Search.setIndex({envversion:42,terms:{entropi:[4,5],lpad:2,marshalseri:1,getrootdirectori:1,prefix:[3,5],sleep:1,dirnam:1,gradientboostedtre:5,avg:2,getscalingvec:4,whose:[5,1],setlabel:4,saveashadoopdataset:1,pprint:3,yarn:1,deviat:[2,4,5,1],under:[5,1],sortbykei:1,digit:2,everi:[2,4,3,5,1],quantil:4,eprod:[4,5],rise:5,factori:[2,5],affect:[4,1],solver:4,rowsbetween:2,pearsoncorr:5,flatmap:[2,3,1],initialmodel:5,nfoo:1,mergevalu:[3,1],jdstream:3,vector:[4,5,1],matric:[4,5],cmu:5,mintokenlength:4,naiv:[4,5],probabilitycol:4,request:[4,3],orc_partit:2,second:[2,3,5,1],aggreg:[2,4,1],setbandwidth:5,setmaxit:4,groupbykei:[3,1],even:[4,5,1],asin:2,neg:[2,5],topanda:2,mintf:4,"while":[2,4,3,1],islargerbett:4,getcheckpointinterv:4,getweightcol:4,conduct:5,"new":[2,4,3,5,1],net:4,ever:2,groupid:[3,1],metadata:[2,4,3,5],keepseri:3,saveastextfil:[3,5,1],java_model:[4,5],human:5,show_profil:1,ecdf:5,here:[2,4,5,1],typeerror:[4,5],getdroplast:4,path:[2,5,1],interpret:[2,3,1],getcasesensit:4,sumdistinct:2,precis:[2,4,5],datetim:[2,3],aka:[2,4],samplestdev:1,sequencefil:1,frombas:2,instr:2,longwrit:1,linearli:4,substr:2,unix:2,printf:2,mlutil:5,txt:[2,1],unit:[2,4,5,1],setpredictioncol:4,describ:[2,5],would:[2,4,1],sparkfil:1,ndcgat:5,orc:2,concret:2,call:[2,4,3,5,1],recommend:[0,1],type:[0,4,5,1],until:[5,1],topolar:2,relat:[2,4,3],expm1:2,warn:[4,5,1],exce:5,hole:2,memory_only_ser_2:1,must:[2,4,3,5,1],userfeatur:5,join:[2,3,5,1],multinomi:[4,5],setvectors:[4,5],bitwiseor:2,setup:3,work:[2,5,1],numcolblock:5,regionnam:3,explainparam:4,coalesc:[2,1],areaunderroc:[4,5],frequenc:[2,4,5],root:[2,5,1],overrid:[4,1],setindic:4,wrriten:3,setrandomcent:5,give:[2,4,5,1],setnumpartit:[4,5],doubletyp:2,liter:2,seqop:1,want:[4,3,5],quadrat:5,rpad:2,inputcol:4,unsign:2,risk:5,end:[2,3,5,1],quot:2,namedtemporaryfil:[5,1],ordinari:4,classifi:[4,5],how:[2,4,3,5,1],hot:4,env:1,createcombin:[3,1],poissonrdd:5,partitionfunc:[3,1],confid:[4,1],dialect:4,recogn:[3,5],tablenam:2,earlier:3,befor:[2,4,3,5,1],vectortransform:5,intwrit:1,fillna:2,invfunc:3,needconvers:2,averag:[2,5,1],reshap:5,attempt:[4,1],third:2,classmethod:[2,3,5,1],bootstrap:5,credenti:3,localdoc:5,blocks1:5,polynomialexpans:4,blocks3:5,maintain:4,environ:[5,1],arraytyp:2,enter:3,exclus:[2,1],lambda:[2,4,5,1],order:[2,4,3,5,1],setinputcol:4,maxpatternlength:5,feedback:4,over:[2,4,3,5,1],spearmancorr:5,becaus:[2,4,5],veri:[4,5,1],equival:[2,4,3,5],vari:[5,1],digest:2,fit:[4,5],fix:[2,4,3,1],streamlib:1,better:1,getregparam:4,foreachrdd:3,persist:[2,3,1],hidden:4,split:[2,4,5,1],them:[2,4,3,5,1],thei:[2,4,3,5,1],interrupt:1,getsplit:4,rformulamodel:4,onethird:[4,5],onbatchsubmit:3,choic:4,setsmooth:4,user_product:5,dropdupl:2,regexp_replac:2,uhrbach:2,sqltransform:4,timeout:[3,1],each:[2,4,3,5,1],debug:[2,1],side:[2,5,1],mean:[2,4,5,1],sparkcontext:[0,3,2,5,1],slen:2,metricnam:4,extract:[2,4],unbound:2,e_min:4,gradient:[4,5],newli:4,content:0,dsl:2,adapt:4,elasticnet:4,format_str:2,ryan:5,savemod:2,streaminglogisticregressionwithsgd:5,accum_param:1,linear:[4,5],cd9fb1e148ccd8442e5aa74904cc73bf6fb54d1d54d333bd596aa9bb4bb4e961:2,standard:[2,4,5,1],small:[2,5,1],topicsmatrix:5,factoris:5,freq:[4,5],withmean:[4,5],clearfil:1,outputformatclass:1,setinitialcent:5,getvector:[4,5],angl:2,stringlengthint:2,traceback:[4,5,1],createdatafram:[2,4,5],filter:[2,4,3,5,1],iso:2,regress:0,app:1,confus:5,ischeckpoint:1,rand:2,rang:[2,4,3,5,1],getratingcol:4,refresht:2,mappartitionswithindex:[3,1],rank:[2,4,5],alreadi:[2,4,5,1],wrapper:[4,5],stddev_samp:2,basicprofil:1,setestimatorparammap:4,treeweight:4,cartesian:1,decisiontreemodel:5,top:[3,5,1],foldbykei:1,cumul:[2,5],master:[3,1],too:2,tol:4,similarli:1,getquantileprob:4,subpackag:0,consol:2,jmlr:5,tool:3,lower:[2,4,5,1],task:[2,1],somewhat:1,signum:2,date_format:2,target:[2,5,1],keyword:4,provid:[2,4,3,5,1],expr:2,tree:[0,4,1],zero:[2,4,5,1],project:[2,4,5],matter:1,kth:1,start_job:1,minut:2,standardscal:[4,5],retainedjob:1,setmaxmemoryinmb:4,mine:5,raw:[4,5],seed:[2,4,5,1],"__this__":4,manner:1,increment:[2,3,1],further:4,getalpha:4,seen:3,minu:2,strength:4,withcolumnrenam:2,recreat:3,fullouterjoin:[3,1],reducebykeyandwindow:3,latter:[2,4,1],panda:2,bodydecod:3,getlay:4,clusterweight:5,setmaxdepth:4,hyperbol:2,glob:[5,1],object:[2,4,3,5,1],what:1,supress:1,ab12cd:2,cumedist:2,regular:[2,4,5],specifi:[2,4,3,5,1],letter:2,createstream:3,setmincount:[4,5],computecost:5,broadcast:[2,1],doi:[2,4,5,1],don:[2,1],partition:[3,1],censorcol:4,doe:[2,4,3,5,1],expstd:5,declar:4,gbtregressionmodel:4,udf:2,categoricalfeaturesinfo:5,gettol:4,numnod:[4,5],dot:[2,5],createrdd:3,random:[0,4,1],syntax:4,outputoperationstart:3,dirpath:1,getmaxbin:4,"0x7f05418bde60":3,from_unixtim:2,absolut:[2,4,5,1],stopgracefulli:3,minsupport:5,latent:5,acquir:1,field2:2,field3:2,explain:[2,4,5],configur:[2,4,5,1],field6:2,field4:2,field5:2,first_product:5,to_profil:1,rice:5,label2:4,stop:[4,3,1],ceil:2,coordinatematrix:5,getcensorcol:4,usedisk:1,report:[3,5,1],vectorindex:4,symmetr:5,statustrack:1,receiv:[4,3,5,1],earn:2,pearson:[2,5],bar:1,collect_list:2,patch:4,bad:[4,1],respond:1,checkpointinterv:[4,3,5],mkdtemp:[2,5],fair:1,sparsevector:[4,5],getdegre:4,elimin:[2,3],datatyp:[2,1],setimpur:4,result:[2,4,3,5,1],fail:[2,1],collectasmap:1,blei:5,subprotocol:2,impur:[4,5],said:4,subarrai:4,wikipedia:[4,5],score:5,irm:5,randomforestregressor:4,drawn:5,lasso:[4,5],approach:[4,5],setestim:4,attribut:[2,4,5],accord:[2,5,1],extend:[2,1],kolmogorovsmirnovtestresult:5,xrang:1,weak:1,subtractbykei:1,extens:4,countapprox:1,stdev:[5,1],toler:[4,3,5,1],samemodel:5,paramnam:4,numfold:4,cov:2,hashabl:5,fault:3,howev:1,against:[4,5],logic:2,topicconcentr:5,countri:2,com:[3,5],col:[2,5],jspec:2,character:3,getstageinfo:1,longtyp:2,loader:5,logisticregressionwithsgd:5,pickle_registri:1,dens:[4,5],diff:2,guid:3,assum:[2,5,1],duplic:[2,4,1],union:[2,3,1],fri:2,strata:2,numpi:[4,5],three:[2,3,1],been:[4,3,5,1],accumul:1,much:1,basic:[0,3,1],concat_w:2,countbykei:1,mcm:5,deeper:4,aggregatebykei:1,worker:[3,1],argument:[2,4,3,5,1],child:[4,5],combop:1,setwithstd:[4,5],ident:4,tanh:2,servic:3,properti:[2,3,1],lesser:5,calcul:[2,4,3,5],dataframewrit:2,aid:1,modul:[0,1],udfregistr:2,keytyp:2,printabl:1,conv:2,n_t:5,rangebetween:2,setevalu:4,kwarg:[2,4],cond:2,conf:1,gbtregressor:4,decayfactor:5,setmin:4,descent:5,perform:[2,4,5,1],suggest:1,make:[2,4,3,5],descend:[2,5,1],vecassembl:4,complet:[3,5,1],getsubsamplingr:4,word2vec:[4,5],explainedvari:5,recordlength:[3,1],hand:5,rais:[2,4,5,1],mincount:[4,5],bia:[5,1],stop_job:1,tune:0,squar:[2,4,5],shiftright:2,kept:1,thu:[2,1],confusionmatrix:5,inherit:[5,1],samplingratio:2,client:3,greatest:2,thi:[2,4,3,5,1],programm:1,everyth:2,indexedrow:5,left:[2,4,3,5,1],deptid:2,setinitstep:4,identifi:[2,4,5,1],just:5,setcheckpointdir:1,ordin:2,setlabelcol:4,bandwidth:5,fact:4,getactivejobsid:1,shorthand:2,yet:[2,1],languag:[2,4,5,1],predictonvalu:5,categorymap:4,tempfile2:1,sequnc:5,expos:1,meanabsoluteerror:5,had:[2,1],getmindf:4,keyclass:1,els:[2,5],right_out:2,save:[2,3,5,1],hat:5,applic:[3,1],cachenodeid:4,preserv:[2,4],rng:5,setfeaturesubsetstrategi:4,outputoperationcomplet:3,measur:[2,5],setsystemproperti:1,specif:[2,4,3,5],arbitrari:[2,1],manual:4,istemporari:2,lassomodel:5,unnecessari:2,underli:[2,4,5],www:5,right:[2,4,3,5,1],old:[3,5,1],deal:2,interv:[4,3,5],maxim:[4,5],dead:1,intern:[2,4,3,5,1],loadvector:5,maxit:4,flatten:[2,3,1],preservespartit:[2,3,1],getse:4,ridgeregressionmodel:5,insensit:[2,4],wholetextfil:1,setinitmod:4,subclass:4,icd:5,track:[3,1],select:[2,4,5],setsplit:4,condit:[2,4,5],foo:1,plu:[2,5],who:1,sparkjobinfo:1,topic_nam:3,mapvalu:[3,1],discount:5,corr:[2,5],hadamard:[4,5],queuestream:3,obj:[2,1],getnumitemblock:4,kinesisutil:3,getlosstyp:4,algo:4,"0x7f0541d11410":3,produc:[2,4,5,1],uniformrdd:5,getmintokenlength:4,"float":[2,4,5,1],encod:[2,4,3,1],bound:[2,4],pvalu:5,down:1,resili:[0,1],wrap:2,storag:[2,3,5,1],east:3,poissonvectorrdd:5,jdbc:2,wai:1,getfeaturescol:4,support:[2,4,5,1],isdefin:4,transform:[4,3,5],avail:[2,4,3,5,1],width:[2,3],fraction:[2,4,5,1],lowest:5,head:[2,4],form:[2,5,1],forc:[4,1],epsilon:5,streaminglisten:3,back:[2,4,5],ethz:4,cluster_label:5,renam:2,supportedlosstyp:4,"true":[2,4,3,5,1],newapihadoopfil:1,"throw":[2,4,3,5,1],javavectortransform:5,maxiter:5,samplevari:1,endpointurl:3,independ:5,hypot:2,absenc:3,setsteps:4,todens:5,portable_hash:[3,1],trim:2,epoch_ordin:2,classif:0,featur:0,poweriterationclusteringmodel:5,bahmani:4,covert:5,"abstract":[0,4,3,5,1],nanvl:2,stanford:4,exist:[2,4,3,5,1],getmetricnam:4,ship:1,numnonzero:5,value12:2,floor:2,tip:3,test:[2,4,5,1],tie:2,shrink:5,getindic:4,node:[4,5,1],months_between:2,df_as1:2,df_as2:2,clearthreshold:5,scale:[2,4,5],intent:3,consid:[2,4,5,1],sql:[0,4,1],pyrolit:1,to_utc_timestamp:2,getblocks:4,billion:2,maptyp:2,longer:1,filterfunc:3,getcheckpointfil:1,weightedrecal:[4,5],ignor:[2,4,3,5],maxdepth:[4,5],time:[2,4,3,5,1],col1_:2,createpollingstream:3,corpu:5,monotonicallyincreasingid:2,concept:5,chain:1,skip:[2,4,5,1],global:1,stddev_pop:2,stepsiz:[4,5],large_broadcast:1,row:[2,4,5],hierarch:5,decid:5,hold:[4,5],depend:[2,4,3,5,1],zone:2,graph:[3,5],"_jconf":1,intermedi:[2,5],usememori:1,logisticregress:4,latestmodel:5,vec:[4,5],jvm:2,getparam:4,larg:[2,4,3,5,1],isinst:5,maxbin:[4,5],sourc:[2,4,3,5],string:[2,4,3,5,1],lrm:5,kitten:2,word:[2,4,5],dim:5,halflif:5,level:[2,3,5,1],did:1,setloglevel:1,iter:[2,4,5,1],item:[2,4,5,1],getelasticnetparam:4,offsetrang:3,repartitionandsortwithinpartit:1,round:[2,5],dir:[4,5],upper:[2,4],height:2,jdf:2,slower:3,sign:2,is_cach:1,indexedrowmatrix:5,dataframestatfunct:2,multilayerperceptronclassifi:4,ndcg:5,onreceiverstop:3,port:3,recommendproductsforus:5,disk_only_2:1,appear:[4,5],rollup:2,icml2010:5,uniform:5,current:[2,4,3,5,1],boost:[4,5],getnumuserblock:4,deriv:5,discrete_cosine_transform:4,gener:[2,4,3,5,1],naivebayesmodel:[4,5],coeffici:[2,4,5],satisfi:[3,1],explicitli:4,tangent:2,allclos:4,address:3,wait:3,togeth:[2,4,5,1],statu:1,shift:2,vectors:[4,5],profiler_cl:1,behav:1,poisson:5,streaminglinearalgorithm:5,commonli:[5,1],dayofweek:2,semant:1,extra:4,dtype:2,registerfunct:2,setfeaturescol:4,prefer:[4,5,1],n_th:5,toarrai:5,uncensor:4,instal:[2,1],regex:[2,4],gaussianmixturemodel:5,matrixentri:5,asdict:2,memori:[2,4,1],live:3,value2:[2,5,1],value1:[2,5,1],criteria:5,increas:[2,4,3,5,1],mse:4,setnumitemblock:4,setimplicitpref:4,implicitpref:4,minsplit:1,peopl:2,kurtosi:2,claus:2,finit:4,disk_onli:1,application_1433865536131_34483:1,ntile:2,logarithm:2,numpartit:[2,4,3,5,1],regextoken:4,aftsurvivalregress:4,hook_compress:1,prepar:1,uniqu:[2,4,5,1],cat:1,can:[2,4,3,5,1],purpos:2,date_add:2,nearest:5,stream:[0,5,1],predict:[4,5],smirnov:5,agent:3,topic:[3,5],untiloffset:3,cube:2,myrdd:1,paramgridbuild:4,getvocabs:4,maxmemoryinmb:4,cardin:[5,1],verlag:5,leastabsoluteerror:5,alwai:[3,1],todebugstr:[5,1],multipl:[2,4,3,5,1],fpm:0,charset:2,write:[2,5,1],getvectors:4,criterion:[4,5],foreach:[2,1],mindocfreq:[4,5],decision_tree_learn:4,opt1:2,numiter:5,opt3:2,opt2:2,map:[2,4,3,5,1],product:[4,5,1],gethandleinvalid:4,mat:5,atan:2,max:[2,4,5,1],clone:1,hasparam:4,usabl:1,appnam:1,membership:5,mae:4,mixin:5,mai:[2,4,3,5,1],sparkstageinfo:1,data:[0,1,2,3,4,5],agecol:2,istranspos:5,practic:1,joint:4,divid:[5,1],setmaxcategori:4,samplebykei:1,predic:[2,3,1],inform:[4,3,5,1],"switch":1,preced:[2,4],combin:[4,1],block:[2,4,5,1],setitemcol:4,getmaxcategori:4,itemcol:4,kafka:0,combinebykei:[3,1],partitionbi:[2,3,1],left_out:2,windowspec:2,group:[0,4,3,2,1],monitor:[3,1],concis:2,window:[2,3],ssc:3,main:[0,3,2,1],enabledecompress:3,non:[2,4,5,1],getlabelcol:4,recal:[4,5],add_month:2,hivecontext:2,getnonneg:4,initi:[4,3,5,1],col1:2,half:5,dump_profil:1,booleantyp:2,setscalingvec:4,supportedfeaturesubsetstrategi:[4,5],nor:5,term:[4,5,1],mapreduc:1,name:[0,1,2,3,4,5],rmse:4,primitivesasstr:2,drop:[2,4,1],isnul:2,userfactor:4,separ:[2,4,5],setsparkhom:1,updat:[2,4,3,5,1],unquot:2,nbar:1,m_t:5,compil:4,domain:2,getnumfold:4,replac:[2,5,1],individu:[4,5,1],continu:[4,3,5],dropna:2,pickleseri:1,keyfunc:1,redistribut:1,year:2,falsepositiver:5,happen:2,tmp2:1,learningr:5,space:[2,4,5,1],astyp:2,binaryclassificationevalu:4,profil:1,formula:[4,5],correct:[5,1],setelasticnetparam:4,setstat:4,after:[2,4,3,5,1],randomforestmodel:5,contain:[2,4,3,5,1],sparkpartitionid:2,setstag:4,integertyp:2,org:[2,4,3,5,1],"byte":[2,3,1],batchsubmit:3,upon:4,unpredict:5,"3c01bdbb26f358bab27f267924aa2c9a03fcfdb8":2,truepositiver:5,suffici:4,checkpointpath:3,binarysearch:5,recov:3,turn:[2,1],setweightcol:4,place:[2,5,1],frequent:[2,4,5],first:[2,4,3,5,1],origin:[4,5,1],info:[3,5,1],reimplement:5,directli:[3,5,1],onc:[2,3,1],arrai:[2,4,5,1],yourself:3,stringtyp:2,submit:[3,1],dataframeread:2,open:1,getact:3,size:[2,4,5,1],l_2:5,given:[2,4,3,5,1],l_1:5,silent:2,tibshirani:5,adjac:[4,5],parallel:[2,4,3,5,1],argmax:4,paramt:4,white:[4,1],allowloc:1,getestimatorparammap:4,countvectorizermodel:4,ariti:5,stabil:4,"public":1,copi:[4,3,5,1],upperbound:2,itemset:5,logist:[4,5],setnumfeatur:4,setmininstancespernod:4,than:[2,4,3,5,1],rdd2:1,rdd1:1,instanc:[2,4,5,1],sequncefil:1,appendbia:5,chisquar:5,were:2,posit:[2,3,5],pre:[4,5],fork:1,sai:2,off_heap:1,accumulatorparam:1,delim:2,ani:[2,4,5,1],getnumtre:4,logisticregressionwithlbfg:5,binaryfil:1,setthreshold:[4,5],sat:2,bitwis:2,engin:1,getnumfeatur:4,alias:2,setcachenodeid:4,note:[2,4,3,5,1],other:[2,4,3,5,1],gradient_boost:4,blocks2:5,take