Search.setIndex({envversion:42,terms:{entropi:[4,5],setmaxdepth:4,marshalseri:1,getrootdirectori:1,prefix:3,sleep:1,dirnam:1,gradientboostedtre:5,whose:1,saveashadoopdataset:1,pprint:3,concret:2,under:[5,1],sortbykei:1,everi:[3,5,1],risk:5,affect:1,rowsbetween:2,pearsoncorr:5,flatmap:[2,3,1],initialmodel:5,nfoo:1,mergevalu:[3,1],jdstream:3,vector:[4,5,1],matric:[4,5],mintokenlength:4,naiv:5,probabilitycol:4,second:[2,3,5,1],aggreg:[2,4,1],setmaxit:4,groupbykei:[3,1],even:1,asin:2,neg:5,topanda:2,"while":[2,4,3,1],getcheckpointinterv:4,conduct:5,usedisk:1,net:4,groupid:[3,1],metadata:[2,4,5],elimin:3,sparkpartitionid:2,human:5,show_profil:1,here:[2,4,1],typeerror:[4,5],getdroplast:4,path:[2,5,1],interpret:[3,1],sumdistinct:2,precis:[2,4,5],datetim:[2,3],samplestdev:1,sequencefil:1,longwrit:1,linearli:4,substr:2,mlutil:5,txt:1,unit:[4,5,1],describ:2,would:[2,4,1],sparkfil:1,ndcgat:5,deviat:[4,5,1],call:[2,4,5,1],recommend:[0,1],type:[0,4,5,1],until:1,topolar:2,relat:[2,4],warn:[4,5,1],hole:2,memory_only_ser_2:1,must:[2,4,3,5,1],userfeatur:5,join:[2,3,5,1],multinomi:5,setvectors:[4,5],bitwiseor:2,setup:3,work:[2,5,1],explainparam:4,coalesc:[2,1],areaunderroc:[4,5],checkpointpath:3,root:[2,5,1],overrid:[4,1],wrriten:3,give:[2,1],setnumpartit:[4,5],doubletyp:2,liter:2,seqop:1,want:[4,3,5],setinputcol:4,inputcol:4,end:[2,3,1],namedtemporaryfil:[5,1],ordinari:4,classifi:5,how:[2,3,1],hot:4,env:1,createcombin:[3,1],poissonrdd:5,partitionfunc:[3,1],confid:[4,1],dialect:4,recogn:[3,5],tablenam:2,earlier:3,befor:[2,3,5,1],vectortransform:5,intwrit:1,fillna:2,invfunc:3,parallel:[2,4,3,5,1],averag:[2,5,1],reshap:5,attempt:[4,1],third:2,classmethod:[2,3,5,1],bootstrap:5,localdoc:5,polynomialexpans:4,maintain:4,environ:[5,1],arraytyp:2,enter:3,exclus:[2,1],lambda:[2,4,5,1],order:[2,4,3,5,1],oper:[2,3,5,1],belong:5,feedback:4,over:[2,4,3,5,1],spearmancorr:5,becaus:[2,4,5],vari:1,fit:[4,5],fix:[4,3,1],streamlib:1,better:1,getregparam:4,foreachrdd:3,persist:[2,3,1],split:[2,4,5,1],them:[2,4,3,5,1],thei:[2,1],interrupt:1,onethird:[4,5],choic:4,user_product:5,dropdupl:2,timeout:[3,1],each:[2,4,3,5,1],debug:[2,1],side:[2,1],mean:[2,4,5,1],sparkcontext:[0,3,2,5,1],slen:2,metricnam:4,extract:4,unbound:2,gradient:[4,5],newli:4,content:0,laid:2,adapt:4,elasticnet:4,savemod:2,accum_param:1,linear:[4,5],infin:1,standard:[2,4,5,1],factoris:5,freq:[4,5],withmean:[4,5],clearfil:1,outputformatclass:1,getvector:5,angl:2,stringlengthint:2,gammardd:5,createdatafram:[2,4,5],filter:[2,4,3,5,1],regress:0,app:1,ischeckpoint:1,rand:2,rang:[2,4,3,5,1],getratingcol:4,refresht:2,mappartitionswithindex:[3,1],rank:[2,4,5],alreadi:[2,4,5,1],wrapper:4,basicprofil:1,setestimatorparammap:4,decisiontre:5,cartesian:1,decisiontreemodel:5,top:[3,5,1],foldbykei:1,master:[3,1],too:2,tol:4,tom:2,consol:2,tool:3,somewhat:1,signum:2,sortbi:1,target:[5,1],keyword:4,provid:[2,4,3,5,1],expr:2,tree:[0,4,1],zero:[2,5,1],project:2,matter:1,kth:1,start_job:1,fashion:2,retainedjob:1,setmaxmemoryinmb:4,mine:5,raw:[4,5],seed:[2,4,5,1],manner:1,increment:[2,3,1],getalpha:4,seen:3,minu:2,strength:4,withcolumnrenam:2,recreat:3,fullouterjoin:[3,1],reducebykeyandwindow:3,latter:[4,1],panda:2,numitemblock:4,scikit:4,glom:[3,1],glob:[5,1],object:[2,4,3,5,1],what:1,supress:1,cumedist:2,regular:[4,5],specifi:[2,4,3,5,1],joinexpr:2,createstream:3,setmincount:[4,5],computecost:5,broadcast:1,doi:[2,4,1],don:[2,1],partition:[3,1],doe:[2,3,5,1],expstd:5,declar:4,gbtregressionmodel:4,udf:2,categoricalfeaturesinfo:5,left:[4,3,1],numnod:5,dot:5,createrdd:3,schenker:2,dirpath:1,getmaxbin:4,absolut:[2,4,5,1],stopgracefulli:3,minsupport:5,latent:5,acquir:1,field2:2,field3:2,explain:[2,4,5],configur:[2,4,1],field6:2,field4:2,field5:2,first_product:5,to_profil:1,stop:[3,1],ceil:2,"new":[2,4,3,1],report:[3,1],vectorindex:4,statustrack:1,pearson:[2,5],bar:1,method:[2,4,3,5,1],bad:1,respond:1,checkpointinterv:4,mkdtemp:[2,5],fair:1,sparsevector:[4,5],getdegre:4,saveastextfil:[3,5,1],datatyp:[2,1],setimpur:4,result:[2,3,5,1],fail:1,collectasmap:1,subprotocol:2,impur:[4,5],said:4,databas:2,wikipedia:4,score:5,newapihadooprdd:1,randomforestregressor:4,drawn:5,previous:1,approach:4,setestim:4,attribut:[2,4,5],accord:1,extend:[2,1],xrang:1,weak:1,subtractbykei:1,extens:4,countapprox:1,stdev:[5,1],toler:[4,3,5,1],samemodel:5,paramnam:4,numfold:4,cov:2,hashabl:5,fault:3,howev:1,against:5,logic:2,countri:2,com:5,col:2,jspec:2,character:3,getstageinfo:1,longtyp:2,loader:5,logisticregressionwithsgd:5,pickle_registri:1,dens:[4,5],batchdur:3,guid:3,assum:[5,1],duplic:[2,1],union:[2,3,1],numpi:5,three:[2,3,1],been:[3,5,1],accumul:1,much:1,basic:[0,3,1],countbykei:1,mcm:5,deeper:4,aggregatebykei:1,worker:1,ani:[2,4,5,1],child:[4,5],combop:1,setwithstd:[4,5],ident:4,tanh:2,properti:[2,3,1],calcul:[2,4,3,5],dataframewrit:2,aid:1,udfregistr:2,keytyp:2,printabl:1,rangebetween:2,setevalu:4,kwarg:[2,4],conf:1,gbtregressor:4,zipwithindex:1,perform:[2,4,1],suggest:1,make:[2,4,5],descend:[2,5,1],selectexpr:2,complet:[3,1],getsubsamplingr:4,word2vec:[4,5],explainedvari:5,recordlength:[3,1],rais:[2,4,5,1],mincount:[4,5],stop_job:1,tune:0,getnumfeatur:4,kept:1,thu:[2,1],inherit:1,samplingratio:2,thi:[2,4,3,5,1],programm:1,gettol:4,identifi:[4,5],setcheckpointdir:1,ordin:2,setlabelcol:4,fact:4,getactivejobsid:1,depart:2,yet:[2,1],languag:[2,4,5,1],lasso:[4,5],tempfile2:1,expos:1,had:[2,1],primit:1,els:[2,5],right_out:2,save:[2,3,5,1],hat:5,applic:[3,1],cachenodeid:4,preserv:[2,4],rng:5,setfeaturesubsetstrategi:4,measur:[2,5],setsystemproperti:1,specif:[2,4,3],arbitrari:[2,1],istemporari:2,lassomodel:5,underli:[2,4,5],right:[2,4,3,1],old:[3,1],interv:[4,3,5],maxim:[4,5],dead:1,intern:[4,3,5,1],hypot:2,maxit:4,flatten:[2,3,1],preservespartit:[2,3,1],getse:4,ridgeregressionmodel:5,insensit:4,wholetextfil:1,subclass:4,memory_and_disk_s:1,condit:[2,4,5],foo:1,mappartitionsrdd:2,plu:2,setnumuserblock:4,sparkjobinfo:1,topic_nam:3,mapvalu:[3,1],discount:5,corr:[2,5],queuestream:3,obj:1,getnumitemblock:4,produc:[2,4,1],uniformrdd:5,getlosstyp:4,"float":[2,5,1],encod:[4,3,1],bound:2,supportedfeaturesubsetstrategi:5,down:1,resili:[0,1],wrap:2,storag:[2,3,5,1],poissonvectorrdd:5,jdbc:2,wai:1,getfeaturescol:4,support:[2,4,5,1],isdefin:4,transform:[4,3,5],avail:[2,4,5,1],width:3,fraction:[2,4,5,1],analysi:2,head:[2,4],form:[2,1],forc:[4,1],epsilon:5,setrank:4,cluster_label:5,renam:2,"true":[2,4,3,5,1],newapihadoopfil:1,"throw":[2,3,5,1],javavectortransform:5,samplevari:1,maximum:[2,4,5,1],independ:5,setsteps:4,more:[2,4,3,5,1],todens:5,setcheckpointinterv:4,classif:0,featur:0,repartit:[2,3,1],covert:5,"abstract":[0,4,3,1],exist:[2,4,3,5,1],getmetricnam:4,ship:1,numnonzero:5,floor:2,when:[2,4,5,1],test:[2,4,5,1],tie:2,shrink:[4,5],node:[4,5,1],df_as1:2,df_as2:2,clearthreshold:5,scale:[2,4,5],consid:[2,4,5,1],sql:[0,4,1],pyrolit:1,billion:2,receiv:[4,3,5,1],longer:1,filterfunc:3,getcheckpointfil:1,weightedrecal:5,ignor:[2,3],maxdepth:[4,5],time:[2,4,3,5,1],backward:2,corpu:5,monotonicallyincreasingid:2,chain:1,skip:[2,5,1],global:1,stepsiz:4,large_broadcast:1,row:[2,4,5],hierarch:5,decid:5,grape:1,graph:3,"_jconf":1,intermedi:[2,5],usememori:1,logisticregress:4,decis:[4,5],jvm:2,getparam:4,isinst:5,setmininfogain:4,sourc:[2,4,3,5],string:[2,4,3,5,1],lrm:5,word:[4,5],level:[2,3,5,1],did:1,setloglevel:1,iter:[2,4,5,1],item:[2,4,5,1],getelasticnetparam:4,repartitionandsortwithinpartit:1,round:[2,5],dir:[4,5],htf:5,height:2,slower:3,sign:2,is_cach:1,dataframestatfunct:2,ndcg:5,port:3,disk_only_2:1,appear:[4,5],rollup:2,uniform:5,current:[2,4,3,5,1],boost:[4,5],getnumuserblock:4,deriv:5,gener:[2,4,3,5,1],naivebayesmodel:5,coeffici:[2,5],satisfi:[3,1],explicitli:4,tangent:2,wait:3,statu:1,vectors:[4,5],profiler_cl:1,behav:1,poisson:5,extrem:5,bob:2,commonli:1,semant:1,extra:4,dtype:2,registerfunct:2,setfeaturescol:4,prefer:[4,1],toarrai:5,instal:[2,1],regex:4,gaussianmixturemodel:5,asdict:2,memori:[2,4,1],live:3,value2:[5,1],value1:[5,1],criteria:5,increas:[2,3,1],mse:4,setnumitemblock:4,setimplicitpref:4,implicitpref:4,minsplit:1,peopl:2,claus:2,disk_onli:1,ntile:2,logarithm:2,numpartit:[2,4,3,5,1],hook_compress:1,prepar:1,uniqu:[2,4,1],cat:1,can:[2,4,3,5,1],purpos:2,nearest:5,stream:[0,1],predict:[4,5],topic:3,untiloffset:3,cube:2,myrdd:1,paramgridbuild:4,maxmemoryinmb:4,cardin:[5,1],leastabsoluteerror:5,alwai:[5,1],todebugstr:[5,1],multipl:[2,4,3,5,1],fpm:0,write:[2,5,1],getvectors:4,criterion:[4,5],foreach:[2,1],fourth:2,decision_tree_learn:4,numiter:5,map:[2,4,3,5,1],product:[4,5,1],mat:5,atan:2,max:[2,4,5,1],clone:1,hasparam:4,removedir:5,usabl:1,appnam:1,membership:5,mae:4,mixin:5,mai:[4,3,5,1],sparkstageinfo:1,data:[0,1,2,3,4,5],agecol:2,istranspos:5,practic:1,nativemethodaccessorimpl:2,setmaxcategori:4,samplebykei:1,predic:[2,3,1],inform:[4,3,5,1],"switch":1,preced:2,combin:[4,1],block:[2,4,5,1],setitemcol:4,getmaxcategori:4,itemcol:4,kafka:0,combinebykei:[3,1],partitionbi:[2,3,1],windowspec:2,group:[0,4,3,2,1],monitor:[3,1],window:[2,3],ssc:3,main:[0,3,2,1],non:[2,5,1],getlabelcol:4,recal:5,hivecontext:2,getnonneg:4,initi:[5,1],col1:2,dump_profil:1,booleantyp:2,pvalu:5,nor:5,term:[4,5,1],mapreduc:1,name:[0,1,2,3,4,5],rmse:4,drop:[2,4,1],isnul:2,userfactor:4,separ:5,setsparkhom:1,updat:[4,3,5,1],nbar:1,compil:4,domain:2,getnumfold:4,replac:[2,5,1],individu:[5,1],gaussian:5,dropna:2,pickleseri:1,keyfunc:1,redistribut:1,year:2,falsepositiver:5,tmp2:1,learningr:5,space:[4,5,1],astyp:2,binaryclassificationevalu:4,profil:1,formula:5,factori:5,setelasticnetparam:4,after:[2,4,3,1],randomforestmodel:5,contain:[2,4,3,5,1],java_model:[4,5],setstag:4,integertyp:2,org:[2,4,1],"byte":[2,3,1],setpredictioncol:4,expm1:2,truepositiver:5,suffici:4,frequenc:[2,4,5],recov:3,turn:[2,1],place:[2,1],frequent:[2,4,5],first:[2,4,3,5,1],origin:[5,1],directli:[3,5,1],onc:[2,3,1],arrai:[2,4,5,1],yourself:3,stringtyp:2,submit:1,dataframeread:2,open:1,size:[4,5,1],l_2:5,given:[2,4,3,5,1],l_1:5,silent:2,getjobidsforgroup:1,cumul:[2,5],white:[4,1],allowloc:1,getestimatorparammap:4,ariti:5,copi:[4,3,5,1],upperbound:2,itemset:5,logist:[4,5],setnumfeatur:4,setmininstancespernod:4,than:[2,4,3,5,1],rdd2:1,rdd1:1,sequncefil:1,chisquar:5,were:2,posit:[2,5],pre:[4,5],fork:1,sai:2,off_heap:1,accumulatorparam:1,argument:[2,4,3,5,1],getnumtre:4,logisticregressionwithlbfg:5,binaryfil:1,setthreshold:[4,5],vecassembl:4,bitwis:2,engin:1,squar:[2,4,5],alias:2,setcachenodeid:4,note:[2,4,3,5,1],gradient_boost:4,take:[2,4,5,1],exploratori:2,getfeaturesubsetstrategi:4,treereduc:1,si_model:4,sqlqueri:2,ratingcol:4,textfilestream:3,trace:1,normal:[2,4,5,1],track:[3,1],setexecutorenv:1,compress:1,libsvm:5,cogroup:[3,1],beta:5,pair:[2,4,3,5,1],stringindex:4,synonym:5,later:5,maptyp:2,sigma:5,gracefulli:3,show:[2,1],first_us:5,reducebywindow:3,log2:[4,5],joined_df:2,threshold:[4,5],fifth:2,ground:5,xml:2,onli:[2,4,3,5,1],slow:1,ratio:2,transact:5,activ:[5,1],written:[3,1],treeaggreg:1,dict:[2,3,5,1],analyz:2,startswith:2,getcachenodeid:4,nearli:1,variou:[2,3,1],get:[2,4,5,1],cannot:[2,5],progress:1,invreducefunc:3,multi_class_data:5,getmaxdepth:4,requir:[2,5,1],liblinear:5,mapper:1,droplast:4,yield:[2,1],tfidf:5,minibatchfract:5,where:[2,4,3,5,1],summari:[2,4,5],wiki:4,assumpt:2,testset:5,squared_dist:5,getwithstd:4,label:[4,5],between:[2,4,3,5,1],"import":[2,4,5,1],across:[2,4,5,1],spars:[4,5],map_func:1,parent:[4,3,5,1],containsnul:2,approxcountdistinct:2,outputcol:4,featuresubsetstrategi:[4,5],gzipcodec:1,groupbi:[2,1],bytebuff:1,inconsist:5,mani:2,"0x7f7a2d8a4488":1,rescal:5,pow:2,period:3,poi:5,cancel:1,mari:1,mark:[2,1],model2:4,valueerror:1,predictioncol:4,addfil:1,colptr:5,former:1,"0x7f7a2d8a4398":1,"case":[2,4,3,1],interoper:3,registerdataframeast:2,tostr:1,countdistinct:2,logloss:5,labeledpoint:5,invok:[2,1],outcom:5,invoc:1,stdout:1,percent_rank:2,metric:[4,5],henc:4,cluster:[0,1],endswith:2,scipi:5,to_replac:2,getlocalproperti:1,getjobinfo:1,develop:3,inputformat:1,fitintercept:4,bitwisexor:2,fewer:[4,5,1],same:[2,4,3,5,1],check:[4,5],binari:[2,4,3,5,1],epoch:1,html:1,timestamp:2,document:[2,4,3,5],finish:1,getmaxit:4,closest:2,utf8:3,cume_dist:2,companion:4,parquet_partit:2,extern:[2,1],setappnam:1,spark_us:1,matrixfactorizationmodel:5,findsynonym:5,setmast:1,without:[2,3,5,1],model:[4,5],isoton:5,dimension:[2,5],includefirst:4,execut:[2,4,3,1],randomforest:5,zipwithuniqueid:1,gdf:2,speed:[2,4],gbtclassificationmodel:4,struct:2,trigger:1,except:[2,3,5,1],littl:1,setnumiter:5,shorttyp:2,real:5,regparam:[4,5],around:5,jrdd_deseri:[3,1],setratingcol:4,read:[2,3,1],productfeatur:5,pstat:1,grid:4,world:1,integ:[2,5,1],norml1:5,norml2:5,either:[4,3,5,1],output:[2,4,5,1],setoutputcol:4,ascend:[2,5,1],numlabel:4,refresh:2,setmintokenlength:4,getitemcol:4,assertionerror:5,slice:3,getsteps:4,randomforestclassificationmodel:4,achiev:4,settol:4,numfeatur:[4,5],refer:[4,1],process:[4,3,5,1],power:2,garbag:[3,1],broker:3,fmeasur:5,starttim:1,fulli:1,immut:1,isset:4,getestim:4,aco:2,degre:[2,4,5],mergecombin:[3,1],act:4,effici:[3,5,1],textinputformat:1,fpgrowthmodel:5,invers:[2,4,3,5],reducebykeyloc:1,your:[2,1],decisiontreeclassifi:4,log:[2,5,1],area:5,meanapprox:1,overwrit:2,start:[2,3,1],interfac:2,low:[4,1],precisionat:5,tupe:5,linalg:[0,4],tupl:[2,4,5,1],jsonvalu:2,categor:[4,5],faster:1,pull:3,sparse1:5,logisticregressionmodel:[4,5],"default":[2,4,3,5,1],getthreshold:4,insertinto:2,bucket:1,sparkhom:1,embed:4,setupfunc:3,todf:[2,4],uid:4,creat:[2,4,3,5,1],kafkautil:3,certain:[2,4,5],deep:4,subsamplingr:4,strongli:1,decreas:[3,1],file:[2,3,5,1],picklefil:1,fill:2,dataframenafunct:2,beyond:2,googl:5,zerovalu:1,multiclass:[4,5],normalrdd:5,valid:[4,5,1],writabl:1,you:[2,3,5,1],lowerbound:2,sequenc:[2,4,3,5,1],getmininfogain:4,polynomi:4,releas:[3,1],cancelalljob:1,standardscalarmodel:5,vocabulari:[4,5],pool:1,reduc:[4,3,1],col1_:2,directori:[3,5,1],descript:1,trainclassifi:5,potenti:1,pipelinemodel:4,represent:[3,5,1],all:[2,4,3,5,1],chisquaredtest:5,ali:2,flatmapvalu:[3,1],month:2,correl:[2,5],follow:[2,4,5,1],hadooprdd:1,disk:[2,1],keepseri:3,package_extens:1,dsl:2,retainedstag:1,program:[3,1],those:[2,1],norm:[4,5],nullhypothesi:5,fals:[2,4,3,5,1],setgap:4,getrawpredictioncol:4,losstyp:4,util:0,mechan:1,topicandpartit:3,fall:1,veri:[4,1],streamingcontext:3,awaitterminationortimeout:3,nor2:5,sparse_data:5,predictionandlabel:5,list:[2,4,3,5,1],nulltyp:2,cosin:2,small:[5,1],dimens:[4,5,1],correct:[5,1],clearcach:2,featurescol:4,decisiontreeregressor:4,"_jvm":1,rate:[4,5,1],range0:2,predictsoft:5,standardscal:[4,5],pass:[2,4,5,1],further:4,hashingtf:[4,5],onehotencod:4,trick:[4,5],deleg:5,hdf:[3,1],sum:[2,4,5,1],binaryrecordsstream:3,bytetyp:2,delet:[5,1],version:[2,1],intersect:[2,1],countbyvalu:[3,1],consecut:2,"public":1,zookeep:3,full:[2,3,5],hash:[4,3,5,1],exponentialvectorrdd:5,drop_dupl:2,initialweight:5,shouldn:5,depend:[2,4,3,5,1],modifi:[4,1],valu:[2,4,3,5,1],search:[0,4,1],prior:5,leastsquareserror:5,printschema:2,mininstancespernod:[4,5],doctest:[2,1],pick:3,action:[5,1],narrow:2,deptid:2,via:[2,4,1],shorthand:2,readabl:5,deprec:[2,1],href:1,binarytyp:2,select:[2,4,5],distinct:[2,3,5,1],regist:2,two:[2,4,3,5,1],formul:5,countapproxdistinct:1,validatedata:5,vec:5,flat:[4,3,1],valuetyp:2,flag:1,particular:1,known:[2,1],exponentialrdd:5,cach:[2,4,3,1],memory_and_disk_2:1,none:[2,4,3,5,1],jdf:2,tinyurl:5,jobid:1,orderbi:[2,4],lambda_:5,returntyp:2,learn:[4,5],maxbin:[4,5],def:[2,1],explod:2,spearman:5,traceback:[4,5,1],scan:1,registr:2,share:1,accept:[2,4],minimum:[2,4,3,5,1],javardd:3,parammap:4,phrase:5,keydecod:3,densevector:[4,5],avg:2,newlin:5,divid:[5,1],rather:[4,1],anoth:[2,4,3,1],csc:5,mapr:1,countbywindow:3,simpl:[2,4,5],algebra:5,variant:2,mappartit:[2,3,1],catalog:2,varianc:[4,5,1],associ:[2,3,1],svec:4,stabil:4,"short":2,countbyvalueandwindow:3,caus:[4,1],atan2:2,ensembl:5,egg:1,treeensemblemodel:5,multivari:5,help:[4,1],regtyp:5,held:4,paper:5,through:[2,5,1],getnumpartit:[2,4,5,1],paramet:[2,4,3,5,1],jtracker:1,takeord:1,multiclassmetr:5,relev:5,weightedprecis:5,saveassequencefil:1,might:[2,1],finer:1,gaussianmixtur:5,good:5,"return":[2,4,3,5,1],sentenc:[4,5],largest:1,withcolumn:2,getfitintercept:4,getordefault:4,withstd:[4,5],totalnumnod:5,token:[4,5],radian:2,compris:5,found:[4,5,1],unicod:[3,1],truncat:5,weight:[2,4,5,1],monoton:2,expect:[4,5,1],baseon:4,clusterdata_2:5,clusterdata_3:5,clusterdata_1:5,todo:4,reduct:3,ftp:1,getoutputcol:4,research:5,getmininstancespernod:4,expans:4,print:[2,3,5,1],keybi:1,occurr:2,qualifi:1,isempti:1,maxsiz:2,driver:[4,3,1],kafkaparam:3,asc:2,reason:2,base:[2,4,3,5,1],put:2,lag:2,thread:[3,1],numcol:5,omit:2,setsubsamplingr:4,lifetim:2,assign:[2,1],noqa:1,getstoragelevel:1,major:5,oserror:5,upper:2,standardscalermodel:[4,5],number:[2,4,3,5,1],done:[2,3,1],construct:[2,5],unional:2,miss:[2,1],chisqselectormodel:5,equi:2,differ:[2,4,5,1],exponenti:[2,5],meanaverageprecis:5,least:[2,4,5,1],checkpoint:[4,3,1],transformwith:3,namedtupl:2,statement:2,scheme:2,colnam:2,banana:1,store:[2,4,3,5],schema:2,option:[2,4,3,1],similarli:1,selector:5,part:[5,1],pars:[2,5],cosh:2,jrdd:1,kind:5,df4:2,remov:[2,4,5,1],df1:2,minpartit:[5,1],df3:2,df2:2,cost:5,str:[2,5,1],randomli:[2,4,1],karp:2,comput:[2,4,3,5,1],setal:1,packag:0,expir:3,"null":[2,3,5,1],addpyfil:1,equival:[2,3,5],self:[4,1],lit:2,also:[2,4,5,1],randomforestregressionmodel:4,subnam:2,build:[4,5,1],setp:4,getimpur:4,setnumblock:4,pipelin:0,distribut:[0,4,2,5,1],jsc:1,previou:[2,3],mixtur:5,most:[2,4,5,1],plan:[2,4],alpha:[4,5],crosstab:2,filesystem:1,clear:[5,1],salari:2,exp:[2,5],javastreamingcontext:3,cdf:2,hyper:4,linearregressionwithsgd:5,jobgroup:1,find:[2,4,5,1],penalti:[4,5],bfg:5,freqitemset:5,setnam:1,underflow:2,canceljobgroup:1,factor:4,std:5,sparkus:1,express:[2,4],use_unicod:[2,1],linearregressionmodel:[4,5],sparsiti:4,defaultminpartit:1,hadoopfil:1,statist:[2,4,5],setlocalproperti:1,fpgrowth:5,idfmodel:[4,5],groupwith:1,arr:2,set:[2,4,3,5,1],art:1,reseri:1,df0:2,roc:5,see:[2,3,5,1],getgap:4,arg:[2,4,5,1],close:[5,1],uncachet:2,elasticnetparam:4,membership_matrix:5,stringifi:5,reus:1,javasav:5,saveasnewapihadoopfil:1,altern:[2,4,5],numer:[2,4,1],lowercas:4,solv:4,classnam:1,both:[2,4,3,1],ridgeregressionwithsgd:5,last:[2,4,3,5,1],delimit:3,inout:5,context:[0,5,1],degreesoffreedom:5,load:[2,3,5,1],simpli:[2,5],point:[0,3,2,5,1],instanti:[2,1],schedul:[2,1],param:0,suppli:4,loadlabeledpoint:5,java:[2,4,1],word2vecmodel:[4,5],due:1,empti:[4,3,5,1],sinc:4,loaddefault:1,inferschema:2,