $lockMode);

           The eval object can be used for calling `$self-'verify_columns>
           or `$self-'eval_where>.

   open_table
           This method is completely abstract and *must* be implemented by
           subclasses. The default implementation of `$self-'open_tables>
           calls this method for any table used by the statement. See the
           `test.pl' script for an example of imlplementing a subclass.

SQL syntax
   The SQL::Statement module is far away from ANSI SQL or something
   similar, it is designed for implementing the DBD::CSV module. See the
   DBD::CSV(3) manpage.

   I do not want to give a formal grammar here, more an informal
   description: Read the statement definition in sql_yacc.y, if you need
   something precise.

   The main lexical elements of the grammar are:

   Integers
   Reals   Syntax obvious

   Strings Surrounded by either single or double quotes; some characters need
           to be escaped with a backslash, in particular the backslash
           itself (\\), the NUL byte (\0), Line feeds (\n), Carriage return
           (\r), and the quotes (\' or \").

   Parameters
           Parameters represent scalar values, like Integers, Reals and
           Strings do. However, their values are read inside Execute() and
           not inside Prepare(). Parameters are represented by question
           marks (?).

   Identifiers
           Identifiers are table or column names. Syntactically they
           consist of alphabetic characters, followed by an arbitrary
           number of alphanumeric characters. Identifiers like SELECT,
           INSERT, INTO, ORDER, BY, WHERE, ... are forbidden and reserved
           for other tokens.

   What it offers is the following:

 CREATE

   This is the CREATE TABLE command:

       CREATE TABLE $table ( $col1 $type1, ..., $colN $typeN,
                             [ PRIMARY KEY ($col1, ... $colM) ] )

   The column names are $col1, ... $colN. The column types can be
   `INTEGER', `CHAR(n)', `VARCHAR(n)', `REAL' or `BLOB'. These types are
   currently completely ignored. So is the (optional) `PRIMARY KEY' clause.

 DROP

   Very simple:

       DROP TABLE $table

 INSERT

   This can be

       INSERT INTO $table [ ( $col1, ..., $colN ) ]
           VALUES ( $val1, ... $valN )

 DELETE

       DELETE FROM $table [ WHERE $where_clause ]

   See the SELECT manpage below for a decsription of $where_clause

 UPDATE

       UPDATE $table SET $col1 = $val1, ... $colN = $valN
           [ WHERE $where_clause ]

   See the SELECT manpage below for a decsription of $where_clause

 SELECT

       SELECT [DISTINCT] $col1, ... $colN FROM $table
           [ WHERE $where_clause ] [ ORDER BY $ocol1, ... $ocolM ]

   The $where_clause is based on boolean expressions of the form $val1 $op
   $val2, with $op being one of '=', '<>', '>', '<', '>=', '<=', 'LIKE',
   'CLIKE' or IS. You may use OR, AND and brackets to combine such boolean
   expressions or NOT to negate them.

INSTALLATION
   Like most other Perl modules, you simply do a

       perl Makefile.PL
       make                (nmake or dmake, if you are using Win32)
       make test           (Let me know, if any tests fail)
       make install

   Known problems are:

   *       Some flavours of SCO Unix don't seem to have alloca() or something
           similar. I recommend using gcc or egcs for compiling Perl and
           the SQL::Statement module: Both compilers have a builtin
           alloca().

           Another option could be to use external alloca.c, for example

             http://www.pu.informatik.th-darmstadt.de/FTP/pub/pu/alloca.c
             http://www.cs.purdue.edu/homes/young/src2www-example/alloca.c.html

           I did test neither of them and cannot give detailed instructions
           for including them into the SQL::Statement module. However, it
           should be sufficient to compile alloca.c with the same
           instructions than, for example, sql_yacc.c and finally repeat
           the linker command by inserting alloca.o after sql_yacc.o.

           Note that I cannot modify the sources to work without alloca(),
           as it is the bison parser that's using alloca() and I don't have
           the bison generated code in my hands.

           My thanks to Theo Petersen, <[email protected]>, for pointing out
           this problem and the possible workarounds.

INTERNALS
   Internally the module is splitted into three parts:

 Perl-independent C part

   This part, contained in the files `sql_yacc.y', `sql_data.h',
   `sql_data.c' and `sql_op.c', is completely independent from Perl. It
   might well be used from within another script language, Tcl say, or from
   a true C application.