:[2,4,5,1],exploratori:2,getfeaturesubsetstrategi:4,treereduc:1,rnlt:2,si_model:4,sqlqueri:2,ratingcol:4,sure:3,textfilestream:3,trace:1,normal:[2,4,5,1],multipli:[4,5],setexecutorenv:1,compress:1,libsvm:5,getinitstep:4,cogroup:[3,1],beta:5,date2:2,pair:[2,4,3,5,1],stringindex:4,synonym:5,onreceiverstart:3,later:[2,4,5],effect:[4,5],dstream:[0,3,5],sigma:5,gracefulli:3,event:[4,3],nlp:4,"16be":2,show:[2,4,1],first_us:5,concurr:[4,3],pca_featur:4,joined_df:2,threshold:[4,5],line:[2,3,5,1],fifth:2,ground:5,xml:2,onli:[2,4,3,5,1],slow:1,ratio:2,transact:5,activ:[4,3,5,1],written:[3,1],scalingvec:4,dynamodb:3,treeaggreg:1,parametr:4,dict:[2,3,5,1],analyz:2,tolocalmatrix:5,startswith:2,getcachenodeid:4,nearli:[5,1],variou:[2,3,1],get:[2,4,3,5,1],cannot:[2,5],shiftrightunsign:2,progress:1,invreducefunc:3,multi_class_data:5,getmaxdepth:4,setquantilescol:4,requir:[2,4,5,1],liblinear:5,mapper:1,droplast:4,regexp_extract:2,yield:[2,1],tfidf:5,netti:3,minibatchfract:5,e_i:4,where:[2,4,3,5,1],summari:[2,4,5],wiki:[4,5],assumpt:2,maximum:[2,4,3,5,1],ldaoptim:5,date1:2,testset:5,squared_dist:5,getwithstd:4,label:[4,5],rformula:4,enough:2,between:[2,4,3,5,1],"import":[2,4,5,1],maxtermspertop:5,across:[2,4,5,1],spars:[4,5],map_func:1,parent:[4,3,5,1],containsnul:2,jtracker:1,approxcountdistinct:2,isin:2,outputcol:4,leastsquareserror:5,featuresubsetstrategi:[4,5],setcensorcol:4,region:3,gzipcodec:1,groupbi:[2,1],bytebuff:1,inconsist:5,mani:2,acceler:4,setcheckpointinterv:4,rescal:[4,5],pow:2,period:[3,5],poi:5,cancel:1,poll:3,setinvers:4,invert:4,repartit:[2,3,1],mari:1,mark:[2,1],model2:4,valueerror:1,predictioncol:4,normalrdd:5,colptr:5,getformula:4,retainedstag:1,those:[2,1],"case":[2,4,3,5,1],interoper:3,registerdataframeast:2,tostr:1,countdistinct:2,streamingkmean:5,trick:[4,5],hdf:[3,1],invok:[2,5,1],outcom:5,invoc:1,stdout:1,percent_rank:2,metric:[4,3,5],henc:[4,5],cluster:[0,1],tinyurl:5,scipi:5,vectorslic:4,shutil:5,to_replac:2,densiti:5,getlocalproperti:1,getjobinfo:1,develop:[3,5],inputformat:1,fitintercept:4,bitwisexor:2,fewer:[4,5,1],same:[2,4,3,5,1],check:[2,4,5,1],takeord:1,epoch:[2,1],html:[4,1],pad:[2,4],sentenc:[2,4,5],shell:1,document:[2,4,3,5],week:2,finish:1,getmaxit:4,closest:[2,4,5],utf8:3,nest:2,driver:[4,3,5,1],companion:4,parquet_partit:2,extern:[2,1],setappnam:1,inputtoken:4,spark_us:1,matrixfactorizationmodel:5,findsynonym:[4,5],sethalflif:5,setmast:1,without:[2,3,5,1],xmean:5,model:[4,5],isoton:[4,5],dimension:[2,4,5],includefirst:4,execut:[2,4,3,1],when:[2,4,3,5,1],assert_equ:5,zipwithuniqueid:1,getstandard:4,gdf:2,speed:[2,4],gbtclassificationmodel:4,concentr:5,struct:2,trigger:1,except:[2,4,3,5,1],littl:1,setnumiter:5,rowsperblock:5,shorttyp:2,onbatchstart:3,regressionevalu:4,real:[4,5],regparam:[4,5],around:[2,5],jrdd_deseri:[3,1],setratingcol:4,read:[2,3,1],productfeatur:5,pstat:1,grid:4,mon:2,corrdf:2,world:1,setmodeltyp:4,pst:2,toblockmatrix:5,x_t:5,integ:[2,4,5,1],server:3,norml1:5,norml2:5,either:[2,4,3,5,1],output:[2,4,5,1],streaminglinearregressionwithsgd:5,setdegre:4,yyyi:2,withstd:[4,5],ascend:[2,5,1],testdf:4,numlabel:4,totalnumnod:5,setmintokenlength:4,getitemcol:4,nonzero:5,slice:[2,4,3],getsteps:4,randomforestclassificationmodel:4,recomput:[4,1],elementwiseproduct:[4,5],settol:4,colsperblock:5,numfeatur:[4,5],refer:[4,5,1],process:[4,3,5,1],power:[2,5],garbag:[3,1],broker:3,ngram:4,starttim:1,fulli:1,immut:1,isset:4,comparison:4,getestim:4,aco:2,numbit:2,maxbatchs:3,"0x7f0550551230":[3,1],resultvec:4,mergecombin:[3,1],act:4,skew:2,effici:[2,4,3,5,1],textinputformat:1,fpgrowthmodel:5,terminolog:5,invers:[2,4,3,5],reducebykeyloc:1,pivot:2,yyi:2,your:[2,3,1],decisiontreeclassifi:4,log:[2,4,5,1],area:5,meanapprox:1,hex:2,overwrit:2,start:[2,3,1],interfac:2,low:[4,5,1],precisionat:5,strictli:4,getlabel:4,linalg:[0,4],tupl:[2,4,5,1],mqttutil:3,jsonvalu:2,setstopword:4,categor:[4,5],faster:1,pull:3,initweight:5,largest:[4,1],sparse1:5,logisticregressionmodel:[4,5],"default":[2,4,3,5,1],getthreshold:4,insertinto:2,bucket:[4,1],agg:2,sparkhom:1,timeunit:5,embed:[4,5],stochast:5,setupfunc:3,todf:[2,4],uid:4,creat:[2,4,3,5,1],kafkautil:3,certain:[2,4,5],censor:4,deep:4,subsamplingr:4,strongli:1,decreas:[4,3,5,1],file:[2,3,5,1],bob:2,picklefil:1,fill:2,dataframenafunct:2,newsess:2,googl:5,errror:4,zerovalu:1,multiclass:[4,5],addfil:1,describetop:5,writabl:1,you:[2,3,5,1],lowerbound:2,sequenc:[2,4,3,5,1],getmininfogain:4,polynomi:4,releas:[3,1],cancelalljob:1,standardscalarmodel:5,vocabulari:[4,5],concat:2,reduc:[4,3,1],backward:2,directori:[3,5,1],descript:1,isotonic_regress:5,potenti:1,appl:1,pipelinemodel:4,represent:[2,4,3,5,1],all:[2,4,3,5,1],getoutputcol:4,forget:5,ali:2,flatmapvalu:[3,1],softlib:5,month:2,bytearrai:2,scalar:4,correl:[2,5],cloudwatch:3,follow:[2,4,5,1],hadooprdd:1,disk:[2,5,1],last_dai:2,secretkei:3,package_extens:1,laid:2,former:1,program:[3,1],mininstancespernod:[4,5],getmin:4,dist2:5,norm:[4,5],nullhypothesi:5,fals:[2,4,3,5,1],setgap:4,getrawpredictioncol:4,losstyp:4,util:0,mechan:1,topicandpartit:3,fall:[5,1],quantilescol:4,streamingcontext:[0,3],modeltyp:4,productid:5,nor2:5,sparse_data:5,predictionandlabel:5,list:[2,4,3,5,1],nulltyp:2,adjust:4,cosin:[2,4],dotnet:2,unpersist:[2,5,1],dimens:[4,5,1],stopwordsremov:4,rowmatrix:5,ten:2,clearcach:2,featurescol:4,decisiontreeregressor:4,"_jvm":1,rate:[4,5,1],range0:2,design:5,onbatchcomplet:3,spark_partition_id:2,pass:[2,4,5,1],warin:5,log2:[2,4,5],hashingtf:[4,5],onehotencod:4,logloss:5,deleg:5,abc:2,sub:5,richard:5,setcasesensit:4,sun:2,sum:[2,4,5,1],binaryrecordsstream:3,bytetyp:2,delet:[5,1],version:[2,4,5,1],intersect:[2,1],countbyvalu:[3,1],consecut:2,technometr:5,method:[2,4,3,5,1],zookeep:3,full:[2,3,5],hash:[2,4,3,5,1],scikit:4,setinitialweight:5,exponentialvectorrdd:5,drop_dupl:2,infin:1,initialweight:5,shouldn:5,onoutputoperationcomplet:3,grape:1,modifi:[4,1],valu:[2,4,3,5,1],trunc:2,search:[0,4,2,1],kolmogorovsmirnovtest:5,prior:[4,5],amount:5,printschema:2,doctest:[2,1],pick:3,action:[5,1],narrow:2,messagehandl:3,trainer:4,via:[2,4,1],depart:2,data_typ:2,primit:[2,1],handleinvalid:4,deprec:[2,1],href:1,famili:2,binarytyp:2,unbias:2,perceptron:4,memory_and_disk_s:1,row1:2,hexadecim:2,allowcom:2,distinct:[2,3,5,1],regist:[2,1],two:[2,4,3,5,1],formul:5,countapproxdistinct:1,md5:2,validatedata:5,more:[2,4,3,5,1],flat:[4,3,1],desir:2,valuetyp:2,setblocks:4,flag:1,c_t:5,particular:[5,1],known:[2,4,5,1],exponentialrdd:5,cach:[2,4,3,1],memory_and_disk_2:[3,1],ensu:5,none:[2,4,3,5,1],hour:[2,3],json_tupl:2,initialpositioninstream:3,endswith:2,jobid:1,orderbi:[2,4],ldamodel:5,remain:4,lambda_:5,returntyp:2,learn:[4,5],setmininfogain:4,def:[2,5,1],explod:2,spearman:5,gammardd:5,tocoordinatematrix:5,scan:[2,5,1],registr:2,share:[2,1],accept:[2,4],minimum:[2,4,3,5,1],javardd:3,parammap:4,phrase:5,keydecod:3,densevector:[4,5],getquantilescol:4,cours:2,newlin:5,secur:3,rather:[4,1],ascii:2,hypothesi:5,csc:5,mapr:1,simpl:[2,4,5],algebra:5,variant:[2,4],mappartit:[2,3,1],weibul:4,catalog:2,origvec:4,sortwithinpartit:2,aaaac:2,varianc:[2,4,5,1],associ:[2,4,3,5,1],svec:4,setquantileprob:4,predictsoft:5,"short":2,pav:5,getmodeltyp:4,allowsinglequot:2,caus:[4,5,1],atan2:2,ensembl:5,egg:1,treeensemblemodel:5,multivari:5,samplebi:2,help:[4,1],"_c0":2,itd:4,singleton:1,regtyp:5,held:4,paper:5,through:[2,5,1],getnumpartit:[2,4,5,1],paramet:[2,4,3,5,1],style:2,binari:[2,4,3,5,1],multiclassmetr:5,relev:5,weightedprecis:[4,5],saveassequencefil:1,pca:4,might:[2,1],finer:1,gaussianmixtur:5,good:5,"return":[2,4,3,5,1],timestamp:2,"0x7f0550550aa0":1,withcolumn:2,getfitintercept:4,receivererror:3,getordefault:4,oper:[2,4,3,5,1],p362:2,userid:5,refresh:2,token:[4,5],radian:2,compris:5,found:[2,4,5,1],unicod:[3,1],kinesi:0,truncat:[2,4,5],weight:[2,4,5,1],stratifi:[2,1],monoton:[2,4,5],generatelinearinput:5,connect:[2,3,1],baseon:4,toindexedrowmatrix:5,clusterdata_2:5,http:[2,4,3,5,1],beyond:2,todo:4,orient:5,predictquantil:4,ftp:1,orantiton:4,robert:5,chisquaredtest:5,publish:3,research:5,getmininstancespernod:4,samesigma:5,expans:4,print:[2,3,5,1],keybi:1,occurr:2,qualifi:1,isempti:1,maxsiz:2,cume_dist:2,decisiontre:5,pub:5,kafkaparam:3,asc:2,reason:2,base:[2,4,3,5,1],put:2,decompress:3,existingrdd:2,lag:2,thread:[3,1],numcol:5,omit:2,setsubsamplingr:4,iff:2,"0x7f05505509b0":1,lifetim:2,assign:[2,4,5,1],noqa:1,getstoragelevel:1,major:5,oserror:5,htf:5,standardscalermodel:[4,5],number:[2,4,3,5,1],done:[2,3,5,1],least:[2,4,5,1],unional:2,miss:[2,1],kerneldens:5,chisqselectormodel:5,equi:2,differ:[2,4,3,5,1],exponenti:[2,5],meanaverageprecis:5,leftsemi:2,getinvers:4,checkpoint:[4,3,5,1],transformwith:3,supportedimpur:4,statement:[2,4],sqltran:4,scheme:2,colnam:2,banana:1,store:[2,4,3,5],schema:2,option:[2,4,3,1],batchstart:3,tom:2,selector:5,part:[2,5,1],jordan:5,cosh:2,jrdd:1,anoth:[2,4,3,5,1],kind:5,cyclic:2,remot:3,df4:2,remov:[2,4,5,1],df1:[2,4],minpartit:[5,1],df3:[2,4],df2:[2,4],cost:5,str:[2,4,5,1],hoefl:5,setn:4,randomli:[2,4,1],karp:2,comput:[2,4,3,5,1],setal:1,array_contain:2,packag:0,expir:3,mmscaler:4,"null":[2,4,3,5,1],format_numb:2,addpyfil:1,lib:1,self:[4,1],violat:[4,5],npart:5,lit:2,also:[2,4,5,1],setisoton:4,subnam:2,build:[4,5,1],setp:4,getimpur:4,compat:[2,3,5,1],pipelin:0,clusterdata_1:5,distribut:[0,4,1],jsc:1,choos:[4,5,1],setmax:4,mixtur:5,most:[2,4,5,1],droptempt:2,plan:[2,4],kearslei:5,alpha:[4,5],crosstab:2,filesystem:1,clear:[4,5,1],cover:4,physica:5,salari:2,exp:[2,5],pars:[2,5],latest:[3,5],javastreamingcontext:3,cdf:[2,5],hyper:4,linearregressionwithsgd:5,to_dat:2,session:2,jobgroup:1,find:[2,4,5,1],penalti:[4,5],access:[2,3,5,1],bfg:5,freqitemset:5,setnam:[4,1],underflow:2,canceljobgroup:1,nexampl:5,factor:[4,5],randomforest:5,std:[4,5],sparkus:1,express:[2,4],stopword:4,nativ:2,use_unicod:[2,1],linearregressionmodel:[4,5],sparsiti:4,defaultminpartit:1,getjobidsforgroup:1,trim_horizon:3,hadoopfil:1,statist:[2,4,5],setlocalproperti:1,fpgrowth:5,idfmodel:[4,5],groupwith:1,arr:2,set:[2,4,3,5,1],art:1,reseri:1,sep:2,pid:2,minmaxscalermodel:4,df0:2,roc:5,see:[2,4,3,5,1],getgap:4,arg:[2,4,5,1],close:[5,1],uncachet:2,elasticnetparam:4,membership_matrix:5,someth:1,streamingkmeansmodel:5,stringifi:5,reus:1,javasav:5,saveasnewapihadoopfil:1,freqsequ:5,altern:[2,4,5],scalingvector:5,numer:[2,4,1],multilay:4,lowercas:4,solv:[4,5],classnam:1,blocksiz:4,popul:[2,5],both:[2,4,3,1],ridgeregressionwithsgd:5,last:[2,4,3,5,1],delimit:[2,3,5],inout:5,wed:2,context:[0,5,1],aftsurvivalregressionmodel:4,pdf:5,degreesoffreedom:5,load:[2,3,5,1],simpli:[2,5],point:[0,1,2,3,4,5],instanti:[2,1],schedul:[2,3,1],param:0,suppli:[4,5],prefixspanmodel:5,loadlabeledpoint:5,blockmatrix:5,java:[2,4,3,5,1],word2vecmodel:[4,5],stamp:2,due:[5,1],empti:[4,3,5,1],sinc:[4,5],loaddefault:1,inferschema:2,rdd_b:3,rdd_a:3,anthoni:5,predictal:5,memory_and_disk_ser_2:1,saveast:2,sqlconf:2,shuffl:[2,1],gap:[2,4,1],coordin:[2,3,5],areaunderpr:[4,5],func:[3,1],getmaxmemoryinmb:4,applyschema:2,look:[3,5],randomsplit:[2,1],batch:[3,5,1],fleec:1,durat:3,mlp:4,unifi:3,behavior:[2,4],error:[2,4,3,5,1],input_file_nam:2,setusercol:4,setjobgroup:1,valueconvert:1,propag:1,blockcolindex:5,centr:5,floattyp:2,itself:[2,3],pythonstreaminglisten:3,namedtupl:2,getstopword:4,casesensit:4,queue:3,tointernald:2,tobas:2,minim:[4,5],"16le":2,belong:[2,5],hadoop:[2,3,5,1],interruptoncancel:1,decod:[2,3,1],composition:5,conflict:4,higher:[2,3,5],prefixspan:5,getsmooth:4,optim:[2,4,5],sym:5,covari:2,moment:2,receiverstop:3,temporari:2,user:[2,4,5,1],filev:1,svmmodel:5,gencircl:5,decimaltyp:2,stack:[4,5],recent:[4,5,1],sha2:2,quantileprob:4,sha1:2,sortbi:1,entri:[0,1,2,3,4,5],bitwisenot:2,pickl:1,person:2,inputformatclass:1,people1:2,setrawpredictioncol:4,lin:5,propos:2,lda:5,construct:[2,5],minmaxscal:4,collabor:4,shape:5,calibr:4,setpattern:4,indexof:5,stringinddf:4,theoret:5,setmaxbin:4,randomforestregressionmodel:4,appli:[2,3,5,1],input:[2,4,3,5,1],multiclassclassificationevalu:4,countvector:4,bin:[2,4,5],expmean:5,countbyvalueandwindow:3,format:[2,5,1],numuserblock:4,intuit:5,getactiveorcr:3,flumeutil:3,insert:2,numtre:[4,5],tempfile3:1,characterist:5,openhook:1,table1:2,numitemblock:4,resolv:1,elaps:3,collect:[0,1,2,3,4,5],princip:4,from_utc_timestamp:2,sql_ctx:2,tmpfile:1,often:[4,1],probabilti:5,takesampl:1,some:[2,4,5,1],setrank:4,current_d:2,sampl:[2,4,5,1],cprofil:1,slidedur:3,multilayerperceptronclassificationmodel:4,glom:[3,1],recommendproduct:5,"902fbdd2b1df0c4f70b4a5d23525e932":2,scala:[2,5,1],repeatedli:4,javatowritableconvert:1,per:[2,4,3,5,1],cast:[2,4],sumapprox:1,mathemat:[2,4,5],centroid:5,pei:5,machin:[4,3,5],previou:[2,3,5],run:[2,4,3,5,1],goe:2,age2:2,step:[2,4,5,1],getconf:2,compressioncodecclass:1,subtract:[2,3,1],sequencefileoutputformat:1,idx:2,constraint:[4,3],setmindf:4,idf:[4,5],setoutputcol:4,gamma:5,reduct:3,file2:1,file1:1,crpc:5,assert_almost_equ:5,gammavectorrdd:5,within:[2,4,3,5,1],ellipsi:1,multivariategaussian:5,fileinput:[5,1],ensur:[3,1],chang:[2,4,3,1],inclus:[2,3],setfitintercept:4,kmean:[4,5],fast:1,custom:1,percentrank:2,arithmet:5,includ:[2,4,3,5,1],dayofmonth:2,tr96640:5,unix_timestamp:[2,3],jsonrdd:2,fromintern:2,reducefunc:3,vectorassembl:4,rowindic:5,saveabl:5,mycustomprofil:1,link:4,translat:[2,1],get_json_object:2,sparkconf:1,convergencetol:5,quorum:3,ridgeregressionmod:5,concaten:2,row2:2,row3:2,utf:[2,3,1],consist:[2,4,5,1],caller:2,icdm:4,getpredictioncol:4,growth:5,leftouterjoin:[3,1],usercol:4,readlin:1,similar:[2,4,3,5],featureindex:4,sparsematrix:5,curv:5,trosset:5,constant:[4,5,1],getfield:2,flush:5,labelcol:4,jstring:2,repres:[2,4,3,5,1],incomplet:1,setsampl:5,relativesd:1,lemon:1,sequenti:[2,5,1],nan:[2,5,1],memory_only_s:[2,3,1],invalid:[2,4],setmindocfreq:4,codec:1,numrowblock:5,distributedmatrix:5,rightouterjoin:[3,1],tempdir:1,datediff:2,deseri:1,assertionerror:5,getmintf:4,mismatch:5,colstat:5,binar:4,meaning:5,setnumtre:4,keyconvert:1,neariso:5,lbfg:5,products_for_us:5,soundex:2,svm:5,algorithm:[2,4,5,1],kinesisappnam:3,memory_only_2:1,elementtyp:2,evenli:1,cosinesimilar:5,depth:[4,5,1],autobatchedseri:1,came:2,hello:[2,1],sqlcontext:[0,4,5,2],code:[4,5],edf:2,queri:[2,3,5],edu:[4,5],jssc:3,multivariatestatisticalsummari:5,sensit:[2,4],base64:2,send:[4,3,1],nonposit:5,useoffheap:1,fatal:1,sent:[4,3,1],schenker:2,kcl:3,rownumb:2,tue:2,dbname:2,tri:4,todegre:2,stopsparkcontext:3,gender:2,michael:5,hive:2,createdirectstream:3,"try":[2,5,1],stddev:2,getactivestageid:1,fromoffset:3,trainimplicit:5,pleas:[2,5],smaller:[5,1],readabl:5,natur:[2,4,5],hasdefault:4,initmod:[4,5],blanklin:[2,5],setconf:2,download:1,setnumfold:4,percentil:2,append:[2,5],setnumblock:4,index:[2,4,5,1],date_sub:2,compar:[5,1],affin:5,cell:2,experiment:[2,4,3,5,1],isnotnul:2,randomforestclassifi:4,tointern:2,dense_rank:2,defaultparallel:[5,1],usag:[2,4,5,1],executor:[2,4,1],svmwithsgd:5,len:[2,4,5,1],bodi:3,intercept:[4,5],sink:3,sinh:2,randn:2,stopwordremov:4,sine:2,implicit:[4,5],storagelevel:[2,3,1],convert:[2,4,3,5,1],convers:2,holger:5,ctx:1,fmeasur:5,rdd:[0,3,2,5,1],random_forest:4,typic:4,numtopfeatur:5,control:[5,1],field1:2,getwithmean:4,claim:2,apach:[2,4,3,1],approxim:[2,4,5,1],gatewai:1,expect:[4,5,1],"boolean":[2,5],setprobabilitycol:4,regexp:2,struct2:2,sgd:5,struct1:2,from:[2,4,3,5,1],setdecayfactor:5,zip:[2,5,1],commun:4,chi:5,batchsiz:1,doubl:[2,4,5],mllib:[0,4,1],next:[2,4],few:3,lock:1,commut:1,sort:[2,4,5,1],freqitem:2,jsonfil:2,"0x7f05426e51b8":3,hiveql:2,trait:5,numrow:5,awssecretkei:3,setlay:4,train:[4,5],rare:4,weightag:5,cstat:5,retriev:[2,5],augment:5,scalabl:5,ridg:[4,5],alia:[2,1],alic:2,"1a2s3a":2,aftsr:4,kolmogorov:5,parquet:[2,5],meet:1,addinplac:1,abcd:2,setifmiss:1,stringindexermodel:4,oneatatim:3,high:5,tag:2,onlin:5,serial:1,tan:2,lamb:1,allowunquotedfieldnam:2,sit:2,blockrowindex:5,prevent:5,degre:[2,4,5],developerapi:1,occur:[4,5],receiverstart:3,stkm:5,aft:4,instead:[2,4,5,1],sin:[2,5],sim:5,linearmodel:5,setregparam:4,ltrim:2,batchcomplet:3,combfunc:1,getstag:4,binaryclassificationmetr:5,pyfil:1,rmtree:5,discard:4,unitari:4,getstat:4,splitindex:1,poweriterationclust:5,alloc:[4,5,1],essenti:4,loglevel:1,counter:1,correspond:[2,4,3,5],element:[2,4,3,5,1],bestmodel:4,allow:[2,4,3,5,1],fallback:1,saveasnewapihadoopdataset:1,sigmoid:4,numslic:1,move:3,runjob:1,memory_and_disk:1,collect_set:2,xvarianc:5,lassowithsgd:5,outer:[2,3,1],updatestatebykei:3,chosen:1,denserank:2,groupeddata:2,whether:[2,4,5,1],mqtt:0,decai:5,total:[2,4,5],therefor:5,forest:[4,5],crash:2,greater:[2,5,1],nonneg:[4,5],handl:[2,4,5,1],bernoulli:[4,5],unmatch:2,dai:2,intlist:2,surviv:4,fromjson:2,orc_df:2,auto:[4,5],rawpredict:4,slide:3,mode:[2,4,5],truth:5,rawpredictioncol:4,groupbykeyandwindow:3,subset:[2,4,5,1],awsaccesskeyid:3,simpledateformat:2,consum:[3,1],meta:3,"static":[2,3,5,1],setvocabs:4,sethandleinvalid:4,zipwithindex:1,meth:5,bay:[4,5],special:[2,1],out:[2,4,5,1],variabl:[4,5,1],matrix:[4,5],setmintf:4,defaultvalu:[2,1],distnam:5,normalvectorrdd:5,labeledpoint:5,categori:[4,5],typenam:2,var_pop:2,suitabl:2,rel:[2,5,1],docconcentr:5,math:5,common:4,shut:1,insid:1,manipul:2,p7c96j6:5,dictionari:[4,5,1],index2:5,index1:5,pcamodel:4,memory_onli:1,dirichlet:5,mat2:5,mat3:5,mat1:5,gini:[4,5],could:[2,4,3,5,1],shiftleft:2,keep:[4,1],length:[2,4,3,5,1],outsid:[2,4,3],polynomial_expans:4,retain:[3,1],timezon:2,regressionmetr:5,getprobabilitycol:4,ryantib:5,suffix:3,getpattern:4,date:2,"1e4":2,"1e6":2,redund:2,pivot_col:2,utc:2,prioriti:1,"long":[2,3,5,1],dump:1,intention:1,u612:2,unknown:[2,4,5],mkdir:1,system:[2,3,5,1],messag:[4,3],attach:4,dayofyear:2,setformula:4,physic:2,termin:[3,5],registertempt:2,"final":[2,5,1],inner:2,flume:0,weightedfalsepositiver:5,weekofyear:2,getevalu:4,rsd:2,predictionandobserv:5,shallow:4,thresh:2,rtrim:2,exactli:[2,5,1],kstest:5,streamnam:3,createexternalt:2,saveaslibsvmfil:5,charact:2,num:[2,4,3,5,1],sockettextstream:3,becom:[2,5],randomrdd:5,naivebay:[4,5],"function":[0,4,5,1],simplestr:2,explicit:4,cohen:5,have:[2,4,3,5,1],need:[2,4,5,1],valuecontainsnul:2,issu:5,setparam:4,min:[2,4,5,1],initstep:4,saveashadoopfil:1,getisoton:4,startpo:2,accuraci:[5,1],mix:4,builtin:2,discret:[0,4,3,5],decis:[4,5],best:4,which:[2,4,3,5,1],newapihadooprdd:1,singl:[2,4,3,5,1],isloc:2,analysi:2,decisiontreeregressionmodel:4,unless:4,setnonneg:4,setnumuserblock:4,getinitmod:4,tapia:5,deploi:3,setwithmean:[4,5],histogram:[4,1],cbrt:2,initcap:2,marshal:1,checkcod:1,url:[2,3,1],meansquarederror:5,uri:[5,1],unhex:2,pipe:1,htmledit:4,univari:[4,5],determin:[2,4,5],databas:[2,5],job_to_cancel:1,datafram:[0,4,2],test_support:2,selectexpr:2,getinputcol:4,text:[2,4,3,5,1],indextostr:4,empir:5,mappartitionswithsplit:1,setter:[5,1],cvmodel:4,locat:[2,3,1],nois:5,nfeatur:5,structfield:2,tmptabl:2,jar:1,bitwiseand:2,should:[2,4,3,5,1],won:1,local:[2,5,1],elementwis:5,meant:2,utf8_decod:3,contribut:[4,5],saveasparquetfil:2,pyspark:0,chisqtest:5,piecewis:5,nnnnn:1,scoreandlabel:[4,5],initializationstep:5,recommendusersforproduct:5,enabl:3,datetyp:2,possibl:[2,5],rint:2,mapfield:2,rootmeansquarederror:5,sha:2,gbt:4,integr:2,partit:[2,4,3,5,1],weightedtruepositiver:5,cachet:2,gradientboostedtreesmodel:5,registerast:2,crossvalid:4,monotonically_increasing_id:2,frame:2,elast:4,temporarili:4,rlike:2,setmetricnam:4,isnan:[2,5],pattern:[2,4,5,1],boundari:[2,4,5],state:[3,1],theta:[2,4,5],neither:4,kei:[2,4,3,5,1],tempfil:[2,5,1],job:[3,1],entir:2,crc32:2,problem:[4,5],addit:[2,4,3,5,1],chisqselector:5,lognormalvectorrdd:5,initcent:5,gram:[4,5],equal:[2,4,5],decisiontreeclassificationmodel:4,etc:[2,3,1],eta:5,grain:1,equat:5,setse:[4,5],mindf:4,comment:2,gbtclassifi:4,alsmodel:4,substring_index:2,initializationmod:5,rpc:3,respect:[3,5],vocabs:[4,5],withreplac:[2,1],uniformvectorrdd:5,estimatorparammap:4,tolocaliter:1,emptyrdd:1,javaload:5,valuedecod:3,compon:[4,5],json:[2,5],treat:[2,4,5],ksmodel:5,getusercol:4,immedi:1,dure:[2,4,3,5],getimplicitpref:4,mike:2,bit:[2,5],onreceivererror:3,decim:2,kafkamessageandmetadata:3,densematrix:[4,5],present:[2,4,5],indeterminist:2,replic:1,multi:[2,4,1],getorcr:[2,3,1],setfeatureindex:4,align:2,rectangular:2,defin:[2,4,3,5,1],applicationid:1,observ:[4,5],getmincount:4,layer:4,helper:[5,1],neuron:4,site:2,bigint:2,textfil:[2,1],stageid:1,incom:5,tojson:2,awaittermin:3,countbywindow:3,reducebywindow:3,getk:4,hyperloglog:1,getn:4,classpath:2,cross:4,sqrt:[2,4,5],againt:5,topics_expect:5,getp:4,failur:[4,3],trainregressor:5,infer:[2,5,1],competit:2,outputformat:1,slave:3,hostnam:3,col2:2,forgotten:5,setstandard:4,rankingmetr:5,expand:[2,4],transformfunc:3,off:[2,1],center:[4,5],addstreaminglisten:3,builder:4,well:[4,5,1],getmindocfreq:4,setk:[4,5],users_for_product:5,exampl:[2,4,5,1],command:[2,1],achiev:4,interpol:5,undefin:[4,5],foreachpartit:[2,1],sort_arrai:2,lognormalrdd:5,test1:4,test0:4,distanc:[2,5],less:[2,4,5],setlearningr:5,converg:[4,5],obtain:5,tcp:3,papadimitri:2,current_timestamp:2,dense1:5,dense3:5,dense2:5,unbase64:2,begin:3,web:1,field:[2,4],nullabl:2,onoutputoperationstart:3,getal:1,isotonicregressionmodel:[4,5],add:[2,4,3,5,1],valid:[4,3,5,1],stratum:2,getmax:4,mininfogain:[4,5],match:[2,4,5,1],srccol:2,clustercent:[4,5],tospars:5,built:[2,1],valueclass:1,five:2,password:2,recurs:[2,1],desc:2,loss:[4,5],like:[2,4,5,1],amazonaw:3,windowdur:3,isotonicregress:[4,5],retoken:4,getfeatureindex:4,stringlengthstr:2,page:0,e_max:4,npoint:5,revers:2,captur:1,"3bc51062973c458d5a6f2d8d64a023246354ad7e064b1e4e009ec8a0699a3043":2,itemfactor:4,stat:[0,4,1],accesskeyid:3,allownumericleadingzero:2,batchdur:3,binaryrecord:1,guarante:[2,4,1],peter:2,librari:[2,4,3,1],tmp:1,leaf:[4,5],lead:[2,5],extractparammap:4,avoid:[2,1],overlap:4,leas:3,estim:[4,5,1],leav:2,linearregress:4,leader:3,getnam:4,softmax:[4,5],antiton:5,abcd123:2,getitem:2,dcg:5,journal:5,toradian:2,host:3,benefit:2,although:1,offset:[2,3],dct:4,stage:[4,1],setdroplast:4,predicton:5,about:[2,4,1],quarter:2,actual:[5,1],socket:3,column:[0,4,5,2],freedom:5,chisqtestresult:5,saveaspicklefil:1,disabl:4,numclass:5,own:3,lsdw6p:5,crossvalidatormodel:4,automat:[2,4,1],dataset:[0,4,2,5,1],assess:3,getrank:4,timestamptyp:2,torowmatrix:5,kmeansmodel:[4,5],"56e":5,merg:[4,1],next_dai:2,setsolv:4,dm1:5,dm2:5,dm3:5,dm4:5,pool:[4,5,1],arg1:2,log10:2,arg2:2,defaultawscredentialsproviderchain:3,awaitterminationortimeout:3,subscrib:3,gaussian:5,neutral:1,gain:[4,5],overflow:2,highest:5,count:[2,4,3,5,1],reducebykei:[3,1],made:[2,1],wise:[2,4,5],temp:2,seqfunc:1,wish:3,smooth:[4,5],trainon:5,maxlocalprojdbs:5,record:[2,3,5,1],below:2,structtyp:2,limit:[2,4,3,1],testfil:1,otherwis:[2,4,5,1],statcount:1,log1p:2,weightedfmeasur:5,fold:[4,1],updatefunc:3,evalu:0,"int":[2,5,1],samemu:5,pic:5,filenam:1,levenshtein:2,implement:[2,4,3,5,1],our:[5,1],inf:[4,5],zkquorum:3,probabl:[4,5,1],var_samp:2,trainclassifi:5,detail:[3,5,1],book:4,lookup:1,futur:[4,1],rememb:3,lineardatagener:5,conting:[2,5],anint:2,setlosstyp:4,repeat:2,row_numb:2,parquetfil:2,addgrid:4,ndarrai:5,setalpha:4,recommendus:5,previous:1,generatelinearrdd:5,brokerurl:3,loadlibsvmfil:5,ababab:2,maxcategori:4,reliabl:3,rule:5,inset:2,inser:1,weightcol:4,rep:2,getsolv:4},objtypes:{"0":"py:module","1":"py:method","2":"py:function","3":"py:attribute","4":"py:class","5":"py:classmethod","6":"py:staticmethod"},objnames:{"0":["py","module","Python module"],"1":["py","method","Python method"],"2":["py","function","Python function"],"3":["py","attribute","Python attribute"],"4":["py","class","Python class"],"5":["py","classmethod","Python class method"],"6":["py","staticmethod","Python static method"]},filenames:["index","pyspark","pyspark.sql","pyspark.streaming","pyspark.ml","pyspark.mllib"],titles:["Welcome to Spark Python API Docs!","pyspark package","pyspark.sql module","pyspark.streaming module","pyspark.ml package","pyspark.mllib package"],objects:{"":{pyspark:[1,0,0,"-"]},"pyspark.sql.DataFrameReader":{load:[2,1,1,""],jdbc:[2,1,1,""],option:[2,1,1,""],format:[2,1,1,""],text:[2,1,1,""],options:[2,1,1,""],json:[2,1,1,""],parquet:[2,1,1,""],table:[2,1,1,""],orc:[2,1,1,""],schema:[2,1,1,""]},"pyspark.streaming.kafka.KafkaUtils":{createStream:[3,6,1,""],createDirectStream:[3,6,1,""],createRDD:[3,6,1,""]},"pyspark.ml.feature.RFormulaModel":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],transform:[4,1,1,""],explainParam:[4,1,1,""],params:[4,3,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.mllib.util.JavaSaveable":{save:[5,1,1,""]},"pyspark.sql.types.TimestampType":{needConversion:[2,1,1,""],toInternal:[2,1,1,""],fromInternal:[2,1,1,""]},"pyspark.ml.feature.Word2VecModel":{copy:[4,1,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],transform:[4,1,1,""],isDefined:[4,1,1,""],hasDefault:[4,1,1,""],explainParam:[4,1,1,""],getVectors:[4,1,1,""],params:[4,3,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],findSynonyms:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.mllib.clustering.StreamingKMeansModel":{update:[5,1,1,""],clusterWeights:[5,3,1,""]},"pyspark.mllib.linalg.Vectors":{stringify:[5,6,1,""],dense:[5,6,1,""],parse:[5,6,1,""],zeros:[5,6,1,""],sparse:[5,6,1,""],squared_distance:[5,6,1,""],norm:[5,6,1,""]},"pyspark.mllib.recommendation.MatrixFactorizationModel":{load:[5,5,1,""],recommendUsersForProducts:[5,1,1,""],userFeatures:[5,1,1,""],rank:[5,3,1,""],productFeatures:[5,1,1,""],recommendUsers:[5,1,1,""],predict:[5,1,1,""],recommendProductsForUsers:[5,1,1,""],recommendProducts:[5,1,1,""],predictAll:[5,1,1,""]},"pyspark.mllib.random.RandomRDDs":{uniformRDD:[5,6,1,""],exponentialVectorRDD:[5,6,1,""],poissonRDD:[5,6,1,""],uniformVectorRDD:[5,6,1,""],logNormalVectorRDD:[5,6,1,""],normalRDD:[5,6,1,""],gammaVectorRDD:[5,6,1,""],gammaRDD:[5,6,1,""],poissonVectorRDD:[5,6,1,""],normalVectorRDD:[5,6,1,""],exponentialRDD:[5,6,1,""],logNormalRDD:[5,6,1,""]},"pyspark.sql.HiveContext":{refreshTable:[2,1,1,""]},"pyspark.mllib.util.MLUtils":{loadLabeledPoints:[5,6,1,""],loadVectors:[5,6,1,""],appendBias:[5,6,1,""],saveAsLibSVMFile:[5,6,1,""],loadLibSVMFile:[5,6,1,""]},"pyspark.ml.tuning.CrossValidatorModel":{bestModel:[4,3,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],transform:[4,1,1,""],isDefined:[4,1,1,""],hasDefault:[4,1,1,""],explainParam:[4,1,1,""],params:[4,3,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.mllib.fpm.FPGrowth":{train:[5,5,1,""],FreqItemset:[5,4,1,""]},"pyspark.mllib.stat.ChiSqTestResult":{method:[5,3,1,""]},"pyspark.ml.evaluation.MulticlassClassificationEvaluator":{hasDefault:[4,1,1,""],getParam:[4,1,1,""],setMetricName:[4,1,1,""],setParams:[4,1,1,""],setPredictionCol:[4,1,1,""],predictionCol:[4,3,1,""],extractParamMap:[4,1,1,""],labelCol:[4,3,1,""],getPredictionCol:[4,1,1,""],params:[4,3,1,""],isSet:[4,1,1,""],evaluate:[4,1,1,""],getLabelCol:[4,1,1,""],setLabelCol:[4,1,1,""],explainParam:[4,1,1,""],getMetricName:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],isLargerBetter:[4,1,1,""],metricName:[4,3,1,""]},"pyspark.mllib.regression.LinearRegressionWithSGD":{train:[5,5,1,""]},"pyspark.ml.Transformer