rdd_b:3,rdd_a:3,predictal:5,memory_and_disk_ser_2:1,saveast:2,shuffl:[2,1],gap:[2,4,1],coordin:2,areaunderpr:[4,5],func:[3,1],getmaxmemoryinmb:4,applyschema:2,look:3,randomsplit:[2,1],batch:[3,1],fleec:1,durat:3,crossvalidatormodel:4,unifi:3,behavior:[2,4],error:[2,4,3,5,1],setusercol:4,robin:2,setjobgroup:1,valueconvert:1,propag:1,cprofil:1,ctx:1,floattyp:2,itself:[2,3],quadrat:5,queue:3,hypothesi:5,minim:[4,5],"0x7f7a208e65f0":3,hadoop:[2,3,5,1],interruptoncancel:1,decod:[3,1],composition:5,conflict:4,higher:2,optim:[2,4],sym:5,covari:2,temporari:2,user:[2,4,5,1],filev:1,svmmodel:5,decimaltyp:2,chang:[2,4,3,1],recent:[4,5,1],subpackag:0,lower:[2,4,1],task:[2,1],lib:1,entri:[0,1,2,3,4,5],bitwisenot:2,pickl:1,person:2,inputformatclass:1,setrawpredictioncol:4,semijoin:2,propos:2,collabor:4,shape:5,calibr:4,setpattern:4,indexof:5,stringinddf:4,setmaxbin:4,appli:[2,3,5,1],input:[2,4,3,5,1],modul:[0,1],bin:[4,5],expmean:5,format:[2,5,1],numuserblock:4,bia:[5,1],insert:2,numtre:[4,5],tempfile3:1,characterist:5,openhook:1,table1:2,resolv:1,elaps:3,collect:[0,1,2,3,4,5],sql_ctx:2,tmpfile:1,often:1,takesampl:1,some:[2,4,5,1],back:[2,5],sampl:[2,4,5,1],portable_hash:[3,1],slidedur:3,recommendproduct:5,scala:[2,5,1],repeatedli:4,javatowritableconvert:1,per:[2,4,3,1],cast:[2,4],sumapprox:1,mathemat:[2,4],larg:[2,4,3,1],machin:[4,5],run:[2,4,3,5,1],goe:2,age2:2,step:[2,4,5,1],getconf:2,compressioncodecclass:1,subtract:[2,3,1],sequencefileoutputformat:1,regextoken:4,constraint:[4,3],idf:[4,5],setdegre:4,gamma:5,file2:1,file1:1,gammavectorrdd:5,within:[2,3,5,1],multivariategaussian:5,fileinput:[5,1],ensur:[3,1],inclus:[2,3],setfitintercept:4,kmean:5,fast:1,custom:1,percentrank:2,arithmet:5,includ:[2,4,3,5,1],unix_timestamp:3,jsonrdd:2,reducefunc:3,vectorassembl:4,rowindic:5,saveabl:5,mycustomprofil:1,link:4,translat:1,line:[2,3,5,1],sparkconf:1,convergencetol:5,quorum:3,info:[3,5,1],row1:2,row2:2,row3:2,utf:[3,1],consist:[2,4,1],icdm:4,getpredictioncol:4,leftouterjoin:[3,1],usercol:4,readlin:1,similar:[2,3],sparsematrix:5,curv:5,constant:[4,1],getfield:2,labelcol:4,repres:[2,4,3,5,1],incomplet:1,relativesd:1,lemon:1,sequenti:[2,1],nan:[5,1],memory_only_s:[2,3,1],invalid:[2,4],setmindocfreq:4,codec:1,regressionevalu:4,rightouterjoin:[3,1],tempdir:1,deseri:1,colstat:5,binar:4,setnumtre:4,keyconvert:1,lbfg:5,svm:5,algorithm:[2,4,5,1],agg:2,memory_only_2:1,elementtyp:2,evenli:1,cosinesimilar:5,depth:[4,5,1],autobatchedseri:1,came:2,hello:1,sqlcontext:[0,4,5,2],code:[4,5],edf:2,queri:[2,3,5],recomput:[4,1],jssc:3,multivariatestatisticalsummari:5,send:[4,1],nonposit:5,useoffheap:1,fatal:1,sent:[4,1],"0x7f7a2d8a0b90":[3,1],random:[0,4,1],rownumb:2,applyschematopythonrdd:2,dbname:2,tri:4,todegre:2,stopsparkcontext:3,gender:2,stratifi:1,hive:2,createdirectstream:3,"try":[2,5,1],stddev:2,getactivestageid:1,fromoffset:3,trainimplicit:5,pleas:2,smaller:[5,1],natur:[2,4,5],fold:[4,1],blanklin:[2,5],setconf:2,download:1,setnumfold:4,percentil:2,append:2,compat:[2,3,5,1],index:[4,5,1],compar:[5,1],access:[2,3,5,1],experiment:[2,3,5,1],isnotnul:2,randomforestclassifi:4,dense_rank:2,defaultparallel:[5,1],usag:[2,4,5,1],executor:[2,4,1],svmwithsgd:5,len:[2,4,5,1],dstream:3,left_out:2,intercept:[4,5],sinh:2,randn:2,sine:2,implicit:4,storagelevel:[2,3,1],convert:[2,4,5,1],convers:2,physicalrdd:2,warin:5,rdd:[0,3,2,5,1],random_forest:4,typic:4,numtopfeatur:5,field1:2,getwithmean:4,claim:2,apach:[2,1],approxim:[2,4,1],gatewai:1,"boolean":[2,5],setprobabilitycol:4,sgd:5,from:[2,4,3,5,1],zip:1,commun:4,chi:5,batchsiz:1,doubl:[2,5],mllib:[0,4,1],next:[2,4],few:3,lock:1,commut:1,sort:[2,4,5,1],freqitem:2,jsonfil:2,hiveql:2,trait:5,numrow:5,mismatch:5,train:[4,5],cstat:5,retriev:[2,5],augment:5,ridg:[4,5],alia:[2,1],alic:2,hasdefault:4,parquet:[2,5],meet:1,addinplac:1,control:[5,1],setifmiss:1,stringindexermodel:4,oneatatim:3,tag:2,serial:[2,1],tan:2,lamb:1,saveasnewapihadoopdataset:1,developerapi:1,occur:5,forest:[4,5],intlist:2,instead:[2,4,5,1],sin:2,linearmodel:5,setregparam:4,combfunc:1,getstag:4,binaryclassificationmetr:5,pyfil:1,regressionmetr:5,discard:4,splitindex:1,alloc:[4,1],essenti:4,loglevel:1,counter:1,correspond:[4,3,5],element:[2,4,3,5,1],bestmodel:4,allow:[2,4,3,5,1],fallback:1,numslic:1,move:3,runjob:1,memory_and_disk:1,lassowithsgd:5,outer:[2,3,1],updatestatebykei:3,chosen:1,denserank:2,groupeddata:2,total:5,offsetrang:3,crash:2,mindocfreq:[4,5],nonneg:[4,5],handl:[2,5,1],bernoulli:5,unmatch:2,dai:2,fromjson:2,rawpredict:4,slide:3,mode:[2,4],truth:5,rawpredictioncol:4,groupbykeyandwindow:3,numclass:5,keyclass:1,consum:[3,1],"static":[2,3,5,1],our:[5,1],meth:5,bay:5,special:1,out:[2,4,5,1],variabl:[4,5,1],matrix:[4,5],defaultvalu:[2,1],normalvectorrdd:5,categori:[4,5],typenam:2,suitabl:2,rel:[2,5,1],math:5,shut:1,insid:1,manipul:2,p7c96j6:5,dictionari:[4,5,1],index2:5,index1:5,memory_onli:1,gini:[4,5],could:[2,3,5,1],keep:[4,1],length:[2,4,3,5,1],outsid:[2,3],polynomial_expans:4,retain:[3,1],getprobabilitycol:4,suffix:3,getpattern:4,date:2,"1e4":2,"1e6":2,prioriti:1,"long":[2,3,5,1],dump:1,unknown:[2,4],mkdir:1,system:[2,3,5,1],messag:[4,3],attach:4,appl:1,physic:2,termin:3,registertempt:2,"final":1,flume:3,weightedfalsepositiver:5,getevalu:4,rsd:2,predictionandobserv:5,shallow:4,thresh:2,fow:2,exactli:[2,1],createexternalt:2,saveaslibsvmfil:5,num:[2,3,5,1],sockettextstream:3,randomrdd:5,naivebay:5,simplestr:2,explicit:4,have:[2,4,3,5,1],need:[2,4,5,1],valuecontainsnul:2,setparam:4,min:[2,5,1],saveashadoopfil:1,startpo:2,accuraci:[5,1],mix:4,builtin:2,discret:[4,3,5],best:4,which:[2,4,3,5,1],singl:[2,4,3,5,1],isloc:2,setnonneg:4,who:1,setwithmean:[4,5],histogram:[4,1],cbrt:2,marshal:1,url:[2,1],meansquarederror:5,uri:[5,1],pipe:1,determin:[2,4,5],job_to_cancel:1,datafram:[0,4,2],test_support:2,getinputcol:4,text:[2,4,3,5,1],connect:[2,3,1],mappartitionswithsplit:1,setter:[5,1],cvmodel:4,locat:[2,3,1],structfield:2,tmptabl:2,jar:1,bitwiseand:2,should:[2,4,3,5,1],won:1,local:[2,5,1],irm:5,meant:2,utf8_decod:3,contribut:[4,5],saveasparquetfil:2,pyspark:0,chisqtest:5,nnnnn:1,scoreandlabel:[4,5],initializationstep:5,enabl:3,datetyp:2,possibl:2,rint:2,mapfield:2,rootmeansquarederror:5,whether:[2,4,5,1],gbt:4,integr:2,partit:[2,4,3,5,1],weightedtruepositiver:5,cachet:2,gradientboostedtreesmodel:5,registerast:2,crossvalid:4,frame:2,elast:4,temporarili:4,rlike:2,setmetricnam:4,isnan:5,pattern:[4,1],boundari:[2,5],state:[3,1],theta:[2,5],neither:4,kei:[2,4,3,1],tempfil:[2,5,1],job:1,entir:2,problem:4,addit:[2,4,3,1],chisqselector:5,lognormalvectorrdd:5,gram:5,equal:[2,5],decisiontreeclassificationmodel:4,etc:[2,3,1],instanc:[2,4,5,1],grain:1,setse:[4,5],gbtclassifi:4,alsmodel:4,initializationmod:5,cxd:5,respect:3,withreplac:[2,1],uniformvectorrdd:5,estimatorparammap:4,tolocaliter:1,javaload:5,valuedecod:3,compon:[4,5],json:[2,5],treat:[4,5],getusercol:4,immedi:1,getimplicitpref:4,mike:2,bit:[2,5],pid:2,decim:2,togeth:[5,1],densematrix:5,present:[4,5],indeterminist:2,replic:1,multi:[2,1],getorcr:3,unpersist:[2,5,1],rectangular:2,defin:[2,3,5,1],observ:[4,5],getmincount:4,helper:[5,1],site:2,bigint:2,textfil:1,stageid:1,tojson:2,awaittermin:3,greater:[2,5,1],hyperloglog:1,classpath:2,cross:4,sqrt:[2,4,5],againt:5,auto:[4,5],getp:4,failur:3,trainregressor:5,infer:[2,1],competit:2,outputformat:1,http:[2,4,5,1],hostnam:3,col2:2,upon:4,rankingmetr:5,expand:[2,4],transformfunc:3,off:[2,1],center:[4,5],builder:4,well:[4,1],getmindocfreq:4,exampl:[2,4,5,1],command:[2,1],choos:[4,5,1],undefin:4,foreachpartit:[2,1],lognormalrdd:5,test1:4,test0:4,distanc:5,less:[2,5],setlearningr:5,converg:[4,5],obtain:5,tcp:3,papadimitri:2,dense1:5,dense3:5,dense2:5,begin:3,web:1,field:2,nullabl:2,getal:1,isotonicregressionmodel:5,add:[2,4,1],maxiter:5,mininfogain:[4,5],match:[2,4,5,1],clustercent:5,tospars:5,built:[2,1],valueclass:1,five:2,password:2,recurs:1,desc:2,loss:[4,5],like:[2,5,1],windowdur:3,isotonicregress:5,retoken:4,stringlengthstr:2,page:0,captur:1,itemfactor:4,setlosstyp:4,growth:5,flush:5,binaryrecord:1,guarante:[2,4,1],librari:[2,1],tmp:1,leaf:[4,5],lead:[2,5],extractparammap:4,avoid:1,estim:[4,5,1],leav:2,linearregress:4,leader:3,softmax:5,antiton:5,getitem:2,dcg:5,toradian:2,host:3,although:1,offset:[2,3],stage:[4,1],setdroplast:4,about:[2,4,1],actual:[5,1],socket:3,column:[0,4,5,2],freedom:5,getmintokenlength:4,chisqtestresult:5,saveaspicklefil:1,subset:[2,5,1],own:3,lsdw6p:5,automat:[2,4,1],dataset:[0,4,2,5,1],getrank:4,timestamptyp:2,calcult:5,"56e":5,merg:[4,1],intention:1,meanabsoluteerror:5,inner:2,log10:2,"function":[0,4,5,1],decisiontreeregressionmodel:4,continu:[4,3,5],neutral:1,gain:[4,5],overflow:2,count:[2,3,5,1],reducebykei:[3,1],made:1,wise:[2,5],seqfunc:1,wish:3,smooth:5,record:[2,3,1],below:2,structtyp:2,limit:[2,3,1],testfil:1,otherwis:[2,5,1],statcount:1,log1p:2,weightedfmeasur:5,updatefunc:3,evalu:0,"int":[2,5,1],dure:[2,4,3,5],filenam:1,implement:[2,4,5,1],hyperbol:2,inf:5,zkquorum:3,probabl:[4,5,1],detail:[3,1],other:[2,4,3,5,1],lookup:1,futur:[4,1],rememb:3,jointyp:2,conting:[2,5],anint:2,stat:[0,1],row_numb:2,parquetfil:2,addgrid:4,ndarrai:5,setalpha:4,recommendus:5,kmeansmodel:5,loadlibsvmfil:5,maxcategori:4,reliabl:3,inset:2,inser:1},objtypes:{"0":"py:module","1":"py:method","2":"py:attribute","3":"py:function","4":"py:class","5":"py:classmethod","6":"py:staticmethod"},objnames:{"0":["py","module","Python module"],"1":["py","method","Python method"],"2":["py","attribute","Python attribute"],"3":["py","function","Python function"],"4":["py","class","Python class"],"5":["py","classmethod","Python class method"],"6":["py","staticmethod","Python static method"]},filenames:["index","pyspark","pyspark.sql","pyspark.streaming","pyspark.ml","pyspark.mllib"],titles:["Welcome to Spark Python API Docs!","pyspark package","pyspark.sql module","pyspark.streaming module","pyspark.ml package","pyspark.mllib package"],objects:{"":{pyspark:[1,0,0,"-"]},"pyspark.sql.DataFrameReader":{load:[2,1,1,""],jdbc:[2,1,1,""],format:[2,1,1,""],json:[2,1,1,""],parquet:[2,1,1,""],table:[2,1,1,""],options:[2,1,1,""],schema:[2,1,1,""]},"pyspark.mllib.util.JavaSaveable":{save:[5,1,1,""]},"pyspark.ml.feature.Word2VecModel":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],transform:[4,1,1,""],isDefined:[4,1,1,""],hasDefault:[4,1,1,""],explainParam:[4,1,1,""],params:[4,2,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.mllib.linalg.Vectors":{stringify:[5,6,1,""],dense:[5,6,1,""],parse:[5,6,1,""],zeros:[5,6,1,""],sparse:[5,6,1,""],squared_distance:[5,6,1,""],norm:[5,6,1,""]},"pyspark.mllib.recommendation.MatrixFactorizationModel":{load:[5,5,1,""],userFeatures:[5,1,1,""],rank:[5,2,1,""],productFeatures:[5,1,1,""],recommendUsers:[5,1,1,""],predict:[5,1,1,""],recommendProducts:[5,1,1,""],predictAll:[5,1,1,""]},"pyspark.mllib.random.RandomRDDs":{uniformRDD:[5,6,1,""],exponentialVectorRDD:[5,6,1,""],poissonRDD:[5,6,1,""],uniformVectorRDD:[5,6,1,""],logNormalVectorRDD:[5,6,1,""],normalRDD:[5,6,1,""],gammaVectorRDD:[5,6,1,""],gammaRDD:[5,6,1,""],poissonVectorRDD:[5,6,1,""],normalVectorRDD:[5,6,1,""],exponentialRDD:[5,6,1,""],logNormalRDD:[5,6,1,""]},"pyspark.sql.HiveContext":{refreshTable:[2,1,1,""]},"pyspark.mllib.util.MLUtils":{loadLabeledPoints:[5,6,1,""],saveAsLibSVMFile:[5,6,1,""],loadLibSVMFile:[5,6,1,""]},"pyspark.ml.tuning.CrossValidatorModel":{bestModel:[4,2,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],transform:[4,1,1,""],isDefined:[4,1,1,""],hasDefault:[4,1,1,""],explainParam:[4,1,1,""],params:[4,2,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.mllib.fpm.FPGrowth":{train:[5,5,1,""],FreqItemset:[5,4,1,""]},"pyspark.mllib.stat.ChiSqTestResult":{method:[5,2,1,""],degreesOfFreedom:[5,2,1,""],statistic:[5,2,1,""],pValue:[5,2,1,""],nullHypothesis:[5,2,1,""]},"pyspark.mllib.regression.LinearRegressionWithSGD":{train:[5,5,1,""]},"pyspark.ml.Transformer":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],transform:[4,1,1,""],isDefined:[4,1,1,""],hasDefault:[4,1,1,""],explainParam:[4,1,1,""],params:[4,2,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.sql":{functions:[2,0,0,"-"],Window:[2,4,1,""],Column:[2,4,1,""],GroupedData:[2,4,1,""],DataFrame:[2,4,1,""],DataFrameNaFunctions:[2,4,1,""],DataFrameWriter:[2,4,1,""],DataFrameStatFunctions:[2,4,1,""],HiveContext:[2,4,1,""],Row:[2,4,1,""],SQLContext:[