   You probably ask, why Perl independence? Well, first of all, I think
   this is a valuable target in itself. But the main reason was the
   impossibility to use the Perl headers inside bison generated code. The
   Perl headers export almost the complete Yacc interface to XS, for
   whatever reason, thus redefining constants and structures created by
   your own bison code. :-(

 Perl-dependent C part

   This is contained in `Statement.xs'. The both C parts communicate via a
   C structure sql_stmt_t. In fact, an SQL::Statement object is nothing
   else than a pointer to such a structure. The XS calls columns(),
   Table(), where(), ... do nothing more than fetching data from this
   structure and converting it to Perl objects. See the section on "The
   sql_stmt_t structure" below for details on the structure.

 Perl part

   Besides some stub functions for retrieving statement data, this is
   mainly the query processing with the exception of WHERE clause
   evaluation.

 The sql_stmt_t structure

   This structure is designed for optimal performance. A typical query will
   be parsed with only 4 or 5 malloc() calls; in particular no memory will
   be aquired for storing strings; only pointers into the query string are
   used.

   The statement stores its tokens in the values array. The array elements
   are of type sql_val_t, a union, that can represent the most interesting
   tokens; for example integers and reals are stored in the data.i and
   data.d parts of the union, strings are stored in the data.str part,
   columns in the data.col part and so on. Arrays are allocated in chunks
   of 64 elements, thus a single malloc() will be usually sufficient for
   allocating the complete array. Some types use pointers into the values
   array: For example, operations are stored in an sql_op_t structure that
   containes elements arg1 and arg2 which are pointers into the value
   table, pointing to other operations or scalars. These pointers are
   stored as indices, so that the array can be extended using realloc().

   The sql_stmt_t structure contains other arrays: columns, tables,
   rowvals, order, ... representing the data returned by the columns(),
   tables(), row_values() and order() methods. All of these contain
   pointers into the values array, again stored as integers.

   Arrays are initialized with the _InitArray call in SQL_Statement_Prepare
   and deallocated with _DestroyArray in SQL_Statement_Destroy. Array
   elements are obtained by calling _AllocData, which returns an index. The
   number -1 is used for errors or as a NULL value.

 The WHERE clause evaluation

   A WHERE clause is evaluated by calling SQL_Statement_EvalWhere(). This
   function is in the Perl independent part, but it needs the possibility
   to retrieve data from the Perl part, for example column or parameter
   values. These values are retrieved via callbacks, stored in the
   sql_eval_t structure. The field stmt->evalData points to such a
   structure. Of course the calling method can extend the sql_eval_t
   structure (like eval_where in Statement.xs does) to include private data
   not used by SQL_Statement_EvalWhere.

 Features

   Different parsers are implemented via the sql_parser_t structure. This
   is mainly a set of yes/no flags. If you'd like to add features, do the
   following:

   First of all, extend the sql_parser_t structure. If your feature is part
   of a certain statement, place it into the statements section, for
   example "select.join". Otherwise choose a section like "misc" or
   "general". (There's no particular for the section design, but structure
   never hurts.)

   Second, add your feature to sql_yacc.y. If your feature needs to extend
   the lexer, do it like this:

       if (FEATURE(misc, myfeature) {
           /*  Scan your new symbols  */
           ...
       }

   See the *BOOL* symbol as an example.

   If you need to extend the parser, do it like this:

       my_new_rule:
           /*  NULL, old behaviour, doesn't use my feature  */
           | my_feature
               { YFEATURE(misc, myfeature); }
       ;

   Thus all parsers not having FEATURE(misc, myfeature) set will produce a
   parse error here. Again, see the BOOL symbol for an example.

   Third thing is to extend the builtin parsers. If they support your
   feature, add a 1, otherwise a 0. Currently there are two builtin
   parsers: The *ansiParser* in sql_yacc.y and the sqlEvalParser in
   Statement.xs.

   Finally add support for your feature to the `feature' method in
   Statement.xs. That's it!

MULTITHREADING
   The complete module code is reentrant. In particular the parser is
   created with `%pure_parser'. See the bison(1) manpage for details on
   reentrant parsers. That means, the module is ready for multithreading,
   as long as you don't share handles between threads. Read-only handles,
   for example parsers, can even be shared.

   Statement handles cannot be shared among threads, at least not, if you
   don't grant serialized access. Per-thread handles are always safe.

AUTHOR AND COPYRIGHT
   This module is Copyright (C) 1998 by

       Jochen Wiedmann
       Am Eisteich 9
       72555 Metzingen
       Germany

       Email: [email protected]
       Phone: +49 7123 14887

   All rights reserved.

   You may distribute this module under the terms of either the GNU General
   Public License or the Artistic License, as specified in the Perl README
   file.

SEE ALSO
   the DBI(3) manpage, the DBD::CSV(3) manpage