":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],transform:[4,1,1,""],isDefined:[4,1,1,""],hasDefault:[4,1,1,""],explainParam:[4,1,1,""],params:[4,3,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.sql":{DataFrameStatFunctions:[2,4,1,""],functions:[2,0,0,"-"],Column:[2,4,1,""],GroupedData:[2,4,1,""],DataFrame:[2,4,1,""],DataFrameNaFunctions:[2,4,1,""],DataFrameWriter:[2,4,1,""],Window:[2,4,1,""],HiveContext:[2,4,1,""],Row:[2,4,1,""],SQLContext:[2,4,1,""],DataFrameReader:[2,4,1,""],types:[2,0,0,"-"],WindowSpec:[2,4,1,""]},"pyspark.ml.feature.MinMaxScaler":{setMin:[4,1,1,""],getOutputCol:[4,1,1,""],getInputCol:[4,1,1,""],hasDefault:[4,1,1,""],getMin:[4,1,1,""],getParam:[4,1,1,""],getMax:[4,1,1,""],outputCol:[4,3,1,""],setParams:[4,1,1,""],fit:[4,1,1,""],min:[4,3,1,""],setMax:[4,1,1,""],params:[4,3,1,""],inputCol:[4,3,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],max:[4,3,1,""],explainParam:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],explainParams:[4,1,1,""],extractParamMap:[4,1,1,""],isDefined:[4,1,1,""],hasParam:[4,1,1,""]},"pyspark.mllib.util.JavaLoader":{load:[5,5,1,""]},"pyspark.mllib.regression.LassoWithSGD":{train:[5,5,1,""]},"pyspark.mllib.feature.Normalizer":{transform:[5,1,1,""]},"pyspark.mllib.stat":{MultivariateStatisticalSummary:[5,4,1,""],Statistics:[5,4,1,""],KernelDensity:[5,4,1,""],MultivariateGaussian:[5,4,1,""],ChiSqTestResult:[5,4,1,""]},"pyspark.mllib.linalg.distributed.CoordinateMatrix":{toBlockMatrix:[5,1,1,""],entries:[5,3,1,""],numRows:[5,1,1,""],toRowMatrix:[5,1,1,""],toIndexedRowMatrix:[5,1,1,""],numCols:[5,1,1,""]},"pyspark.mllib.regression":{RidgeRegressionModel:[5,4,1,""],RidgeRegressionWithSGD:[5,4,1,""],LinearRegressionWithSGD:[5,4,1,""],LinearModel:[5,4,1,""],IsotonicRegression:[5,4,1,""],IsotonicRegressionModel:[5,4,1,""],LabeledPoint:[5,4,1,""],LassoModel:[5,4,1,""],LinearRegressionModel:[5,4,1,""],StreamingLinearRegressionWithSGD:[5,4,1,""],LassoWithSGD:[5,4,1,""],StreamingLinearAlgorithm:[5,4,1,""]},"pyspark.mllib.tree":{RandomForestModel:[5,4,1,""],RandomForest:[5,4,1,""],GradientBoostedTrees:[5,4,1,""],DecisionTree:[5,4,1,""],DecisionTreeModel:[5,4,1,""],GradientBoostedTreesModel:[5,4,1,""]},"pyspark.sql.functions":{monotonicallyIncreasingId:[2,2,1,""],unhex:[2,2,1,""],signum:[2,2,1,""],countDistinct:[2,2,1,""],last_day:[2,2,1,""],stddev_pop:[2,2,1,""],current_timestamp:[2,2,1,""],unbase64:[2,2,1,""],from_unixtime:[2,2,1,""],randn:[2,2,1,""],struct:[2,2,1,""],base64:[2,2,1,""],shiftRight:[2,2,1,""],datediff:[2,2,1,""],md5:[2,2,1,""],bin:[2,2,1,""],factorial:[2,2,1,""],format_number:[2,2,1,""],bitwiseNOT:[2,2,1,""],ceil:[2,2,1,""],month:[2,2,1,""],minute:[2,2,1,""],desc:[2,2,1,""],lpad:[2,2,1,""],regexp_extract:[2,2,1,""],collect_list:[2,2,1,""],concat_ws:[2,2,1,""],rowNumber:[2,2,1,""],array_contains:[2,2,1,""],explode:[2,2,1,""],cumeDist:[2,2,1,""],add_months:[2,2,1,""],stddev:[2,2,1,""],quarter:[2,2,1,""],pow:[2,2,1,""],round:[2,2,1,""],mean:[2,2,1,""],from_utc_timestamp:[2,2,1,""],upper:[2,2,1,""],sumDistinct:[2,2,1,""],cosh:[2,2,1,""],percentRank:[2,2,1,""],hypot:[2,2,1,""],spark_partition_id:[2,2,1,""],year:[2,2,1,""],nanvl:[2,2,1,""],dense_rank:[2,2,1,""],asin:[2,2,1,""],isnan:[2,2,1,""],date_sub:[2,2,1,""],months_between:[2,2,1,""],lead:[2,2,1,""],sum:[2,2,1,""],abs:[2,2,1,""],var_pop:[2,2,1,""],size:[2,2,1,""],row_number:[2,2,1,""],locate:[2,2,1,""],log2:[2,2,1,""],denseRank:[2,2,1,""],asc:[2,2,1,""],initcap:[2,2,1,""],corr:[2,2,1,""],substring_index:[2,2,1,""],crc32:[2,2,1,""],trunc:[2,2,1,""],expm1:[2,2,1,""],last:[2,2,1,""],reverse:[2,2,1,""],column:[2,2,1,""],length:[2,2,1,""],variance:[2,2,1,""],acos:[2,2,1,""],col:[2,2,1,""],first:[2,2,1,""],trim:[2,2,1,""],collect_set:[2,2,1,""],sinh:[2,2,1,""],instr:[2,2,1,""],regexp_replace:[2,2,1,""],rint:[2,2,1,""],monotonically_increasing_id:[2,2,1,""],rank:[2,2,1,""],isnull:[2,2,1,""],to_date:[2,2,1,""],toRadians:[2,2,1,""],array:[2,2,1,""],toDegrees:[2,2,1,""],next_day:[2,2,1,""],log:[2,2,1,""],hex:[2,2,1,""],least:[2,2,1,""],stddev_samp:[2,2,1,""],decode:[2,2,1,""],coalesce:[2,2,1,""],dayofyear:[2,2,1,""],input_file_name:[2,2,1,""],encode:[2,2,1,""],unix_timestamp:[2,2,1,""],translate:[2,2,1,""],log10:[2,2,1,""],skewness:[2,2,1,""],weekofyear:[2,2,1,""],sparkPartitionId:[2,2,1,""],cos:[2,2,1,""],shiftLeft:[2,2,1,""],broadcast:[2,2,1,""],udf:[2,2,1,""],rtrim:[2,2,1,""],get_json_object:[2,2,1,""],kurtosis:[2,2,1,""],ntile:[2,2,1,""],count:[2,2,1,""],date_format:[2,2,1,""],hour:[2,2,1,""],tanh:[2,2,1,""],expr:[2,2,1,""],second:[2,2,1,""],log1p:[2,2,1,""],date_add:[2,2,1,""],rand:[2,2,1,""],conv:[2,2,1,""],percent_rank:[2,2,1,""],levenshtein:[2,2,1,""],substring:[2,2,1,""],rpad:[2,2,1,""],tan:[2,2,1,""],avg:[2,2,1,""],ascii:[2,2,1,""],var_samp:[2,2,1,""],floor:[2,2,1,""],format_string:[2,2,1,""],when:[2,2,1,""],sqrt:[2,2,1,""],lit:[2,2,1,""],current_date:[2,2,1,""],split:[2,2,1,""],sin:[2,2,1,""],repeat:[2,2,1,""],ltrim:[2,2,1,""],atan:[2,2,1,""],max:[2,2,1,""],lag:[2,2,1,""],cume_dist:[2,2,1,""],shiftRightUnsigned:[2,2,1,""],approxCountDistinct:[2,2,1,""],to_utc_timestamp:[2,2,1,""],json_tuple:[2,2,1,""],cbrt:[2,2,1,""],concat:[2,2,1,""],dayofmonth:[2,2,1,""],sha2:[2,2,1,""],soundex:[2,2,1,""],lower:[2,2,1,""],sha1:[2,2,1,""],min:[2,2,1,""],sort_array:[2,2,1,""],atan2:[2,2,1,""],greatest:[2,2,1,""],exp:[2,2,1,""]},"pyspark.mllib.feature.HashingTF":{indexOf:[5,1,1,""],transform:[5,1,1,""]},"pyspark.mllib.feature.ChiSqSelector":{fit:[5,1,1,""]},"pyspark.mllib.regression.RidgeRegressionModel":{load:[5,5,1,""],predict:[5,1,1,""],intercept:[5,3,1,""],weights:[5,3,1,""],save:[5,1,1,""]},"pyspark.mllib.feature.Word2VecModel":{load:[5,5,1,""],getVectors:[5,1,1,""],findSynonyms:[5,1,1,""],transform:[5,1,1,""]},"pyspark.ml.feature.IndexToString":{hasParam:[4,1,1,""],getInputCol:[4,1,1,""],labels:[4,3,1,""],hasDefault:[4,1,1,""],getParam:[4,1,1,""],outputCol:[4,3,1,""],setParams:[4,1,1,""],getLabels:[4,1,1,""],extractParamMap:[4,1,1,""],transform:[4,1,1,""],params:[4,3,1,""],inputCol:[4,3,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],explainParam:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],setLabels:[4,1,1,""],explainParams:[4,1,1,""],getOutputCol:[4,1,1,""],isDefined:[4,1,1,""]},"pyspark.ml.feature.Tokenizer":{hasParam:[4,1,1,""],getInputCol:[4,1,1,""],extractParamMap:[4,1,1,""],setParams:[4,1,1,""],explainParams:[4,1,1,""],getOutputCol:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],isSet:[4,1,1,""],explainParam:[4,1,1,""],transform:[4,1,1,""],params:[4,3,1,""],getParam:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],inputCol:[4,3,1,""],outputCol:[4,3,1,""],setOutputCol:[4,1,1,""]},"pyspark.ml.classification.GBTClassificationModel":{treeWeights:[4,3,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],transform:[4,1,1,""],explainParam:[4,1,1,""],params:[4,3,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.mllib.linalg.distributed.BlockMatrix":{numColBlocks:[5,3,1,""],numRowBlocks:[5,3,1,""],blocks:[5,3,1,""],toCoordinateMatrix:[5,1,1,""],numRows:[5,1,1,""],add:[5,1,1,""],rowsPerBlock:[5,3,1,""],toIndexedRowMatrix:[5,1,1,""],multiply:[5,1,1,""],colsPerBlock:[5,3,1,""],toLocalMatrix:[5,1,1,""],numCols:[5,1,1,""]},pyspark:{SparkContext:[1,4,1,""],SparkFiles:[1,4,1,""],SparkJobInfo:[1,4,1,""],AccumulatorParam:[1,4,1,""],Accumulator:[1,4,1,""],ml:[4,0,0,"-"],PickleSerializer:[1,4,1,""],MarshalSerializer:[1,4,1,""],Broadcast:[1,4,1,""],streaming:[3,0,0,"-"],StatusTracker:[1,4,1,""],BasicProfiler:[1,4,1,""],sql:[2,0,0,"-"],SparkStageInfo:[1,4,1,""],Profiler:[1,4,1,""],SparkConf:[1,4,1,""],RDD:[1,4,1,""],StorageLevel:[1,4,1,""]},"pyspark.ml.feature.StopWordsRemover":{getOutputCol:[4,1,1,""],getInputCol:[4,1,1,""],hasDefault:[4,1,1,""],caseSensitive:[4,3,1,""],getParam:[4,1,1,""],outputCol:[4,3,1,""],setParams:[4,1,1,""],extractParamMap:[4,1,1,""],getCaseSensitive:[4,1,1,""],setCaseSensitive:[4,1,1,""],transform:[4,1,1,""],params:[4,3,1,""],inputCol:[4,3,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],getStopWords:[4,1,1,""],explainParam:[4,1,1,""],stopWords:[4,3,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],setStopWords:[4,1,1,""]},"pyspark.mllib.util":{JavaLoader:[5,4,1,""],Saveable:[5,4,1,""],MLUtils:[5,4,1,""],Loader:[5,4,1,""],JavaSaveable:[5,4,1,""],LinearDataGenerator:[5,4,1,""]},"pyspark.streaming":{flume:[3,0,0,"-"],kinesis:[3,0,0,"-"],kafka:[3,0,0,"-"],StreamingListener:[3,4,1,""],mqtt:[3,0,0,"-"],StreamingContext:[3,4,1,""],DStream:[3,4,1,""]},"pyspark.mllib.linalg.SparseVector":{toArray:[5,1,1,""],parse:[5,6,1,""],values:[5,3,1,""],norm:[5,1,1,""],indices:[5,3,1,""],squared_distance:[5,1,1,""],numNonzeros:[5,1,1,""],dot:[5,1,1,""],size:[5,3,1,""]},"pyspark.BasicProfiler":{profile:[1,1,1,""],stats:[1,1,1,""]},"pyspark.ml":{clustering:[4,0,0,"-"],Pipeline:[4,4,1,""],PipelineModel:[4,4,1,""],tuning:[4,0,0,"-"],classification:[4,0,0,"-"],Transformer:[4,4,1,""],feature:[4,0,0,"-"],param:[4,0,0,"-"],Estimator:[4,4,1,""],recommendation:[4,0,0,"-"],Model:[4,4,1,""],evaluation:[4,0,0,"-"],regression:[4,0,0,"-"]},"pyspark.ml.tuning.CrossValidator":{getEvaluator:[4,1,1,""],hasDefault:[4,1,1,""],getParam:[4,1,1,""],setEstimatorParamMaps:[4,1,1,""],setParams:[4,1,1,""],evaluator:[4,3,1,""],fit:[4,1,1,""],extractParamMap:[4,1,1,""],params:[4,3,1,""],numFolds:[4,3,1,""],getEstimatorParamMaps:[4,1,1,""],estimatorParamMaps:[4,3,1,""],setEvaluator:[4,1,1,""],explainParam:[4,1,1,""],setEstimator:[4,1,1,""],setNumFolds:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],getEstimator:[4,1,1,""],getNumFolds:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],isSet:[4,1,1,""],estimator:[4,3,1,""]},"pyspark.sql.GroupedData":{count:[2,1,1,""],min:[2,1,1,""],agg:[2,1,1,""],max:[2,1,1,""],sum:[2,1,1,""],pivot:[2,1,1,""],avg:[2,1,1,""],mean:[2,1,1,""]},"pyspark.mllib.classification.NaiveBayes":{train:[5,5,1,""]},"pyspark.ml.feature.NGram":{getOutputCol:[4,1,1,""],getInputCol:[4,1,1,""],getN:[4,1,1,""],hasDefault:[4,1,1,""],getParam:[4,1,1,""],outputCol:[4,3,1,""],setParams:[4,1,1,""],extractParamMap:[4,1,1,""],transform:[4,1,1,""],params:[4,3,1,""],inputCol:[4,3,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],setN:[4,1,1,""],explainParam:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],n:[4,3,1,""]},"pyspark.StatusTracker":{getActiveJobsIds:[1,1,1,""],getStageInfo:[1,1,1,""],getJobInfo:[1,1,1,""],getJobIdsForGroup:[1,1,1,""],getActiveStageIds:[1,1,1,""]},"pyspark.sql.DataFrameStatFunctions":{sampleBy:[2,1,1,""],freqItems:[2,1,1,""],crosstab:[2,1,1,""],corr:[2,1,1,""],cov:[2,1,1,""]},"pyspark.ml.tuning":{ParamGridBuilder:[4,4,1,""],CrossValidatorModel:[4,4,1,""],CrossValidator:[4,4,1,""]},"pyspark.SparkConf":{setIfMissing:[1,1,1,""],set:[1,1,1,""],setAll:[1,1,1,""],toDebugString:[1,1,1,""],get:[1,1,1,""],getAll:[1,1,1,""],contains:[1,1,1,""],setMaster:[1,1,1,""],setExecutorEnv:[1,1,1,""],setSparkHome:[1,1,1,""],setAppName:[1,1,1,""]},"pyspark.sql.Column":{over:[2,1,1,""],substr:[2,1,1,""],inSet:[2,1,1,""],rlike:[2,1,1,""],alias:[2,1,1,""],when:[2,1,1,""],astype:[2,1,1,""],between:[2,1,1,""],startswith:[2,1,1,""],bitwiseXOR:[2,1,1,""],bitwiseAND:[2,1,1,""],asc:[2,1,1,""],getItem:[2,1,1,""],desc:[2,1,1,""],like:[2,1,1,""],bitwiseOR:[2,1,1,""],getField:[2,1,1,""],endswith:[2,1,1,""],cast:[2,1,1,""],isNull:[2,1,1,""],isNotNull:[2,1,1,""],isin:[2,1,1,""],otherwise:[2,1,1,""]},"pyspark.ml.feature.DCT":{getOutputCol:[4,1,1,""],getInputCol:[4,1,1,""],hasDefault:[4,1,1,""],setInverse:[4,1,1,""],getParam:[4,1,1,""],outputCol:[4,3,1,""],setParams:[4,1,1,""],inverse:[4,3,1,""],extractParamMap:[4,1,1,""],transform:[4,1,1,""],params:[4,3,1,""],getInverse:[4,1,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],explainParam:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],inputCol:[4,3,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""]},"pyspark.ml.regression.IsotonicRegressionModel":{explainParam:[4,1,1,""],transform:[4,1,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],predictions:[4,3,1,""],boundaries:[4,3,1,""],params:[4,3,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.streaming.flume":{FlumeUtils:[3,4,1,""],utf8_decoder:[3,2,1,""]},"pyspark.ml.feature.OneHotEncoder":{getOutputCol:[4,1,1,""],getInputCol:[4,1,1,""],hasDefault:[4,1,1,""],getDropLast:[4,1,1,""],getParam:[4,1,1,""],outputCol:[4,3,1,""],setParams:[4,1,1,""],extractParamMap:[4,1,1,""],transform:[4,1,1,""],params:[4,3,1,""],inputCol:[4,3,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],dropLast:[4,3,1,""],explainParam:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],setDropLast:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""]},"pyspark.ml.clustering.KMeans":{getK:[4,1,1,""],getSeed:[4,1,1,""],getParam:[4,1,1,""],hasDefault:[4,1,1,""],setTol:[4,1,1,""],maxIter:[4,3,1,""],setParams:[4,1,1,""],setPredictionCol:[4,1,1,""],predictionCol:[4,3,1,""],getFeaturesCol:[4,1,1,""],initMode:[4,3,1,""],featuresCol:[4,3,1,""],getPredictionCol:[4,1,1,""],getInitSteps:[4,1,1,""],params:[4,3,1,""],tol:[4,3,1,""],setMaxIter:[4,1,1,""],getTol:[4,1,1,""],getInitMode:[4,1,1,""],isSet:[4,1,1,""],setInitMode:[4,1,1,""],setFeaturesCol:[4,1,1,""],setK:[4,1,1,""],explainParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],initSteps:[4,3,1,""],setInitSteps:[4,1,1,""],fit:[4,1,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],setSeed:[4,1,1,""],seed:[4,3,1,""],k:[4,3,1,""],getMaxIter:[4,1,1,""]},"pyspark.mllib.clustering.LDA":{train:[5,5,1,""]},"pyspark.sql.Row":{asDict:[2,1,1,""]},"pyspark