2,4,1,""],DataFrameReader:[2,4,1,""],types:[2,0,0,"-"],WindowSpec:[2,4,1,""]},"pyspark.mllib.util.JavaLoader":{load:[5,5,1,""]},"pyspark.mllib.regression.LassoWithSGD":{train:[5,5,1,""]},"pyspark.mllib.feature.Normalizer":{transform:[5,1,1,""]},"pyspark.ml.evaluation.BinaryClassificationEvaluator":{hasDefault:[4,1,1,""],getParam:[4,1,1,""],setMetricName:[4,1,1,""],setRawPredictionCol:[4,1,1,""],setParams:[4,1,1,""],extractParamMap:[4,1,1,""],labelCol:[4,2,1,""],getRawPredictionCol:[4,1,1,""],params:[4,2,1,""],rawPredictionCol:[4,2,1,""],isSet:[4,1,1,""],evaluate:[4,1,1,""],getLabelCol:[4,1,1,""],setLabelCol:[4,1,1,""],explainParam:[4,1,1,""],getMetricName:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],metricName:[4,2,1,""]},"pyspark.mllib.regression":{LinearModel:[5,4,1,""],RidgeRegressionWithSGD:[5,4,1,""],LinearRegressionWithSGD:[5,4,1,""],RidgeRegressionModel:[5,4,1,""],IsotonicRegression:[5,4,1,""],IsotonicRegressionModel:[5,4,1,""],LabeledPoint:[5,4,1,""],LassoModel:[5,4,1,""],LinearRegressionModel:[5,4,1,""],LassoWithSGD:[5,4,1,""]},"pyspark.sql.DataFrameStatFunctions":{freqItems:[2,1,1,""],crosstab:[2,1,1,""],corr:[2,1,1,""],cov:[2,1,1,""]},"pyspark.sql.functions":{monotonicallyIncreasingId:[2,3,1,""],approxCountDistinct:[2,3,1,""],rand:[2,3,1,""],upper:[2,3,1,""],rint:[2,3,1,""],countDistinct:[2,3,1,""],sumDistinct:[2,3,1,""],cosh:[2,3,1,""],percentRank:[2,3,1,""],hypot:[2,3,1,""],toRadians:[2,3,1,""],tan:[2,3,1,""],avg:[2,3,1,""],array:[2,3,1,""],toDegrees:[2,3,1,""],asin:[2,3,1,""],randn:[2,3,1,""],log:[2,3,1,""],lead:[2,3,1,""],min:[2,3,1,""],cos:[2,3,1,""],sum:[2,3,1,""],when:[2,3,1,""],struct:[2,3,1,""],sqrt:[2,3,1,""],lit:[2,3,1,""],coalesce:[2,3,1,""],abs:[2,3,1,""],pow:[2,3,1,""],ntile:[2,3,1,""],log10:[2,3,1,""],sin:[2,3,1,""],atan:[2,3,1,""],max:[2,3,1,""],denseRank:[2,3,1,""],lag:[2,3,1,""],sparkPartitionId:[2,3,1,""],lower:[2,3,1,""],bitwiseNOT:[2,3,1,""],ceil:[2,3,1,""],asc:[2,3,1,""],udf:[2,3,1,""],rank:[2,3,1,""],sinh:[2,3,1,""],signum:[2,3,1,""],cbrt:[2,3,1,""],desc:[2,3,1,""],count:[2,3,1,""],expm1:[2,3,1,""],last:[2,3,1,""],tanh:[2,3,1,""],column:[2,3,1,""],floor:[2,3,1,""],rowNumber:[2,3,1,""],explode:[2,3,1,""],atan2:[2,3,1,""],cumeDist:[2,3,1,""],exp:[2,3,1,""],acos:[2,3,1,""],first:[2,3,1,""],log1p:[2,3,1,""],col:[2,3,1,""],mean:[2,3,1,""]},"pyspark.mllib.feature.HashingTF":{indexOf:[5,1,1,""],transform:[5,1,1,""]},"pyspark.sql.types.MapType":{jsonValue:[2,1,1,""],simpleString:[2,1,1,""],fromJson:[2,5,1,""]},"pyspark.mllib.regression.RidgeRegressionModel":{load:[5,5,1,""],predict:[5,1,1,""],intercept:[5,2,1,""],weights:[5,2,1,""],save:[5,1,1,""]},"pyspark.mllib.feature.Word2VecModel":{getVectors:[5,1,1,""],findSynonyms:[5,1,1,""],transform:[5,1,1,""]},"pyspark.ml.feature.Tokenizer":{hasParam:[4,1,1,""],getInputCol:[4,1,1,""],extractParamMap:[4,1,1,""],setParams:[4,1,1,""],explainParams:[4,1,1,""],getOutputCol:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],isSet:[4,1,1,""],explainParam:[4,1,1,""],transform:[4,1,1,""],params:[4,2,1,""],getParam:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],inputCol:[4,2,1,""],outputCol:[4,2,1,""],setOutputCol:[4,1,1,""]},"pyspark.ml.classification.GBTClassificationModel":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],transform:[4,1,1,""],isDefined:[4,1,1,""],hasDefault:[4,1,1,""],explainParam:[4,1,1,""],params:[4,2,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},pyspark:{SparkContext:[1,4,1,""],SparkFiles:[1,4,1,""],SparkJobInfo:[1,4,1,""],AccumulatorParam:[1,4,1,""],Accumulator:[1,4,1,""],ml:[4,0,0,"-"],PickleSerializer:[1,4,1,""],MarshalSerializer:[1,4,1,""],Broadcast:[1,4,1,""],streaming:[3,0,0,"-"],StatusTracker:[1,4,1,""],BasicProfiler:[1,4,1,""],sql:[2,0,0,"-"],SparkStageInfo:[1,4,1,""],Profiler:[1,4,1,""],SparkConf:[1,4,1,""],RDD:[1,4,1,""],StorageLevel:[1,4,1,""]},"pyspark.sql.types.StructField":{jsonValue:[2,1,1,""],simpleString:[2,1,1,""],fromJson:[2,5,1,""]},"pyspark.mllib.util":{JavaLoader:[5,4,1,""],MLUtils:[5,4,1,""],Saveable:[5,4,1,""],JavaSaveable:[5,4,1,""],Loader:[5,4,1,""]},"pyspark.streaming":{StreamingContext:[3,4,1,""],DStream:[3,4,1,""],kafka:[3,0,0,"-"]},"pyspark.mllib.linalg.SparseVector":{toArray:[5,1,1,""],parse:[5,6,1,""],norm:[5,1,1,""],squared_distance:[5,1,1,""],numNonzeros:[5,1,1,""],dot:[5,1,1,""]},"pyspark.BasicProfiler":{profile:[1,1,1,""],stats:[1,1,1,""]},"pyspark.ml":{Pipeline:[4,4,1,""],PipelineModel:[4,4,1,""],tuning:[4,0,0,"-"],classification:[4,0,0,"-"],Transformer:[4,4,1,""],feature:[4,0,0,"-"],param:[4,0,0,"-"],Estimator:[4,4,1,""],recommendation:[4,0,0,"-"],Model:[4,4,1,""],evaluation:[4,0,0,"-"],regression:[4,0,0,"-"]},"pyspark.ml.tuning.CrossValidator":{getEvaluator:[4,1,1,""],hasDefault:[4,1,1,""],getParam:[4,1,1,""],setEstimatorParamMaps:[4,1,1,""],setParams:[4,1,1,""],evaluator:[4,2,1,""],fit:[4,1,1,""],extractParamMap:[4,1,1,""],numFolds:[4,2,1,""],params:[4,2,1,""],isSet:[4,1,1,""],estimatorParamMaps:[4,2,1,""],setEvaluator:[4,1,1,""],explainParam:[4,1,1,""],setEstimator:[4,1,1,""],setNumFolds:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],getEstimator:[4,1,1,""],getNumFolds:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],getEstimatorParamMaps:[4,1,1,""],estimator:[4,2,1,""]},"pyspark.sql.GroupedData":{count:[2,1,1,""],min:[2,1,1,""],agg:[2,1,1,""],max:[2,1,1,""],sum:[2,1,1,""],avg:[2,1,1,""],mean:[2,1,1,""]},"pyspark.mllib.classification.NaiveBayes":{train:[5,5,1,""]},"pyspark.StatusTracker":{getActiveJobsIds:[1,1,1,""],getJobIdsForGroup:[1,1,1,""],getJobInfo:[1,1,1,""],getStageInfo:[1,1,1,""],getActiveStageIds:[1,1,1,""]},"pyspark.mllib.tree":{RandomForestModel:[5,4,1,""],RandomForest:[5,4,1,""],GradientBoostedTrees:[5,4,1,""],DecisionTree:[5,4,1,""],DecisionTreeModel:[5,4,1,""],GradientBoostedTreesModel:[5,4,1,""]},"pyspark.ml.tuning":{ParamGridBuilder:[4,4,1,""],CrossValidatorModel:[4,4,1,""],CrossValidator:[4,4,1,""]},"pyspark.SparkConf":{setIfMissing:[1,1,1,""],set:[1,1,1,""],setAll:[1,1,1,""],toDebugString:[1,1,1,""],get:[1,1,1,""],getAll:[1,1,1,""],contains:[1,1,1,""],setMaster:[1,1,1,""],setExecutorEnv:[1,1,1,""],setSparkHome:[1,1,1,""],setAppName:[1,1,1,""]},"pyspark