.streaming.kinesis.InitialPositionInStream":{TRIM_HORIZON:[3,3,1,""],LATEST:[3,3,1,""]},"pyspark.mllib.stat.KernelDensity":{estimate:[5,1,1,""],setSample:[5,1,1,""],setBandwidth:[5,1,1,""]},"pyspark.mllib.feature.StandardScaler":{fit:[5,1,1,""]},"pyspark.mllib.linalg.DenseMatrix":{toArray:[5,1,1,""],toSparse:[5,1,1,""]},"pyspark.mllib.feature.IDF":{fit:[5,1,1,""]},"pyspark.mllib.evaluation.RegressionMetrics":{rootMeanSquaredError:[5,3,1,""],explainedVariance:[5,3,1,""],meanAbsoluteError:[5,3,1,""],meanSquaredError:[5,3,1,""],r2:[5,3,1,""]},"pyspark.ml.feature.CountVectorizer":{getOutputCol:[4,1,1,""],getInputCol:[4,1,1,""],hasDefault:[4,1,1,""],getMinDF:[4,1,1,""],setMinDF:[4,1,1,""],getParam:[4,1,1,""],outputCol:[4,3,1,""],setParams:[4,1,1,""],fit:[4,1,1,""],extractParamMap:[4,1,1,""],vocabSize:[4,3,1,""],params:[4,3,1,""],inputCol:[4,3,1,""],minDF:[4,3,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],setMinTF:[4,1,1,""],setVocabSize:[4,1,1,""],explainParam:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],getMinTF:[4,1,1,""],explainParams:[4,1,1,""],minTF:[4,3,1,""],isDefined:[4,1,1,""],hasParam:[4,1,1,""],getVocabSize:[4,1,1,""]},"pyspark.mllib.feature.ChiSqSelectorModel":{transform:[5,1,1,""]},"pyspark.mllib.linalg.distributed.DistributedMatrix":{numRows:[5,1,1,""],numCols:[5,1,1,""]},"pyspark.mllib.util.Saveable":{save:[5,1,1,""]},"pyspark.mllib.stat.MultivariateStatisticalSummary":{count:[5,1,1,""],min:[5,1,1,""],max:[5,1,1,""],normL1:[5,1,1,""],normL2:[5,1,1,""],variance:[5,1,1,""],numNonzeros:[5,1,1,""],mean:[5,1,1,""]},"pyspark.Profiler":{profile:[1,1,1,""],stats:[1,1,1,""],dump:[1,1,1,""],show:[1,1,1,""]},"pyspark.ml.classification.NaiveBayesModel":{copy:[4,1,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],transform:[4,1,1,""],isDefined:[4,1,1,""],hasDefault:[4,1,1,""],explainParam:[4,1,1,""],params:[4,3,1,""],getParam:[4,1,1,""],theta:[4,3,1,""],getOrDefault:[4,1,1,""],pi:[4,3,1,""],isSet:[4,1,1,""]},"pyspark.mllib.regression.RidgeRegressionWithSGD":{train:[5,5,1,""]},"pyspark.ml.recommendation":{ALSModel:[4,4,1,""],ALS:[4,4,1,""]},"pyspark.streaming.DStream":{combineByKey:[3,1,1,""],reduce:[3,1,1,""],mapPartitionsWithIndex:[3,1,1,""],repartition:[3,1,1,""],groupByKey:[3,1,1,""],updateStateByKey:[3,1,1,""],countByValue:[3,1,1,""],slice:[3,1,1,""],union:[3,1,1,""],reduceByKeyAndWindow:[3,1,1,""],pprint:[3,1,1,""],transform:[3,1,1,""],checkpoint:[3,1,1,""],reduceByKey:[3,1,1,""],window:[3,1,1,""],leftOuterJoin:[3,1,1,""],persist:[3,1,1,""],flatMapValues:[3,1,1,""],map:[3,1,1,""],flatMap:[3,1,1,""],saveAsTextFiles:[3,1,1,""],glom:[3,1,1,""],rightOuterJoin:[3,1,1,""],cache:[3,1,1,""],cogroup:[3,1,1,""],transformWith:[3,1,1,""],reduceByWindow:[3,1,1,""],foreachRDD:[3,1,1,""],partitionBy:[3,1,1,""],countByWindow:[3,1,1,""],count:[3,1,1,""],join:[3,1,1,""],mapValues:[3,1,1,""],groupByKeyAndWindow:[3,1,1,""],filter:[3,1,1,""],fullOuterJoin:[3,1,1,""],context:[3,1,1,""],mapPartitions:[3,1,1,""],countByValueAndWindow:[3,1,1,""]},"pyspark.mllib.tree.RandomForestModel":{load:[5,5,1,""],totalNumNodes:[5,1,1,""],predict:[5,1,1,""],toDebugString:[5,1,1,""],numTrees:[5,1,1,""],call:[5,1,1,""],save:[5,1,1,""]},"pyspark.ml.classification.DecisionTreeClassificationModel":{hasParam:[4,1,1,""],numNodes:[4,3,1,""],explainParams:[4,1,1,""],extractParamMap:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],transform:[4,1,1,""],explainParam:[4,1,1,""],depth:[4,3,1,""],params:[4,3,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.ml.regression.IsotonicRegression":{getIsotonic:[4,1,1,""],hasParam:[4,1,1,""],featureIndex:[4,3,1,""],hasDefault:[4,1,1,""],getParam:[4,1,1,""],setParams:[4,1,1,""],setIsotonic:[4,1,1,""],setPredictionCol:[4,1,1,""],predictionCol:[4,3,1,""],extractParamMap:[4,1,1,""],setFeatureIndex:[4,1,1,""],labelCol:[4,3,1,""],featuresCol:[4,3,1,""],getPredictionCol:[4,1,1,""],params:[4,3,1,""],getFeatureIndex:[4,1,1,""],isSet:[4,1,1,""],isotonic:[4,3,1,""],getLabelCol:[4,1,1,""],setFeaturesCol:[4,1,1,""],setLabelCol:[4,1,1,""],explainParam:[4,1,1,""],weightCol:[4,3,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],fit:[4,1,1,""],explainParams:[4,1,1,""],getFeaturesCol:[4,1,1,""],isDefined:[4,1,1,""],setWeightCol:[4,1,1,""],getWeightCol:[4,1,1,""]},"pyspark.mllib.classification.LogisticRegressionWithLBFGS":{train:[5,5,1,""]},"pyspark.mllib.clustering.StreamingKMeans":{predictOn:[5,1,1,""],setHalfLife:[5,1,1,""],predictOnValues:[5,1,1,""],trainOn:[5,1,1,""],setK:[5,1,1,""],latestModel:[5,1,1,""],setDecayFactor:[5,1,1,""],setRandomCenters:[5,1,1,""],setInitialCenters:[5,1,1,""]},"pyspark.ml.feature.CountVectorizerModel":{vocabulary:[4,3,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],transform:[4,1,1,""],isDefined:[4,1,1,""],hasDefault:[4,1,1,""],explainParam:[4,1,1,""],params:[4,3,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.mllib.evaluation.RankingMetrics":{precisionAt:[5,1,1,""],meanAveragePrecision:[5,3,1,""],ndcgAt:[5,1,1,""]},"pyspark.ml.Model":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],transform:[4,1,1,""],isDefined:[4,1,1,""],hasDefault:[4,1,1,""],explainParam:[4,1,1,""],params:[4,3,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.mllib.fpm":{FPGrowthModel:[5,4,1,""],PrefixSpanModel:[5,4,1,""],PrefixSpan:[5,4,1,""],FPGrowth:[5,4,1,""]},"pyspark.mllib.feature.ElementwiseProduct":{transform:[5,1,1,""]},"pyspark.ml.regression.DecisionTreeRegressionModel":{hasParam:[4,1,1,""],numNodes:[4,3,1,""],explainParams:[4,1,1,""],extractParamMap:[4,1,1,""],transform:[4,1,1,""],isDefined:[4,1,1,""],hasDefault:[4,1,1,""],explainParam:[4,1,1,""],depth:[4,3,1,""],params:[4,3,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.mllib.classification.SVMWithSGD":{train:[5,5,1,""]},"pyspark.streaming.kafka":{utf8_decoder:[3,2,1,""],Broker:[3,4,1,""],KafkaMessageAndMetadata:[3,4,1,""],KafkaUtils:[3,4,1,""],OffsetRange:[3,4,1,""],TopicAndPartition:[3,4,1,""]},"pyspark.mllib.feature.StandardScalerModel":{setWithMean:[5,1,1,""],setWithStd:[5,1,1,""],transform:[5,1,1,""]},"pyspark.ml.classification.LogisticRegressionModel":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],transform:[4,1,1,""],isDefined:[4,1,1,""],hasDefault:[4,1,1,""],explainParam:[4,1,1,""],intercept:[4,3,1,""],weights:[4,3,1,""],getParam:[4,1,1,""],params:[4,3,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""],coefficients:[4,3,1,""]},"pyspark.streaming.StreamingListener":{onBatchSubmitted:[3,1,1,""],onReceiverStarted:[3,1,1,""],Java:[3,4,1,""],onOutputOperationStarted:[3,1,1,""],onBatchCompleted:[3,1,1,""],onReceiverError:[3,1,1,""],onBatchStarted:[3,1,1,""],onReceiverStopped:[3,1,1,""],onOutputOperationCompleted:[3,1,1,""]},"pyspark.mllib.fpm.PrefixSpanModel":{freqSequences:[5,1,1,""]},"pyspark.streaming.StreamingContext":{sparkContext:[3,3,1,""],getOrCreate:[3,5,1,""],checkpoint:[3,1,1,""],awaitTerminationOrTimeout:[3,1,1,""],socketTextStream:[3,1,1,""],addStreamingListener:[3,1,1,""],union:[3,1,1,""],awaitTermination:[3,1,1,""],binaryRecordsStream:[3,1,1,""],transform:[3,1,1,""],getActiveOrCreate:[3,5,1,""],start:[3,1,1,""],getActive:[3,5,1,""],textFileStream:[3,1,1,""],stop:[3,1,1,""],queueStream:[3,1,1,""],remember:[3,1,1,""]},"pyspark.ml.regression.AFTSurvivalRegression":{getQuantileProbabilities:[4,1,1,""],copy:[4,1,1,""],getParam:[4,1,1,""],hasDefault:[4,1,1,""],setTol:[4,1,1,""],maxIter:[4,3,1,""],setParams:[4,1,1,""],getQuantilesCol:[4,1,1,""],setPredictionCol:[4,1,1,""],fit:[4,1,1,""],getFeaturesCol:[4,1,1,""],labelCol:[4,3,1,""],featuresCol:[4,3,1,""],getPredictionCol:[4,1,1,""],params:[4,3,1,""],tol:[4,3,1,""],quantilesCol:[4,3,1,""],setMaxIter:[4,1,1,""],isSet:[4,1,1,""],setFeaturesCol:[4,1,1,""],fitIntercept:[4,3,1,""],getLabelCol:[4,1,1,""],censorCol:[4,3,1,""],getFitIntercept:[4,1,1,""],setLabelCol:[4,1,1,""],explainParam:[4,1,1,""],getCensorCol:[4,1,1,""],quantileProbabilities:[4,3,1,""],getOrDefault:[4,1,1,""],setQuantilesCol:[4,1,1,""],getTol:[4,1,1,""],predictionCol:[4,3,1,""],setCensorCol:[4,1,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],setQuantileProbabilities:[4,1,1,""],setFitIntercept:[4,1,1,""],getMaxIter:[4,1,1,""]},"pyspark.sql.types.DecimalType":{jsonValue:[2,1,1,""],simpleString:[2,1,1,""]},"pyspark.mllib.clustering.GaussianMixture":{train:[5,5,1,""]},"pyspark.ml.regression":{AFTSurvivalRegression:[4,4,1,""],DecisionTreeRegressionModel:[4,4,1,""],IsotonicRegression:[4,4,1,""],GBTRegressionModel:[4,4,1,""],IsotonicRegressionModel:[4,4,1,""],RandomForestRegressor:[4,4,1,""],RandomForestRegressionModel:[4,4,1,""],LinearRegression:[4,4,1,""],LinearRegressionModel:[4,4,1,""],AFTSurvivalRegressionModel:[4,4,1,""],DecisionTreeRegressor:[4,4,1,""],GBTRegressor:[4,4,1,""]},"pyspark.ml.classification.LogisticRegression":{getProbabilityCol:[4,1,1,""],setRegParam:[4,1,1,""],hasParam:[4,1,1,""],setFitIntercept:[4,1,1,""],thresholds:[4,3,1,""],maxIter:[4,3,1,""],hasDefault:[4,1,1,""],setTol:[4,1,1,""],featuresCol:[4,3,1,""],getParam:[4,1,1,""],threshold:[4,3,1,""],setRawPredictionCol:[4,1,1,""],setParams:[4,1,1,""],getRegParam:[4,1,1,""],copy:[4,1,1,""],predictionCol:[4,3,1,""],extractParamMap:[4,1,1,""],probabilityCol:[4,3,1,""],labelCol:[4,3,1,""],getRawPredictionCol:[4,1,1,""],getPredictionCol:[4,1,1,""],params:[4,3,1,""],tol:[4,3,1,""],getThreshold:[4,1,1,""],rawPredictionCol:[4,3,1,""],setMaxIter:[4,1,1,""],getStandardization:[4,1,1,""],isSet:[4,1,1,""],setFeaturesCol:[4,1,1,""],setPredictionCol:[4,1,1,""],getTol:[4,1,1,""],fitIntercept:[4,3,1,""],getLabelCol:[4,1,1,""],getFitIntercept:[4,1,1,""],setLabelCol:[4,1,1,""],explainParam:[4,1,1,""],getElasticNetParam:[4,1,1,""],setProbabilityCol:[4,1,1,""],weightCol:[4,3,1,""],getOrDefault:[4,1,1,""],setStandardization:[4,1,1,""],setElasticNetParam:[4,1,1,""],regParam:[4,3,1,""],elasticNetParam:[4,3,1,""],fit:[4,1,1,""],standardization:[4,3,1,""],explainParams:[4,1,1,""],getFeaturesCol:[4,1,1,""],setThresholds:[4,1,1,""],isDefined:[4,1,1,""],getThresholds:[4,1,1,""],setWeightCol:[4,1,1,""],getWeightCol:[4,1,1,""],setThreshold:[4,1,1,""],getMaxIter:[4,1,1,""]},"pyspark.sql.DataFrame":{orderBy:[2,1,1,""],show:[2,1,1,""],rollup:[2,1,1,""],describe:[2,1,1,""],repartition:[2,1,1,""],mapPartitions:[2,1,1,""],dropna:[2,1,1,""],replace:[2,1,1,""],sample:[2,1,1,""],printSchema:[2,1,1,""],saveAsParquetFile:[2,1,1,""],withColumnRenamed:[2,1,1,""],toJSON:[2,1,1,""],toPandas:[2,1,1,""],groupBy:[2,1,1,""],unionAll:[2,1,1,""],take:[2,1,1,""],save:[2,1,1,""],registerTempTable:[2,1,1,""],isLocal:[2,1,1,""],rdd:[2,3,1,""],distinct:[2,1,1,""],na:[2,3,1,""],explain:[2,1,1,""],cache:[2,1,1,""],withColumn:[2,1,1,""],write:[2,3,1,""],coalesce:[2,1,1,""],foreachPartition:[2,1,1,""],select:[2,1,1,""],intersect:[2,1,1,""],persist:[2,1,1,""],insertInto:[2,1,1,""],freqItems:[2,1,1,""],columns:[2,3,1,""],schema:[2,3,1,""],sort:[2,1,1,""],map:[2,1,1,""],flatMap:[2,1,1,""],sortWithinPartitions:[2,1,1,""],registerAsTable:[2,1,1,""],randomSplit:[2,1,1,""],first:[2,1,1,""],alias:[2,1,1,""],dtypes:[2,3,1,""],cube:[2,1,1,""],saveAsTable:[2,1,1,""],corr:[2,1,1,""],head:[2,1,1,""],fillna:[2,1,1,""],subtract:[2,1,1,""],crosstab:[2,1,1,""],count:[2,1,1,""],drop_duplicates:[2,1,1,""],join:[2,1,1,""],stat:[2,3,1,""],cov:[2,1,1,""],agg:[2,1,1,""],unpersist:[2,1,1,""],drop:[2,1,1,""],foreach:[2,1,1,""],filter:[2,1,1,""],sampleBy:[2,1,1,""],dropDuplicates:[2,1,1,""],limit:[2,1,1,""],collect:[2,1,1,""],selectExpr:[2,1,1,""],where:[2,1,1,""],groupby:[2,1,1,""],toDF:[2,1,1,""]},"pyspark.ml.feature.MinMaxScalerModel":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],transform:[4,1,1,""],explainParam:[4,1,1,""],params:[4,3,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.mllib.linalg.distributed.RowMatrix":{numRows:[5,1,1,""],rows:[5,3,1,""],numCols:[5,1,1,""]},"pyspark.StorageLevel":{OFF_HEAP:[1,3,1,""],DISK_ONLY:[1,3,1,""],MEMORY_ONLY_2:[1,3,1,""],MEMORY_ONLY:[1,3,1,""],MEMORY_ONLY_SER:[1,3,1,""],MEMORY_AND_DISK:[1,3,1,""],MEMORY_AND_DISK_SER:[1,3,1,""],MEMORY_AND_DISK_SER_2:[1,3,1,""],MEMORY_ONLY_SER_2:[1,3,1,""],DISK_ONLY_2:[1,3,1,""],MEMORY_AND_DISK_2:[1,3,1,""]},"pyspark.ml.feature.Bucketizer":{getOutputCol:[4,1,1,""],getInputCol:[4,1,1,""],hasDefault:[4,1,1,""],getParam:[4,1,1,""],outputCol:[4,3,1,""],setParams:[4,1,1,""],getSplits:[4,1,1,""],extractParamMap:[4,1,1,""],transform:[4,1,1,""],params:[4,3,1,""],inputCol:[4,3,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],setSplits:[4,1,1,""],explainParam:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],splits:[4,3,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""]},"pyspark.sql.DataFrameNaFunctions":{drop:[2,1,1,""],fill:[2,1,1,""],replace:[2,1,1,""]},"pyspark.ml.feature.PolynomialExpansion":{hasParam:[4,1,1,""],getDegree:[4,1,1,""],hasDefault:[4,1,1,""],getParam:[4,1,1,""],outputCol:[4,3,1,""],setParams:[4,1,1,""],getInputCol:[4,1,1,""],extractParamMap:[4,1,1,""],setDegree:[4,1,1,""],transform:[4,1,1,""],params:[4,3,1,""],inputCol:[4,3,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],degree:[4,3,1,""],explainParam:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],explainParams:[4,1,1,""],getOutputCol:[4,1,1,""],isDefined:[4,1,1,""]},"pyspark.ml.feature.IDFModel":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],transform:[4,1,1,""],explainParam:[4,1,1,""],params:[4,3,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.mllib.clustering.PowerIterationClustering":{Assignment:[5,4,1,""],train:[5,5,1,""]},"pyspark.streaming.StreamingListener.Java":{"implements":[3,3,1,""]},"pyspark