.sql.Column":{over:[2,1,1,""],substr:[2,1,1,""],inSet:[2,1,1,""],rlike:[2,1,1,""],alias:[2,1,1,""],when:[2,1,1,""],astype:[2,1,1,""],between:[2,1,1,""],startswith:[2,1,1,""],bitwiseXOR:[2,1,1,""],bitwiseAND:[2,1,1,""],asc:[2,1,1,""],getItem:[2,1,1,""],desc:[2,1,1,""],like:[2,1,1,""],bitwiseOR:[2,1,1,""],getField:[2,1,1,""],endswith:[2,1,1,""],cast:[2,1,1,""],isNull:[2,1,1,""],isNotNull:[2,1,1,""],otherwise:[2,1,1,""]},"pyspark.ml.feature.OneHotEncoder":{getOutputCol:[4,1,1,""],getInputCol:[4,1,1,""],hasDefault:[4,1,1,""],getDropLast:[4,1,1,""],getParam:[4,1,1,""],outputCol:[4,2,1,""],setParams:[4,1,1,""],extractParamMap:[4,1,1,""],transform:[4,1,1,""],params:[4,2,1,""],inputCol:[4,2,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],dropLast:[4,2,1,""],explainParam:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],setDropLast:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""]},"pyspark.sql.Row":{asDict:[2,1,1,""]},"pyspark.mllib.feature.StandardScaler":{fit:[5,1,1,""]},"pyspark.mllib.linalg.DenseMatrix":{toArray:[5,1,1,""],toSparse:[5,1,1,""]},"pyspark.mllib.feature.IDF":{fit:[5,1,1,""]},"pyspark.mllib.evaluation.RegressionMetrics":{rootMeanSquaredError:[5,2,1,""],explainedVariance:[5,2,1,""],meanAbsoluteError:[5,2,1,""],meanSquaredError:[5,2,1,""],r2:[5,2,1,""]},"pyspark.mllib.regression.IsotonicRegression":{train:[5,5,1,""]},"pyspark.mllib.feature.ChiSqSelectorModel":{transform:[5,1,1,""]},"pyspark.mllib.util.Saveable":{save:[5,1,1,""]},"pyspark.mllib.stat.MultivariateStatisticalSummary":{count:[5,1,1,""],min:[5,1,1,""],max:[5,1,1,""],normL1:[5,1,1,""],normL2:[5,1,1,""],variance:[5,1,1,""],numNonzeros:[5,1,1,""],mean:[5,1,1,""]},"pyspark.Profiler":{profile:[1,1,1,""],stats:[1,1,1,""],dump:[1,1,1,""],show:[1,1,1,""]},"pyspark.mllib.regression.RidgeRegressionWithSGD":{train:[5,5,1,""]},"pyspark.ml.recommendation":{ALSModel:[4,4,1,""],ALS:[4,4,1,""]},"pyspark.mllib.tree.RandomForestModel":{load:[5,5,1,""],totalNumNodes:[5,1,1,""],predict:[5,1,1,""],toDebugString:[5,1,1,""],numTrees:[5,1,1,""],call:[5,1,1,""],save:[5,1,1,""]},"pyspark.ml.classification.DecisionTreeClassificationModel":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],transform:[4,1,1,""],explainParam:[4,1,1,""],params:[4,2,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.sql.types.ArrayType":{jsonValue:[2,1,1,""],simpleString:[2,1,1,""],fromJson:[2,5,1,""]},"pyspark.streaming.kafka.KafkaUtils":{createStream:[3,6,1,""],createDirectStream:[3,6,1,""],createRDD:[3,6,1,""]},"pyspark.mllib.evaluation.RankingMetrics":{precisionAt:[5,1,1,""],meanAveragePrecision:[5,2,1,""],ndcgAt:[5,1,1,""]},"pyspark.ml.Model":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],transform:[4,1,1,""],isDefined:[4,1,1,""],hasDefault:[4,1,1,""],explainParam:[4,1,1,""],params:[4,2,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.mllib.fpm":{FPGrowthModel:[5,4,1,""],FPGrowth:[5,4,1,""]},"pyspark.ml.regression.DecisionTreeRegressionModel":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],transform:[4,1,1,""],isDefined:[4,1,1,""],hasDefault:[4,1,1,""],explainParam:[4,1,1,""],params:[4,2,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.mllib.classification.SVMWithSGD":{train:[5,5,1,""]},"pyspark.streaming.kafka":{OffsetRange:[3,4,1,""],KafkaUtils:[3,4,1,""],utf8_decoder:[3,3,1,""],Broker:[3,4,1,""],TopicAndPartition:[3,4,1,""]},"pyspark.mllib.feature.StandardScalerModel":{setWithMean:[5,1,1,""],setWithStd:[5,1,1,""],transform:[5,1,1,""]},"pyspark.ml.classification.LogisticRegressionModel":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],transform:[4,1,1,""],isDefined:[4,1,1,""],hasDefault:[4,1,1,""],explainParam:[4,1,1,""],intercept:[4,2,1,""],weights:[4,2,1,""],getParam:[4,1,1,""],params:[4,2,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.mllib.classification.LogisticRegressionWithLBFGS":{train:[5,5,1,""]},"pyspark.streaming.StreamingContext":{sparkContext:[3,2,1,""],getOrCreate:[3,5,1,""],stop:[3,1,1,""],awaitTerminationOrTimeout:[3,1,1,""],socketTextStream:[3,1,1,""],union:[3,1,1,""],awaitTermination:[3,1,1,""],binaryRecordsStream:[3,1,1,""],transform:[3,1,1,""],checkpoint:[3,1,1,""],start:[3,1,1,""],textFileStream:[3,1,1,""],queueStream:[3,1,1,""],remember:[3,1,1,""]},"pyspark.sql.types.DecimalType":{jsonValue:[2,1,1,""],simpleString:[2,1,1,""]},"pyspark.mllib.clustering.GaussianMixture":{train:[5,5,1,""]},"pyspark.ml.regression":{DecisionTreeRegressionModel:[4,4,1,""],GBTRegressionModel:[4,4,1,""],DecisionTreeRegressor:[4,4,1,""],RandomForestRegressionModel:[4,4,1,""],LinearRegression:[4,4,1,""],LinearRegressionModel:[4,4,1,""],RandomForestRegressor:[4,4,1,""],GBTRegressor:[4,4,1,""]},"pyspark.ml.classification.LogisticRegression":{getProbabilityCol:[4,1,1,""],setRegParam:[4,1,1,""],hasParam:[4,1,1,""],setFitIntercept:[4,1,1,""],maxIter:[4,2,1,""],hasDefault:[4,1,1,""],setTol:[4,1,1,""],getParam:[4,1,1,""],threshold:[4,2,1,""],setParams:[4,1,1,""],getRegParam:[4,1,1,""],setPredictionCol:[4,1,1,""],predictionCol:[4,2,1,""],extractParamMap:[4,1,1,""],probabilityCol:[4,2,1,""],labelCol:[4,2,1,""],featuresCol:[4,2,1,""],getPredictionCol:[4,1,1,""],params:[4,2,1,""],tol:[4,2,1,""],getThreshold:[4,1,1,""],setMaxIter:[4,1,1,""],getTol:[4,1,1,""],isSet:[4,1,1,""],setFeaturesCol:[4,1,1,""],fitIntercept:[4,2,1,""],getLabelCol:[4,1,1,""],getFitIntercept:[4,1,1,""],setLabelCol:[4,1,1,""],explainParam:[4,1,1,""],getElasticNetParam:[4,1,1,""],setProbabilityCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],setElasticNetParam:[4,1,1,""],regParam:[4,2,1,""],elasticNetParam:[4,2,1,""],fit:[4,1,1,""],explainParams:[4,1,1,""],getFeaturesCol:[4,1,1,""],isDefined:[4,1,1,""],setThreshold:[4,1,1,""],getMaxIter:[4,1,1,""]},"pyspark.mllib.evaluation.MulticlassMetrics":{weightedPrecision:[5,2,1,""],weightedRecall:[5,2,1,""],falsePositiveRate:[5,1,1,""],weightedFMeasure:[5,1,1,""],recall:[5,1,1,""],precision:[5,1,1,""],fMeasure:[5,1,1,""],weightedFalsePositiveRate:[5,2,1,""],truePositiveRate:[5,1,1,""],weightedTruePositiveRate:[5,2,1,""]},"pyspark.StorageLevel":{MEMORY_AND_DISK_SER_2:[1,2,1,""],DISK_ONLY:[1,2,1,""],MEMORY_ONLY_2:[1,2,1,""],MEMORY_ONLY:[1,2,1,""],MEMORY_