.sql.types.DateType":{needConversion:[2,1,1,""],EPOCH_ORDINAL:[2,3,1,""],toInternal:[2,1,1,""],fromInternal:[2,1,1,""]},"pyspark.ml.regression.LinearRegression":{setRegParam:[4,1,1,""],copy:[4,1,1,""],getParam:[4,1,1,""],hasDefault:[4,1,1,""],setTol:[4,1,1,""],maxIter:[4,3,1,""],setParams:[4,1,1,""],getRegParam:[4,1,1,""],setPredictionCol:[4,1,1,""],predictionCol:[4,3,1,""],extractParamMap:[4,1,1,""],labelCol:[4,3,1,""],featuresCol:[4,3,1,""],getPredictionCol:[4,1,1,""],params:[4,3,1,""],tol:[4,3,1,""],setMaxIter:[4,1,1,""],getStandardization:[4,1,1,""],isSet:[4,1,1,""],setFeaturesCol:[4,1,1,""],getTol:[4,1,1,""],setSolver:[4,1,1,""],fitIntercept:[4,3,1,""],getLabelCol:[4,1,1,""],getFitIntercept:[4,1,1,""],setLabelCol:[4,1,1,""],explainParam:[4,1,1,""],getElasticNetParam:[4,1,1,""],weightCol:[4,3,1,""],getOrDefault:[4,1,1,""],setStandardization:[4,1,1,""],setElasticNetParam:[4,1,1,""],regParam:[4,3,1,""],elasticNetParam:[4,3,1,""],fit:[4,1,1,""],standardization:[4,3,1,""],solver:[4,3,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],setWeightCol:[4,1,1,""],getFeaturesCol:[4,1,1,""],getWeightCol:[4,1,1,""],getSolver:[4,1,1,""],setFitIntercept:[4,1,1,""],getMaxIter:[4,1,1,""]},"pyspark.sql.SQLContext":{load:[2,1,1,""],jsonFile:[2,1,1,""],dropTempTable:[2,1,1,""],createExternalTable:[2,1,1,""],registerDataFrameAsTable:[2,1,1,""],table:[2,1,1,""],getOrCreate:[2,5,1,""],tables:[2,1,1,""],clearCache:[2,1,1,""],parquetFile:[2,1,1,""],tableNames:[2,1,1,""],applySchema:[2,1,1,""],read:[2,3,1,""],createDataFrame:[2,1,1,""],newSession:[2,1,1,""],registerFunction:[2,1,1,""],cacheTable:[2,1,1,""],udf:[2,3,1,""],sql:[2,1,1,""],getConf:[2,1,1,""],inferSchema:[2,1,1,""],range:[2,1,1,""],setConf:[2,1,1,""],uncacheTable:[2,1,1,""],jsonRDD:[2,1,1,""]},"pyspark.mllib.linalg.Matrices":{dense:[5,6,1,""],sparse:[5,6,1,""]},"pyspark.ml.feature.StandardScalerModel":{std:[4,3,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],transform:[4,1,1,""],explainParam:[4,1,1,""],params:[4,3,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""],mean:[4,3,1,""]},"pyspark.ml.feature.SQLTransformer":{setParams:[4,1,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],transform:[4,1,1,""],isDefined:[4,1,1,""],hasDefault:[4,1,1,""],explainParam:[4,1,1,""],setStatement:[4,1,1,""],params:[4,3,1,""],statement:[4,3,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""],getStatement:[4,1,1,""]},"pyspark.ml.feature.RegexTokenizer":{getOutputCol:[4,1,1,""],setPattern:[4,1,1,""],getInputCol:[4,1,1,""],hasDefault:[4,1,1,""],gaps:[4,3,1,""],getParam:[4,1,1,""],outputCol:[4,3,1,""],setParams:[4,1,1,""],minTokenLength:[4,3,1,""],setGaps:[4,1,1,""],getGaps:[4,1,1,""],getMinTokenLength:[4,1,1,""],extractParamMap:[4,1,1,""],pattern:[4,3,1,""],transform:[4,1,1,""],params:[4,3,1,""],inputCol:[4,3,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],explainParam:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],getPattern:[4,1,1,""],setMinTokenLength:[4,1,1,""]},"pyspark.ml.evaluation":{MulticlassClassificationEvaluator:[4,4,1,""],Evaluator:[4,4,1,""],RegressionEvaluator:[4,4,1,""],BinaryClassificationEvaluator:[4,4,1,""]},"pyspark.streaming.kinesis":{InitialPositionInStream:[3,4,1,""],utf8_decoder:[3,2,1,""],KinesisUtils:[3,4,1,""]},"pyspark.mllib.clustering":{GaussianMixture:[5,4,1,""],GaussianMixtureModel:[5,4,1,""],PowerIterationClusteringModel:[5,4,1,""],LDA:[5,4,1,""],LDAModel:[5,4,1,""],PowerIterationClustering:[5,4,1,""],StreamingKMeansModel:[5,4,1,""],KMeans:[5,4,1,""],KMeansModel:[5,4,1,""],StreamingKMeans:[5,4,1,""]},"pyspark.ml.regression.GBTRegressionModel":{treeWeights:[4,3,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],transform:[4,1,1,""],explainParam:[4,1,1,""],params:[4,3,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.ml.classification.MultilayerPerceptronClassifier":{getSeed:[4,1,1,""],copy:[4,1,1,""],getParam:[4,1,1,""],hasDefault:[4,1,1,""],setLayers:[4,1,1,""],setTol:[4,1,1,""],maxIter:[4,3,1,""],getBlockSize:[4,1,1,""],setParams:[4,1,1,""],layers:[4,3,1,""],getLayers:[4,1,1,""],fit:[4,1,1,""],getFeaturesCol:[4,1,1,""],blockSize:[4,3,1,""],labelCol:[4,3,1,""],featuresCol:[4,3,1,""],getPredictionCol:[4,1,1,""],params:[4,3,1,""],tol:[4,3,1,""],setMaxIter:[4,1,1,""],isSet:[4,1,1,""],getLabelCol:[4,1,1,""],setFeaturesCol:[4,1,1,""],setBlockSize:[4,1,1,""],setLabelCol:[4,1,1,""],explainParam:[4,1,1,""],getOrDefault:[4,1,1,""],setPredictionCol:[4,1,1,""],getTol:[4,1,1,""],predictionCol:[4,3,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],setSeed:[4,1,1,""],seed:[4,3,1,""],getMaxIter:[4,1,1,""]},"pyspark.Accumulator":{add:[1,1,1,""],value:[1,3,1,""]},"pyspark.mllib.classification.SVMModel":{load:[5,5,1,""],predict:[5,1,1,""],clearThreshold:[5,1,1,""],intercept:[5,3,1,""],weights:[5,3,1,""],threshold:[5,3,1,""],save:[5,1,1,""],setThreshold:[5,1,1,""]},"pyspark.mllib.linalg.distributed":{BlockMatrix:[5,4,1,""],MatrixEntry:[5,4,1,""],CoordinateMatrix:[5,4,1,""],IndexedRowMatrix:[5,4,1,""],DistributedMatrix:[5,4,1,""],RowMatrix:[5,4,1,""],IndexedRow:[5,4,1,""]},"pyspark.AccumulatorParam":{zero:[1,1,1,""],addInPlace:[1,1,1,""]},"pyspark.mllib.stat.Statistics":{kolmogorovSmirnovTest:[5,6,1,""],colStats:[5,6,1,""],corr:[5,6,1,""],chiSqTest:[5,6,1,""]},"pyspark.streaming.kinesis.KinesisUtils":{createStream:[3,6,1,""]},"pyspark.mllib.classification":{LogisticRegressionWithLBFGS:[5,4,1,""],StreamingLogisticRegressionWithSGD:[5,4,1,""],LogisticRegressionModel:[5,4,1,""],NaiveBayesModel:[5,4,1,""],SVMWithSGD:[5,4,1,""],NaiveBayes:[5,4,1,""],LogisticRegressionWithSGD:[5,4,1,""],SVMModel:[5,4,1,""]},"pyspark.ml.regression.RandomForestRegressionModel":{treeWeights:[4,3,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],transform:[4,1,1,""],explainParam:[4,1,1,""],params:[4,3,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.ml.PipelineModel":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],transform:[4,1,1,""],explainParam:[4,1,1,""],params:[4,3,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.SparkFiles":{getRootDirectory:[1,5,1,""],get:[1,5,1,""]},"pyspark.mllib.classification.LogisticRegressionModel":{load:[5,5,1,""],predict:[5,1,1,""],numClasses:[5,3,1,""],intercept:[5,3,1,""],weights:[5,3,1,""],clearThreshold:[5,1,1,""],numFeatures:[5,3,1,""],threshold:[5,3,1,""],save:[5,1,1,""],setThreshold:[5,1,1,""]},"pyspark.ml.feature.StringIndexer":{getOutputCol:[4,1,1,""],getInputCol:[4,1,1,""],getParam:[4,1,1,""],hasDefault:[4,1,1,""],setHandleInvalid:[4,1,1,""],outputCol:[4,3,1,""],setParams:[4,1,1,""],fit:[4,1,1,""],extractParamMap:[4,1,1,""],params:[4,3,1,""],inputCol:[4,3,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],getHandleInvalid:[4,1,1,""],explainParam:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],handleInvalid:[4,3,1,""]},"pyspark.ml.classification":{LogisticRegression:[4,4,1,""],GBTClassifier:[4,4,1,""],RandomForestClassificationModel:[4,4,1,""],RandomForestClassifier:[4,4,1,""],LogisticRegressionModel:[4,4,1,""],NaiveBayesModel:[4,4,1,""],DecisionTreeClassificationModel:[4,4,1,""],DecisionTreeClassifier:[4,4,1,""],MultilayerPerceptronClassifier:[4,4,1,""],NaiveBayes:[4,4,1,""],MultilayerPerceptronClassificationModel:[4,4,1,""],GBTClassificationModel:[4,4,1,""]},"pyspark.mllib.evaluation.MulticlassMetrics":{weightedPrecision:[5,3,1,""],weightedRecall:[5,3,1,""],falsePositiveRate:[5,1,1,""],weightedFMeasure:[5,1,1,""],recall:[5,1,1,""],confusionMatrix:[5,1,1,""],precision:[5,1,1,""],fMeasure:[5,1,1,""],weightedFalsePositiveRate:[5,3,1,""],truePositiveRate:[5,1,1,""],weightedTruePositiveRate:[5,3,1,""]},"pyspark.ml.classification.GBTClassifier":{getCheckpointInterval:[4,1,1,""],hasParam:[4,1,1,""],getSeed:[4,1,1,""],setCacheNodeIds:[4,1,1,""],getLossType:[4,1,1,""],maxIter:[4,3,1,""],hasDefault:[4,1,1,""],supportedLossTypes:[4,3,1,""],setMaxBins:[4,1,1,""],seed:[4,3,1,""],setMinInstancesPerNode:[4,1,1,""],maxMemoryInMB:[4,3,1,""],setParams:[4,1,1,""],subsamplingRate:[4,3,1,""],getMaxDepth:[4,1,1,""],getSubsamplingRate:[4,1,1,""],setSubsamplingRate:[4,1,1,""],copy:[4,1,1,""],cacheNodeIds:[4,3,1,""],fit:[4,1,1,""],extractParamMap:[4,1,1,""],labelCol:[4,3,1,""],featuresCol:[4,3,1,""],getPredictionCol:[4,1,1,""],stepSize:[4,3,1,""],params:[4,3,1,""],getParam:[4,1,1,""],setMaxIter:[4,1,1,""],getMaxMemoryInMB:[4,1,1,""],isSet:[4,1,1,""],getStepSize:[4,1,1,""],getLabelCol:[4,1,1,""],setPredictionCol:[4,1,1,""],setLossType:[4,1,1,""],getFeaturesCol:[4,1,1,""],setFeaturesCol:[4,1,1,""],setLabelCol:[4,1,1,""],explainParam:[4,1,1,""],setStepSize:[4,1,1,""],getCacheNodeIds:[4,1,1,""],maxDepth:[4,3,1,""],setMinInfoGain:[4,1,1,""],getOrDefault:[4,1,1,""],checkpointInterval:[4,3,1,""],minInfoGain:[4,3,1,""],getMaxBins:[4,1,1,""],predictionCol:[4,3,1,""],setMaxMemoryInMB:[4,1,1,""],explainParams:[4,1,1,""],getMinInfoGain:[4,1,1,""],isDefined:[4,1,1,""],setSeed:[4,1,1,""],minInstancesPerNode:[4,3,1,""],getMinInstancesPerNode:[4,1,1,""],lossType:[4,3,1,""],setMaxDepth:[4,1,1,""],setCheckpointInterval:[4,1,1,""],getMaxIter:[4,1,1,""],maxBins:[4,3,1,""]},"pyspark.ml.evaluation.BinaryClassificationEvaluator":{hasDefault:[4,1,1,""],getParam:[4,1,1,""],setMetricName:[4,1,1,""],setRawPredictionCol:[4,1,1,""],setParams:[4,1,1,""],extractParamMap:[4,1,1,""],labelCol:[4,3,1,""],getRawPredictionCol:[4,1,1,""],params:[4,3,1,""],rawPredictionCol:[4,3,1,""],isSet:[4,1,1,""],evaluate:[4,1,1,""],getLabelCol:[4,1,1,""],setLabelCol:[4,1,1,""],explainParam:[4,1,1,""],getMetricName:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],isLargerBetter:[4,1,1,""],metricName:[4,3,1,""]},"pyspark.mllib.linalg.Vector":{toArray:[5,1,1,""]},"pyspark.mllib.regression.LinearModel":{intercept:[5,3,1,""],weights:[5,3,1,""]},"pyspark.ml.classification.RandomForestClassifier":{getProbabilityCol:[4,1,1,""],getCheckpointInterval:[4,1,1,""],hasParam:[4,1,1,""],getSeed:[4,1,1,""],setImpurity:[4,1,1,""],setCacheNodeIds:[4,1,1,""],copy:[4,1,1,""],setMinInstancesPerNode:[4,1,1,""],hasDefault:[4,1,1,""],setNumTrees:[4,1,1,""],setMaxBins:[4,1,1,""],seed:[4,3,1,""],getRawPredictionCol:[4,1,1,""],getParam:[4,1,1,""],maxMemoryInMB:[4,3,1,""],setFeatureSubsetStrategy:[4,1,1,""],subsamplingRate:[4,3,1,""],getMaxDepth:[4,1,1,""],setMinInfoGain:[4,1,1,""],setSubsamplingRate:[4,1,1,""],setParams:[4,1,1,""],cacheNodeIds:[4,3,1,""],impurity:[4,3,1,""],predictionCol:[4,3,1,""],extractParamMap:[4,1,1,""],probabilityCol:[4,3,1,""],labelCol:[4,3,1,""],featuresCol:[4,3,1,""],getPredictionCol:[4,1,1,""],supportedFeatureSubsetStrategies:[4,3,1,""],params:[4,3,1,""],getMaxBins:[4,1,1,""],featureSubsetStrategy:[4,3,1,""],rawPredictionCol:[4,3,1,""],minInfoGain:[4,3,1,""],getMaxMemoryInMB:[4,1,1,""],isSet:[4,1,1,""],getLabelCol:[4,1,1,""],setPredictionCol:[4,1,1,""],getSubsamplingRate:[4,1,1,""],getFeatureSubsetStrategy:[4,1,1,""],getFeaturesCol:[4,1,1,""],setFeaturesCol:[4,1,1,""],getImpurity:[4,1,1,""],setLabelCol:[4,1,1,""],explainParam:[4,1,1,""],getMinInstancesPerNode:[4,1,1,""],setProbabilityCol:[4,1,1,""],maxDepth:[4,3,1,""],supportedImpurities:[4,3,1,""],getOrDefault:[4,1,1,""],checkpointInterval:[4,3,1,""],getCacheNodeIds:[4,1,1,""],setRawPredictionCol:[4,1,1,""],getNumTrees:[4,1,1,""],fit:[4,1,1,""],setMaxMemoryInMB:[4,1,1,""],explainParams:[4,1,1,""],getMinInfoGain:[4,1,1,""],isDefined:[4,1,1,""],setSeed:[4,1,1,""],minInstancesPerNode:[4,3,1,""],numTrees:[4,3,1,""],setMaxDepth:[4,1,1,""],setCheckpointInterval:[4,1,1,""],maxBins:[4,3,1,""]},"pyspark.streaming.kafka.KafkaMessageAndMetadata":{message:[3,3,1,""],key:[3,3,1,""]},"pyspark.mllib.linalg.distributed.IndexedRowMatrix":{rows:[5,3,1,""],toCoordinateMatrix:[5,1,1,""],numRows:[5,1,1,""],toRowMatrix:[5,1,1,""],toBlockMatrix:[5,1,1,""],numCols:[5,1,1,""]},"pyspark.mllib.tree.DecisionTreeModel":{load:[5,5,1,""],numNodes:[5,1,1,""],predict:[5,1,1,""],toDebugString:[5,1,1,""],depth:[5,1,1,""],call:[5,1,1,""],save:[5,1,1,""]},"pyspark.mllib.evaluation":{MulticlassMetrics:[5,4,1,""],RegressionMetrics:[5,4,1,""],RankingMetrics:[5,4,1,""],BinaryClassificationMetrics:[5,4,1,""]},"pyspark.ml.feature.VectorSlicer":{getOutputCol:[4,1,1,""],getInputCol:[4,1,1,""],hasDefault:[4,1,1,""],names:[4,3,1,""],getParam:[4,1,1,""],outputCol:[4,3,1,""],setParams:[4,1,1,""],setInputCol:[4,1,1,""],extractParamMap:[4,1,1,""],transform:[4,1,1,""],params:[4,3,1,""],inputCol:[4,3,1,""],getNames:[4,1,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],explainParam:[4,1,1,""],indices:[4,3,1,""],setIndices:[4,1,1,""],getIndices:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],setNames:[4,1,1,""]},"pyspark.mllib.classification.StreamingLogisticRegressionWithSGD":{trainOn:[5,1,1,""],predictOn:[5,1,1,""],latestModel:[5,1,1,""],predictOnValues:[5,1,1,""],setInitialWeights:[5,1,1,""]},"pyspark.sql.Window":{orderBy:[2,6,1,""],partitionBy:[2,6,1,""]},"pyspark.mllib.linalg":{Matrix:[5,4,1,""],SparseVector:[5,4,1,""],Vectors:[5,4,1,""],distributed:[5,0,0,"-"],Vector:[5,4,1,""],DenseMatrix:[5,4,1,""],DenseVector:[5,4,1,""],Matrices:[5,4,1,""],SparseMatrix:[5,4,1,""]},"pyspark.mllib.fpm.PrefixSpan":{train:[5,5,1,""],FreqSequence:[5,4,1,""]},"pyspark.streaming.mqtt":{MQTTUtils:[3,4,1,""]},"pyspark.ml.classification.RandomForestClassificationModel":{treeWeights:[4,3,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],transform:[4,1,1,""],isDefined:[4,1,1,""],hasDefault:[4,1,1,""],explainParam:[4,1,1,""],params:[4,3,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.sql.types.StructType":{jsonValue:[2,1,1,""],needConversion:[2,1,1,""],simpleString:[2,1,1,""],toInternal:[2,1,1,""],add:[2,1,1,""],fromInternal:[2,1,1,""],fromJson:[2,5,1,""]},"pyspark.sql.types.DataType":{jsonValue:[2,1,1,""],needConversion:[2,1,1,""],simpleString:[2,1,1,""],toInternal:[2,1,1,""],typeName:[2,5,1,""],json:[2,1,1,""],fromInternal:[2,1,1,""]},"pyspark.ml.feature.StandardScaler":{getOutputCol:[4,1,1,""],getWithMean:[4,1,1,""],getInputCol:[4,1,1,""],hasDefault:[4,1,1,""],getParam:[4,1,1,""],outputCol:[4,3,1,""],setParams:[4,1,1,""],fit:[4,1,1,""],extractParamMap:[4,1,1,""],getWithStd:[4,1,1,""],params:[4,3,1,""],inputCol:[4,3,1,""],withMean:[4,3,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],withStd:[4,3,1,""],explainParam:[4,1,1,""],setWithMean:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],setWithStd:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""]},"pyspark.ml.classification.DecisionTreeClassifier":{getCheckpointInterval:[4,1,1,""],getProbabilityCol:[4,1,1,""],getMinInfoGain:[4,1,1,""],setImpurity:[4,1,1,""],setCacheNodeIds:[4,1,1,""],getParam:[4,1,1,""],hasDefault:[4,1,1,""],setMaxBins:[4,1,1,""],featuresCol:[4,3,1,""],setMinInstancesPerNode:[4,1,1,""],maxMemoryInMB:[4,3,1,""],setParams:[4,1,1,""],getMaxDepth:[4,1,1,""],setMinInfoGain:[4,1,1,""],checkpointInterval:[4,3,1,""],cacheNodeIds:[4,3,1,""],impurity:[4,3,1,""],fit:[4,1,1,""],getFeaturesCol:[4,1,1,""],probabilityCol:[4,3,1,""],labelCol:[4,3,1,""],getRawPredictionCol:[4,1,1,""],getPredictionCol:[4,1,1,""],params:[4,3,1,""],setPredictionCol:[4,1,1,""],rawPredictionCol:[4,3,1,""],minInfoGain:[4,3,1,""],getMaxMemoryInMB:[4,1,1,""],isSet:[4,1,1,""],getLabelCol:[4,1,1,""],setFeaturesCol:[4,1,1,""],getImpurity:[4,1,1,""],setLabelCol:[4,1,1,""],explainParam:[4,1,1,""],getMinInstancesPerNode:[4,1,1,""],setProbabilityCol:[4,1,1,""],maxDepth:[4,3,1,""],supportedImpurities:[4,3,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],getMaxBins:[4,1,1,""],setRawPredictionCol:[4,1,1,""],predictionCol:[4,3,1,""],setMaxMemoryInMB:[4,1,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],minInstancesPerNode:[4,3,1,""],getCacheNodeIds:[4,1,1,""],setMaxDepth:[4,1,1,""],setCheckpointInterval:[4,1,1,""],maxBins:[4,3,1,""]},"pyspark.mllib.tree.GradientBoostedTreesModel":{totalNumNodes:[5,1,1,""],load:[5,5,1,""],predict:[5,1,1,""],toDebugString:[5,1,1,""],numTrees:[5,1,1,""],call:[5,1,1,""],save:[5,1,1,""]},"pyspark.mllib.recommendation.ALS":{trainImplicit:[5,5,1,""],train:[5,5,1,""]},"pyspark.mllib.linalg.Matrix":{toArray:[5,1,1,""]},"pyspark.mllib.clustering.KMeansModel":{load:[5,5,1,""],predict:[5,1,1,""],k:[5,3,1,""],save:[5,1,1,""],clusterCenters:[5,3,1,""],computeCost:[5,1,1,""]},"pyspark.mllib.feature":{ChiSqSelector:[5,4,1,""],Normalizer:[5,4,1,""],Word2Vec:[5,4,1,""],Word2VecModel:[5,4,1,""],StandardScalerModel:[5,4,1,""],IDFModel:[5,4,1,""],ElementwiseProduct:[5,4,1,""],IDF:[5,4,1,""],HashingTF:[5,4,1,""],StandardScaler:[5,4,1,""],ChiSqSelectorModel:[5,4,1,""]},"pyspark.mllib.tree.RandomForest":{supportedFeatureSubsetStrategies:[5,3,1,""],trainRegressor:[5,5,1,""],trainClassifier:[5,5,1,""]},"pyspark.mllib.classification.LogisticRegressionWithSGD":{train:[5,5,1,""]},"pyspark.mllib.linalg.SparseMatrix":{toArray:[5,1,1,""],toDense:[5,1,1,""]},"pyspark.sql.types.MapType":{jsonValue:[2,1,1,""],needConversion:[2,1,1,""],simpleString:[2,1,1,""],toInternal:[2,1,1,""],fromInternal:[2,1,1,""],fromJson:[2,5,1,""]},"pyspark.SparkContext":{parallelize:[1,1,1,""],binaryFiles:[1,1,1,""],defaultParallelism:[1,3,1,""],applicationId:[1,3,1,""],newAPIHadoopFile:[1,1,1,""],getOrCreate:[1,5,1,""],statusTracker:[1,1,1,""],setLocalProperty:[1,1,1,""],wholeTextFiles:[1,1,1,""],union:[1,1,1,""],runJob:[1,1,1,""],setLogLevel:[1,1,1,""],getLocalProperty:[1,1,1,""],pickleFile:[1,1,1,""],cancelJobGroup:[1,1,1,""],version:[1,3,1,""],cancelAllJobs:[1,1,1,""],hadoopRDD:[1,1,1,""],defaultMinPartitions:[1,3,1,""],newAPIHadoopRDD:[1,1,1,""],PACKAGE_EXTENSIONS:[1,3,1,""],setCheckpointDir:[1,1,1,""],emptyRDD:[1,1,1,""],stop:[1,1,1,""],broadcast:[1,1,1,""],show_profiles:[1,1,1,""],clearFiles:[1,1,1,""],setJobGroup:[1,1,1,""],startTime:[1,3,1,""],sparkUser:[1,1,1,""],binaryRecords:[1,1,1,""],hadoopFile:[1,1,1,""],addFile:[1,1,1,""],dump_profiles:[1,1,1,""],addPyFile:[1,1,1,""],accumulator:[1,1,1,""],range:[1,1,1,""],setSystemProperty:[1,5,1,""],textFile:[1,1,1,""],sequenceFile:[1,1,1,""]},"pyspark.ml.Estimator":{fit:[4,1,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],explainParam:[4,1,1,""],params:[4,3,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.ml.clustering.KMeansModel":{extractParamMap:[4,1,1,""],clusterCenters:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],transform:[4,1,1,""],explainParam:[4,1,1,""],isSet:[4,1,1,""],params:[4,3,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],explainParams:[4,1,1,""]},"pyspark.mllib.linalg.DenseVector":{toArray:[5,1,1,""],parse:[5,6,1,""],values:[5,3,1,""],dot:[5,1,1,""],squared_distance:[5,1,1,""],numNonzeros:[5,1,1,""],norm:[5,1,1,""]},"pyspark.ml.regression.AFTSurvivalRegressionModel":{scale:[4,3,1,""],transform:[4,1,1,""],extractParamMap:[4,1,1,""],predict:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],predictQuantiles:[4,1,1,""],explainParam:[4,1,1,""],intercept:[4,3,1,""],params:[4,3,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""],coefficients:[4,3,1,""]},"pyspark.mllib.regression.StreamingLinearAlgorithm":{predictOn:[5,1,1,""],latestModel:[5,1,1,""],predictOnValues:[5,1,1,""]},"pyspark.RDD":{sortByKey:[1,1,1,""],mapPartitionsWithIndex:[1,1,1,""],foreachPartition:[1,1,1,""],persist:[1,1,1,""],lookup:[1,1,1,""],mapPartitionsWithSplit:[1,1,1,""],take:[1,1,1,""],flatMap:[1,1,1,""],repartitionAndSortWithinPartitions:[1,1,1,""],intersection:[1,1,1,""],partitionBy:[1,1,1,""],name:[1,1,1,""],fullOuterJoin:[1,1,1,""],saveAsPickleFile:[1,1,1,""],saveAsSequenceFile:[1,1,1,""],getNumPartitions:[1,1,1,""],mean:[1,1,1,""],getStorageLevel:[1,1,1,""],saveAsNewAPIHadoopDataset:[1,1,1,""],reduce:[1,1,1,""],fold:[1,1,1,""],aggregateByKey:[1,1,1,""],groupBy:[1,1,1,""],getCheckpointFile:[1,1,1,""],stats:[1,1,1,""],collect:[1,1,1,""],sum:[1,1,1,""],reduceByKeyLocally:[1,1,1,""],takeSample:[1,1,1,""],takeOrdered:[1,1,1,""],collectAsMap:[1,1,1,""],meanApprox:[1,1,1,""],stdev:[1,1,1,""],subtract:[1,1,1,""],subtractByKey:[1,1,1,""],saveAsTextFile:[1,1,1,""],filter:[1,1,1,""],union:[1,1,1,""],context:[1,3,1,""],treeReduce:[1,1,1,""],variance:[1,1,1,""],saveAsHadoopFile:[1,1,1,""],sampleByKey:[1,1,1,""],first:[1,1,1,""],combineByKey:[1,1,1,""],cache:[1,1,1,""],saveAsNewAPIHadoopFile:[1,1,1,""],groupWith:[1,1,1,""],cartesian:[1,1,1,""],zip:[1,1,1,""],reduceByKey:[1,1,1,""],distinct:[1,1,1,""],top:[1,1,1,""],toLocalIterator:[1,1,1,""],checkpoint:[1,1,1,""],coalesce:[1,1,1,""],leftOuterJoin:[1,1,1,""],mapPartitions:[1,1,1,""],saveAsHadoopDataset:[1,1,1,""],setName:[1,1,1,""],repartition:[1,1,1,""],toDebugString:[1,1,1,""],keyBy:[1,1,1,""],histogram:[1,1,1,""],sumApprox:[1,1,1,""],sortBy:[1,1,1,""],sampleStdev:[1,1,1,""],count:[1,1,1,""],foldByKey:[1,1,1,""],join:[1,1,1,""],countByKey:[1,1,1,""],unpersist:[1,1,1,""],values:[1,1,1,""],countApprox:[1,1,1,""],sampleVariance:[1,1,1,""],countApproxDistinct:[1,1,1,""],zipWithIndex:[1,1,1,""],randomSplit:[1,1,1,""],groupByKey:[1,1,1,""],sample:[1,1,1,""],isCheckpointed:[1,1,1,""],id:[1,1,1,""],treeAggregate:[1,1,1,""],min:[1,1,1,""],countByValue:[1,1,1,""],isEmpty:[1,1,1,""],foreach:[1,1,1,""],flatMapValues:[1,1,1,""],map:[1,1,1,""],glom:[1,1,1,""],keys:[1,1,1,""],rightOuterJoin:[1,1,1,""],cogroup:[1,1,1,""],aggregate:[1,1,1,""],max:[1,1,1,""],zipWithUniqueId:[1,1,1,""],mapValues:[1,1,1,""],pipe:[1,1,1,""]},"pyspark.PickleSerializer":{dumps:[1,1,1,""],loads:[1,1,1,""]},"pyspark.sql.DataFrameWriter":{jdbc:[2,1,1,""],option:[2,1,1,""],format:[2,1,1,""],text:[2,1,1,""],insertInto:[2,1,1,""],saveAsTable:[2,1,1,""],options:[2,1,1,""],json:[2,1,1,""],mode:[2,1,1,""],parquet:[2,1,1,""],save:[2,1,1,""],orc:[2,1,1,""],partitionBy:[2,1,1,""]},"pyspark.ml.Pipeline":{getStages:[4,1,1,""],copy:[4,1,1,""],fit:[4,1,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],explainParam:[4,1,1,""],setStages:[4,1,1,""],getParam:[4,1,1,""],params:[4,3,1,""],getOrDefault:[4,1,1,""],setParams:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.ml.feature.PCAModel":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],transform:[4,1,1,""],explainParam:[4,1,1,""],params:[4,3,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.mllib.clustering.PowerIterationClusteringModel":{load:[5,5,1,""],assignments:[5,1,1,""],k:[5,3,1,""]},"pyspark.MarshalSerializer":{dumps:[1,1,1,""],loads:[1,1,1,""]},"pyspark.mllib":{clustering:[5,0,0,"-"],stat:[5,0,0,"-"],classification:[5,0,0,"-"],linalg:[5,0,0,"-"],fpm:[5,0,0,"-"],random:[5,0,0,"-"],tree:[5,0,0,"-"],feature:[5,0,0,"-"],util:[5,0,0,"-"],recommendation:[5,0,0,"-"],evaluation:[5,0,0,"-"],regression:[5,0,0,"-"]},"pyspark.ml.evaluation.Evaluator":{extractParamMap:[4,1,1,""],evaluate:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],explainParam:[4,1,1,""],params:[4,3,1,""],isLargerBetter:[4,1,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.streaming.flume.FlumeUtils":{createStream:[3,6,1,""],createPollingStream:[3,6,1,""]},"pyspark.ml.regression.LinearRegressionModel":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],transform:[4,1,1,""],explainParam:[4,1,1,""],intercept:[4,3,1,""],params:[4,3,1,""],getParam:[4,1,1,""],weights:[4,3,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""],coefficients:[4,3,1,""]},"pyspark.ml.feature.Binarizer":{getOutputCol:[4,1,1,""],getInputCol:[4,1,1,""],hasDefault:[4,1,1,""],getParam:[4,1,1,""],threshold:[4,3,1,""],outputCol:[4,3,1,""],setParams:[4,1,1,""],extractParamMap:[4,1,1,""],transform:[4,1,1,""],params:[4,3,1,""],inputCol:[4,3,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],getThreshold:[4,1,1,""],explainParam:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],setThreshold:[4,1,1,""]},"pyspark.ml.feature":{MinMaxScalerModel:[4,4,1,""],Word2Vec:[4,4,1,""],VectorAssembler:[4,4,1,""],Bucketizer:[4,4,1,""],IDF:[4,4,1,""],PCA:[4,4,1,""],VectorIndexer:[4,4,1,""],Normalizer:[4,4,1,""],StringIndexerModel:[4,4,1,""],OneHotEncoder:[4,4,1,""],PolynomialExpansion:[4,4,1,""],ElementwiseProduct:[4,4,1,""],RFormula:[4,4,1,""],Binarizer:[4,4,1,""],DCT:[4,4,1,""],PCAModel:[4,4,1,""],RegexTokenizer:[4,4,1,""],VectorSlicer:[4,4,1,""],NGram:[4,4,1,""],CountVectorizer:[4,4,1,""],CountVectorizerModel:[4,4,1,""],HashingTF:[4,4,1,""],Tokenizer:[4,4,1,""],Word2VecModel:[4,4,1,""],StandardScalerModel:[4,4,1,""],IDFModel:[4,4,1,""],StandardScaler:[4,4,1,""],SQLTransformer:[4,4,1,""],StringIndexer:[4,4,1,""],StopWordsRemover:[4,4,1,""],IndexToString:[4,4,1,""],RFormulaModel:[4,4,1,""],MinMaxScaler:[4,4,1,""]},"pyspark.ml.classification.NaiveBayes":{getProbabilityCol:[4,1,1,""],probabilityCol:[4,3,1,""],setSmoothing:[4,1,1,""],hasDefault:[4,1,1,""],modelType:[4,3,1,""],getRawPredictionCol:[4,1,1,""],getParam:[4,1,1,""],setRawPredictionCol:[4,1,1,""],setParams:[4,1,1,""],getPredictionCol:[4,1,1,""],copy:[4,1,1,""],predictionCol:[4,3,1,""],extractParamMap:[4,1,1,""],setModelType:[4,1,1,""],labelCol:[4,3,1,""],featuresCol:[4,3,1,""],smoothing:[4,3,1,""],params:[4,3,1,""],rawPredictionCol:[4,3,1,""],isSet:[4,1,1,""],getSmoothing:[4,1,1,""],setFeaturesCol:[4,1,1,""],getLabelCol:[4,1,1,""],setLabelCol:[4,1,1,""],explainParam:[4,1,1,""],setProbabilityCol:[4,1,1,""],getOrDefault:[4,1,1,""],setPredictionCol:[4,1,1,""],fit:[4,1,1,""],getModelType:[4,1,1,""],explainParams:[4,1,1,""],getFeaturesCol:[4,1,1,""],isDefined:[4,1,1,""],hasParam:[4,1,1,""]},"pyspark.mllib.clustering.LDAModel":{load:[5,5,1,""],vocabSize:[5,1,1,""],describeTopics:[5,1,1,""],topicsMatrix:[5,1,1,""]},"pyspark.ml.regression.DecisionTreeRegressor":{getCheckpointInterval:[4,1,1,""],hasParam:[4,1,1,""],setImpurity:[4,1,1,""],setCacheNodeIds:[4,1,1,""],setMinInstancesPerNode:[4,1,1,""],hasDefault:[4,1,1,""],setMaxBins:[4,1,1,""],getParam:[4,1,1,""],maxMemoryInMB:[4,3,1,""],setParams:[4,1,1,""],getMaxDepth:[4,1,1,""],setMinInfoGain:[4,1,1,""],copy:[4,1,1,""],cacheNodeIds:[4,3,1,""],impurity:[4,3,1,""],fit:[4,1,1,""],getFeaturesCol:[4,1,1,""],labelCol:[4,3,1,""],featuresCol:[4,3,1,""],getPredictionCol:[4,1,1,""],params:[4,3,1,""],setPredictionCol:[4,1,1,""],minInfoGain:[4,3,1,""],getMaxMemoryInMB:[4,1,1,""],isSet:[4,1,1,""],setFeaturesCol:[4,1,1,""],getLabelCol:[4,1,1,""],setLabelCol:[4,1,1,""],explainParam:[4,1,1,""],getMinInstancesPerNode:[4,1,1,""],maxDepth:[4,3,1,""],supportedImpurities:[4,3,1,""],getOrDefault:[4,1,1,""],checkpointInterval:[4,3,1,""],getMaxBins:[4,1,1,""],getImpurity:[4,1,1,""],predictionCol:[4,3,1,""],setMaxMemoryInMB:[4,1,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],getMinInfoGain:[4,1,1,""],isDefined:[4,1,1,""],minInstancesPerNode:[4,3,1,""],getCacheNodeIds:[4,1,1,""],setMaxDepth:[4,1,1,""],setCheckpointInterval:[4,1,1,""],maxBins:[4,3,1,""]},"pyspark.ml.feature.IDF":{getOutputCol:[4,1,1,""],getInputCol:[4,1,1,""],hasDefault:[4,1,1,""],getParam:[4,1,1,""],outputCol:[4,3,1,""],setParams:[4,1,1,""],fit:[4,1,1,""],extractParamMap:[4,1,1,""],params:[4,3,1,""],inputCol:[4,3,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],getMinDocFreq:[4,1,1,""],explainParam:[4,1,1,""],setMinDocFreq:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],minDocFreq:[4,3,1,""]},"pyspark.mllib.random":{RandomRDDs:[5,4,1,""]},"pyspark.ml.feature.Word2Vec":{getOutputCol:[4,1,1,""],getSeed:[4,1,1,""],getInputCol:[4,1,1,""],getParam:[4,1,1,""],hasDefault:[4,1,1,""],seed:[4,3,1,""],maxIter:[4,3,1,""],setMinCount:[4,1,1,""],setParams:[4,1,1,""],outputCol:[4,3,1,""],setVectorSize:[4,1,1,""],fit:[4,1,1,""],extractParamMap:[4,1,1,""],numPartitions:[4,3,1,""],stepSize:[4,3,1,""],params:[4,3,1,""],inputCol:[4,3,1,""],isSet:[4,1,1,""],getStepSize:[4,1,1,""],setOutputCol:[4,1,1,""],getVectorSize:[4,1,1,""],explainParam:[4,1,1,""],setStepSize:[4,1,1,""],setNumPartitions:[4,1,1,""],getNumPartitions:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],setMaxIter:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],setSeed:[4,1,1,""],getMinCount:[4,1,1,""],vectorSize:[4,3,1,""],minCount:[4,3,1,""],getMaxIter:[4,1,1,""]},"pyspark.mllib.feature.IDFModel":{idf:[5,1,1,""],transform:[5,1,1,""]},"pyspark.ml.feature.PCA":{hasParam:[4,1,1,""],getInputCol:[4,1,1,""],hasDefault:[4,1,1,""],getK:[4,1,1,""],getParam:[4,1,1,""],outputCol:[4,3,1,""],setParams:[4,1,1,""],fit:[4,1,1,""],extractParamMap:[4,1,1,""],params:[4,3,1,""],inputCol:[4,3,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],setK:[4,1,1,""],explainParam:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],explainParams:[4,1,1,""],getOutputCol:[4,1,1,""],isDefined:[4,1,1,""],k:[4,3,1,""]},"pyspark.ml.tuning.ParamGridBuilder":{addGrid:[4,1,1,""],build:[4,1,1,""],baseOn:[4,1,1,""]},"pyspark.mllib.recommendation":{Rating:[5,4,1,""],MatrixFactorizationModel:[5,4,1,""],ALS:[5,4,1,""]},"pyspark.mllib.regression.LinearRegressionModel":{predict:[5,1,1,""],load:[5,5,1,""],save:[5,1,1,""],weights:[5,3,1,""],intercept:[5,3,1,""]},"pyspark.sql.types.ShortType":{simpleString:[2,1,1,""]},"pyspark.Broadcast":{load:[1,1,1,""],unpersist:[1,1,1,""],dump:[1,1,1,""],value:[1,3,1,""]},"pyspark.mllib.classification.NaiveBayesModel":{predict:[5,1,1,""],load:[5,5,1,""],save:[5,1,1,""]},"pyspark.ml.regression.GBTRegressor":{getCheckpointInterval:[4,1,1,""],getMinInfoGain:[4,1,1,""],copy:[4,1,1,""],setCacheNodeIds:[4,1,1,""],getLossType:[4,1,1,""],setMinInstancesPerNode:[4,1,1,""],hasDefault:[4,1,1,""],supportedLossTypes:[4,3,1,""],setMaxBins:[4,1,1,""],seed:[4,3,1,""],maxIter:[4,3,1,""],getSeed:[4,1,1,""],getMaxDepth:[4,1,1,""],setParams:[4,1,1,""],subsamplingRate:[4,3,1,""],maxMemoryInMB:[4,3,1,""],setMinInfoGain:[4,1,1,""],setSubsamplingRate:[4,1,1,""],checkpointInterval:[4,3,1,""],cacheNodeIds:[4,3,1,""],fit:[4,1,1,""],extractParamMap:[4,1,1,""],labelCol:[4,3,1,""],featuresCol:[4,3,1,""],getPredictionCol:[4,1,1,""],stepSize:[4,3,1,""],params:[4,3,1,""],minInfoGain:[4,3,1,""],getMaxMemoryInMB:[4,1,1,""],isSet:[4,1,1,""],lossType:[4,3,1,""],setFeaturesCol:[4,1,1,""],getSubsamplingRate:[4,1,1,""],getFeaturesCol:[4,1,1,""],getLabelCol:[4,1,1,""],setLabelCol:[4,1,1,""],explainParam:[4,1,1,""],setStepSize:[4,1,1,""],getCacheNodeIds:[4,1,1,""],maxDepth:[4,3,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],setPredictionCol:[4,1,1,""],setMaxIter:[4,1,1,""],getMaxBins:[4,1,1,""],predictionCol:[4,3,1,""],setMaxMemoryInMB:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],setSeed:[4,1,1,""],minInstancesPerNode:[4,3,1,""],getMinInstancesPerNode:[4,1,1,""],getStepSize:[4,1,1,""],setMaxDepth:[4,1,1,""],setLossType:[4,1,1,""],setCheckpointInterval:[4,1,1,""],getMaxIter:[4,1,1,""],maxBins:[4,3,1,""]},"pyspark.sql.types.ByteType":{simpleString:[2,1,1,""]},"pyspark.ml.recommendation.ALSModel":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],transform:[4,1,1,""],rank:[4,3,1,""],hasDefault:[4,1,1,""],explainParam:[4,1,1,""],userFactors:[4,3,1,""],isDefined:[4,1,1,""],getParam:[4,1,1,""],itemFactors:[4,3,1,""],params:[4,3,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.sql.types":{StringType:[2,4,1,""],LongType:[2,4,1,""],TimestampType:[2,4,1,""],IntegerType:[2,4,1,""],StructType:[2,4,1,""],DataType:[2,4,1,""],StructField:[2,4,1,""],FloatType:[2,4,1,""],ArrayType:[2,4,1,""],NullType:[2,4,1,""],BinaryType:[2,4,1,""],ByteType:[2,4,1,""],BooleanType:[2,4,1,""],ShortType:[2,4,1,""],DateType:[2,4,1,""],DoubleType:[2,4,1,""],DecimalType:[2,4,1,""],MapType:[2,4,1,""]},"pyspark.mllib.tree.DecisionTree":{trainRegressor:[5,5,1,""],trainClassifier:[5,5,1,""]},"pyspark.ml.feature.HashingTF":{getOutputCol:[4,1,1,""],getInputCol:[4,1,1,""],hasDefault:[4,1,1,""],setNumFeatures:[4,1,1,""],getParam:[4,1,1,""],outputCol:[4,3,1,""],setParams:[4,1,1,""],getNumFeatures:[4,1,1,""],transform:[4,1,1,""],params:[4,3,1,""],inputCol:[4,3,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],explainParam:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],numFeatures:[4,3,1,""]},"pyspark.sql.types.StructField":{jsonValue:[2,1,1,""],needConversion:[2,1,1,""],simpleString:[2,1,1,""],toInternal:[2,1,1,""],fromInternal:[2,1,1,""],fromJson:[2,5,1,""]},"pyspark.sql.WindowSpec":{orderBy:[2,1,1,""],rangeBetween:[2,1,1,""],rowsBetween:[2,1,1,""],partitionBy:[2,1,1,""]},"pyspark.mllib.tree.GradientBoostedTrees":{trainRegressor:[5,5,1,""],trainClassifier:[5,5,1,""]},"pyspark.ml.feature.Normalizer":{getOutputCol:[4,1,1,""],getInputCol:[4,1,1,""],hasDefault:[4,1,1,""],getParam:[4,1,1,""],getP:[4,1,1,""],outputCol:[4,3,1,""],setParams:[4,1,1,""],extractParamMap:[4,1,1,""],transform:[4,1,1,""],params:[4,3,1,""],inputCol:[4,3,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],explainParam:[4,1,1,""],setP:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],p:[4,3,1,""]},"pyspark.ml.param.Params":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],explainParam:[4,1,1,""],params:[4,3,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.mllib.regression.IsotonicRegressionModel":{load:[5,5,1,""],predict:[5,1,1,""],save:[5,1,1,""]},"pyspark.ml.clustering":{KMeansModel:[4,4,1,""],KMeans:[4,4,1,""]},"pyspark.ml.recommendation.ALS":{getCheckpointInterval:[4,1,1,""],setRegParam:[4,1,1,""],getSeed:[4,1,1,""],copy:[4,1,1,""],getParam:[4,1,1,""],hasDefault:[4,1,1,""],rank:[4,3,1,""],seed:[4,3,1,""],isDefined:[4,1,1,""],userCol:[4,3,1,""],maxIter:[4,3,1,""],setParams:[4,1,1,""],itemCol:[4,3,1,""],getRegParam:[4,1,1,""],getPredictionCol:[4,1,1,""],ratingCol:[4,3,1,""],setAlpha:[4,1,1,""],fit:[4,1,1,""],extractParamMap:[4,1,1,""],getNumItemBlocks:[4,1,1,""],implicitPrefs:[4,3,1,""],getUserCol:[4,1,1,""],params:[4,3,1,""],setMaxIter:[4,1,1,""],setUserCol:[4,1,1,""],getItemCol:[4,1,1,""],isSet:[4,1,1,""],getRatingCol:[4,1,1,""],setRatingCol:[4,1,1,""],setImplicitPrefs:[4,1,1,""],setNonnegative:[4,1,1,""],getImplicitPrefs:[4,1,1,""],setNumUserBlocks:[4,1,1,""],explainParam:[4,1,1,""],setNumItemBlocks:[4,1,1,""],alpha:[4,3,1,""],getOrDefault:[4,1,1,""],setPredictionCol:[4,1,1,""],regParam:[4,3,1,""],getNonnegative:[4,1,1,""],checkpointInterval:[4,3,1,""],hasParam:[4,1,1,""],setRank:[4,1,1,""],numItemBlocks:[4,3,1,""],nonnegative:[4,3,1,""],setSeed:[4,1,1,""],getRank:[4,1,1,""],numUserBlocks:[4,3,1,""],getNumUserBlocks:[4,1,1,""],setNumBlocks:[4,1,1,""],setItemCol:[4,1,1,""],getAlpha:[4,1,1,""],predictionCol:[4,3,1,""],setCheckpointInterval:[4,1,1,""],explainParams:[4,1,1,""],getMaxIter:[4,1,1,""]},"pyspark.mllib.regression.LassoModel":{load:[5,5,1,""],save:[5,1,1,""],predict:[5,1,1,""],intercept:[5,3,1,""],weights:[5,3,1,""]},"pyspark.mllib.util.LinearDataGenerator":{generateLinearRDD:[5,6,1,""],generateLinearInput:[5,6,1,""]},"pyspark.mllib.regression.IsotonicRegression":{train:[5,5,1,""]},"pyspark.streaming.mqtt.MQTTUtils":{createStream:[3,6,1,""]},"pyspark.ml.feature.VectorIndexer":{getOutputCol:[4,1,1,""],getInputCol:[4,1,1,""],hasDefault:[4,1,1,""],getParam:[4,1,1,""],outputCol:[4,3,1,""],setParams:[4,1,1,""],fit:[4,1,1,""],extractParamMap:[4,1,1,""],params:[4,3,1,""],inputCol:[4,3,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],explainParam:[4,1,1,""],maxCategories:[4,3,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],getMaxCategories:[4,1,1,""],setMaxCategories:[4,1,1,""]},"pyspark.mllib.feature.Word2Vec":{fit:[5,1,1,""],setSeed:[5,1,1,""],setNumPartitions:[5,1,1,""],setLearningRate:[5,1,1,""],setMinCount:[5,1,1,""],setNumIterations:[5,1,1,""],setVectorSize:[5,1,1,""]},"pyspark.mllib.clustering.GaussianMixtureModel":{load:[5,5,1,""],predict:[5,1,1,""],k:[5,3,1,""],predictSoft:[5,1,1,""],gaussians:[5,3,1,""],weights:[5,3,1,""]},"pyspark.ml.regression.RandomForestRegressor":{getCheckpointInterval:[4,1,1,""],getMinInfoGain:[4,1,1,""],getSeed:[4,1,1,""],setImpurity:[4,1,1,""],setCacheNodeIds:[4,1,1,""],setMinInstancesPerNode:[4,1,1,""],hasDefault:[4,1,1,""],setNumTrees:[4,1,1,""],setMaxBins:[4,1,1,""],seed:[4,3,1,""],getParam:[4,1,1,""],getMaxDepth:[4,1,1,""],setFeatureSubsetStrategy:[4,1,1,""],subsamplingRate:[4,3,1,""],maxMemoryInMB:[4,3,1,""],setMinInfoGain:[4,1,1,""],setSubsamplingRate:[4,1,1,""],setParams:[4,1,1,""],cacheNodeIds:[4,3,1,""],impurity:[4,3,1,""],fit:[4,1,1,""],extractParamMap:[4,1,1,""],labelCol:[4,3,1,""],featuresCol:[4,3,1,""],getPredictionCol:[4,1,1,""],supportedFeatureSubsetStrategies:[4,3,1,""],numTrees:[4,3,1,""],params:[4,3,1,""],setPredictionCol:[4,1,1,""],minInfoGain:[4,3,1,""],getMaxMemoryInMB:[4,1,1,""],isSet:[4,1,1,""],getLabelCol:[4,1,1,""],getSubsamplingRate:[4,1,1,""],getFeatureSubsetStrategy:[4,1,1,""],getFeaturesCol:[4,1,1,""],setFeaturesCol:[4,1,1,""],setLabelCol:[4,1,1,""],explainParam:[4,1,1,""],getMinInstancesPerNode:[4,1,1,""],maxDepth:[4,3,1,""],supportedImpurities:[4,3,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],getMaxBins:[4,1,1,""],getImpurity:[4,1,1,""],getNumTrees:[4,1,1,""],predictionCol:[4,3,1,""],setMaxMemoryInMB:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],checkpointInterval:[4,3,1,""],isDefined:[4,1,1,""],setSeed:[4,1,1,""],featureSubsetStrategy:[4,3,1,""],minInstancesPerNode:[4,3,1,""],getCacheNodeIds:[4,1,1,""],setMaxDepth:[4,1,1,""],setCheckpointInterval:[4,1,1,""],maxBins:[4,3,1,""]},"pyspark.ml.param":{Params:[4,4,1,""],Param:[4,4,1,""]},"pyspark.ml.feature.ElementwiseProduct":{getOutputCol:[4,1,1,""],getInputCol:[4,1,1,""],hasDefault:[4,1,1,""],getParam:[4,1,1,""],outputCol:[4,3,1,""],setParams:[4,1,1,""],setScalingVec:[4,1,1,""],getScalingVec:[4,1,1,""],extractParamMap:[4,1,1,""],transform:[4,1,1,""],params:[4,3,1,""],inputCol:[4,3,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],explainParam:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],scalingVec:[4,3,1,""]},"pyspark.ml.evaluation.RegressionEvaluator":{hasDefault:[4,1,1,""],getParam:[4,1,1,""],setMetricName:[4,1,1,""],setParams:[4,1,1,""],copy:[4,1,1,""],predictionCol:[4,3,1,""],extractParamMap:[4,1,1,""],labelCol:[4,3,1,""],getPredictionCol:[4,1,1,""],params:[4,3,1,""],isSet:[4,1,1,""],evaluate:[4,1,1,""],getLabelCol:[4,1,1,""],setLabelCol:[4,1,1,""],explainParam:[4,1,1,""],getMetricName:[4,1,1,""],getOrDefault:[4,1,1,""],setPredictionCol:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],isLargerBetter:[4,1,1,""],metricName:[4,3,1,""]},"pyspark.ml.feature.StringIndexerModel":{hasParam:[4,1,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],labels:[4,3,1,""],transform:[4,1,1,""],isDefined:[4,1,1,""],hasDefault:[4,1,1,""],explainParam:[4,1,1,""],params:[4,3,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.mllib.fpm.FPGrowthModel":{freqItemsets:[5,1,1,""]},"pyspark.mllib.evaluation.BinaryClassificationMetrics":{unpersist:[5,1,1,""],areaUnderPR:[5,3,1,""],areaUnderROC:[5,3,1,""]},"pyspark.mllib.regression.StreamingLinearRegressionWithSGD":{predictOn:[5,1,1,""],latestModel:[5,1,1,""],setInitialWeights:[5,1,1,""],trainOn:[5,1,1,""],predictOnValues:[5,1,1,""]},"pyspark.sql.types.IntegerType":{simpleString:[2,1,1,""]},"pyspark.mllib.clustering.KMeans":{train:[5,5,1,""]},"pyspark.sql.types.LongType":{simpleString:[2,1,1,""]},"pyspark.ml.feature.VectorAssembler":{getOutputCol:[4,1,1,""],copy:[4,1,1,""],extractParamMap:[4,1,1,""],hasDefault:[4,1,1,""],setInputCols:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],inputCols:[4,3,1,""],transform:[4,1,1,""],isDefined:[4,1,1,""],isSet:[4,1,1,""],explainParam:[4,1,1,""],params:[4,3,1,""],getInputCols:[4,1,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],setParams:[4,1,1,""],outputCol:[4,3,1,""],setOutputCol:[4,1,1,""]},"pyspark.mllib.util.Loader":{load:[5,5,1,""]},"pyspark.sql.types.ArrayType":{jsonValue:[2,1,1,""],needConversion:[2,1,1,""],simpleString:[2,1,1,""],toInternal:[2,1,1,""],fromInternal:[2,1,1,""],fromJson:[2,5,1,""]},"pyspark.ml.classification.MultilayerPerceptronClassificationModel":{layers:[4,3,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],transform:[4,1,1,""],isDefined:[4,1,1,""],hasDefault:[4,1,1,""],explainParam:[4,1,1,""],params:[4,3,1,""],getParam:[4,1,1,""],weights:[4,3,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.ml.feature.RFormula":{hasParam:[4,1,1,""],hasDefault:[4,1,1,""],setFormula:[4,1,1,""],getParam:[4,1,1,""],setParams:[4,1,1,""],fit:[4,1,1,""],extractParamMap:[4,1,1,""],labelCol:[4,3,1,""],featuresCol:[4,3,1,""],params:[4,3,1,""],getFormula:[4,1,1,""],formula:[4,3,1,""],isSet:[4,1,1,""],setFeaturesCol:[4,1,1,""],getLabelCol:[4,1,1,""],setLabelCol:[4,1,1,""],explainParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],explainParams:[4,1,1,""],getFeaturesCol:[4,1,1,""],isDefined:[4,1,1,""]}},titleterms:{"function":2,classif:[4,5],featur:[4,5],stream:3,modul:[2,4,3,5],random:5,pipelin:4,indic:0,kafka:3,cluster:[4,5],api:[0,4],tabl:0,evalu:[4,5],fpm:5,pyspark:[2,4,3,5,1],mllib:5,param:4,content:[3,1],mqtt:3,recommend:[4,5],type:2,flume:3,core:0,stat:5,distribut:5,linalg:5,python:0,util:5,sql:2,spark:0,"class":0,tune:4,welcom:0,subpackag:1,packag:[4,5,1],doc:0,tree:5,context:2,regress:[4,5],kinesi:3}})