ONLY_SER:[1,2,1,""],MEMORY_AND_DISK:[1,2,1,""],MEMORY_AND_DISK_SER:[1,2,1,""],OFF_HEAP:[1,2,1,""],MEMORY_ONLY_SER_2:[1,2,1,""],DISK_ONLY_2:[1,2,1,""],MEMORY_AND_DISK_2:[1,2,1,""]},"pyspark.sql.DataFrameNaFunctions":{drop:[2,1,1,""],fill:[2,1,1,""],replace:[2,1,1,""]},"pyspark.ml.feature.PolynomialExpansion":{getOutputCol:[4,1,1,""],getDegree:[4,1,1,""],hasDefault:[4,1,1,""],getParam:[4,1,1,""],outputCol:[4,2,1,""],setParams:[4,1,1,""],getInputCol:[4,1,1,""],extractParamMap:[4,1,1,""],setDegree:[4,1,1,""],transform:[4,1,1,""],params:[4,2,1,""],inputCol:[4,2,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],degree:[4,2,1,""],explainParam:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""]},"pyspark.ml.feature.IDFModel":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],transform:[4,1,1,""],explainParam:[4,1,1,""],params:[4,2,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.ml.regression.LinearRegression":{setRegParam:[4,1,1,""],getParam:[4,1,1,""],hasDefault:[4,1,1,""],setTol:[4,1,1,""],maxIter:[4,2,1,""],setParams:[4,1,1,""],getRegParam:[4,1,1,""],setPredictionCol:[4,1,1,""],fit:[4,1,1,""],extractParamMap:[4,1,1,""],labelCol:[4,2,1,""],featuresCol:[4,2,1,""],getPredictionCol:[4,1,1,""],params:[4,2,1,""],tol:[4,2,1,""],setMaxIter:[4,1,1,""],setElasticNetParam:[4,1,1,""],isSet:[4,1,1,""],setFeaturesCol:[4,1,1,""],getFeaturesCol:[4,1,1,""],getLabelCol:[4,1,1,""],setLabelCol:[4,1,1,""],explainParam:[4,1,1,""],getElasticNetParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],getTol:[4,1,1,""],regParam:[4,2,1,""],elasticNetParam:[4,2,1,""],predictionCol:[4,2,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],getMaxIter:[4,1,1,""]},"pyspark.sql.SQLContext":{load:[2,1,1,""],jsonFile:[2,1,1,""],createExternalTable:[2,1,1,""],registerDataFrameAsTable:[2,1,1,""],table:[2,1,1,""],tables:[2,1,1,""],clearCache:[2,1,1,""],parquetFile:[2,1,1,""],tableNames:[2,1,1,""],applySchema:[2,1,1,""],read:[2,2,1,""],createDataFrame:[2,1,1,""],registerFunction:[2,1,1,""],cacheTable:[2,1,1,""],udf:[2,2,1,""],sql:[2,1,1,""],getConf:[2,1,1,""],inferSchema:[2,1,1,""],range:[2,1,1,""],setConf:[2,1,1,""],uncacheTable:[2,1,1,""],jsonRDD:[2,1,1,""]},"pyspark.mllib.linalg.Matrices":{dense:[5,6,1,""],sparse:[5,6,1,""]},"pyspark.ml.feature.StandardScalerModel":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],transform:[4,1,1,""],explainParam:[4,1,1,""],params:[4,2,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.ml.feature.RegexTokenizer":{getOutputCol:[4,1,1,""],setPattern:[4,1,1,""],getInputCol:[4,1,1,""],hasDefault:[4,1,1,""],gaps:[4,2,1,""],getParam:[4,1,1,""],outputCol:[4,2,1,""],setParams:[4,1,1,""],minTokenLength:[4,2,1,""],setGaps:[4,1,1,""],getGaps:[4,1,1,""],getMinTokenLength:[4,1,1,""],extractParamMap:[4,1,1,""],pattern:[4,2,1,""],transform:[4,1,1,""],params:[4,2,1,""],inputCol:[4,2,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],explainParam:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],getPattern:[4,1,1,""],setMinTokenLength:[4,1,1,""]},"pyspark.ml.evaluation":{Evaluator:[4,4,1,""],RegressionEvaluator:[4,4,1,""],BinaryClassificationEvaluator:[4,4,1,""]},"pyspark.mllib.clustering":{GaussianMixture:[5,4,1,""],KMeansModel:[5,4,1,""],GaussianMixtureModel:[5,4,1,""],KMeans:[5,4,1,""]},"pyspark.ml.regression.GBTRegressionModel":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],transform:[4,1,1,""],explainParam:[4,1,1,""],params:[4,2,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.Accumulator":{add:[1,1,1,""],value:[1,2,1,""]},"pyspark.mllib.classification.SVMModel":{load:[5,5,1,""],predict:[5,1,1,""],clearThreshold:[5,1,1,""],intercept:[5,2,1,""],weights:[5,2,1,""],threshold:[5,2,1,""],save:[5,1,1,""],setThreshold:[5,1,1,""]},"pyspark.mllib.stat.Statistics":{colStats:[5,6,1,""],corr:[5,6,1,""],chiSqTest:[5,6,1,""]},"pyspark.mllib.classification":{LogisticRegressionWithLBFGS:[5,4,1,""],LogisticRegressionModel:[5,4,1,""],NaiveBayesModel:[5,4,1,""],SVMWithSGD:[5,4,1,""],NaiveBayes:[5,4,1,""],LogisticRegressionWithSGD:[5,4,1,""],SVMModel:[5,4,1,""]},"pyspark.ml.PipelineModel":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],transform:[4,1,1,""],explainParam:[4,1,1,""],params:[4,2,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.SparkFiles":{getRootDirectory:[1,5,1,""],get:[1,5,1,""]},"pyspark.mllib.classification.LogisticRegressionModel":{load:[5,5,1,""],predict:[5,1,1,""],numClasses:[5,2,1,""],intercept:[5,2,1,""],weights:[5,2,1,""],clearThreshold:[5,1,1,""],numFeatures:[5,2,1,""],threshold:[5,2,1,""],save:[5,1,1,""],setThreshold:[5,1,1,""]},"pyspark.ml.feature.StringIndexer":{setInputCol:[4,1,1,""],setParams:[4,1,1,""],getInputCol:[4,1,1,""],fit:[4,1,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],getOutputCol:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],isSet:[4,1,1,""],explainParam:[4,1,1,""],hasParam:[4,1,1,""],getParam:[4,1,1,""],params:[4,2,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],inputCol:[4,2,1,""],outputCol:[4,2,1,""],setOutputCol:[4,1,1,""]},"pyspark.ml.classification":{LogisticRegression:[4,4,1,""],GBTClassifier:[4,4,1,""],RandomForestClassificationModel:[4,4,1,""],RandomForestClassifier:[4,4,1,""],LogisticRegressionModel:[4,4,1,""],DecisionTreeClassificationModel:[4,4,1,""],DecisionTreeClassifier:[4,4,1,""],GBTClassificationModel:[4,4,1,""]},"pyspark.sql.DataFrame":{orderBy:[2,1,1,""],show:[2,1,1,""],rollup:[2,1,1,""],insertInto:[2,1,1,""],repartition:[2,1,1,""],mapPartitions:[2,1,1,""],dropna:[2,1,1,""],replace:[2,1,1,""],sample:[2,1,1,""],printSchema:[2,1,1,""],saveAsParquetFile:[2,1,1,""],withColumnRenamed:[2,1,1,""],toJSON:[2,1,1,""],toPandas:[2,1,1,""],groupBy:[2,1,1,""],unionAll:[2,1,1,""],take:[2,1,1,""],save:[2,1,1,""],registerTempTable:[2,1,1,""],isLocal:[2,1,1,""],rdd:[2,2,1,""],distinct:[2,1,1,""],na:[2,2,1,""],explain:[2,1,1,""],cache:[2,1,1,""],withColumn:[2,1,1,""],write:[2,2,1,""],coalesce:[2,1,1,""],foreachPartition:[2,1,1,""],select:[2,1,1,""],intersect:[2,1,1,""],persist:[2,1,1,""],freqItems:[2,1,1,""],columns:[2,2,1,""],schema:[2,2,1,""],sort:[2,1,1,""],map:[2,1,1,""],flatMap:[2,1,1,""],describe:[2,1,1,""],registerAsTable:[2,1,1,""],randomSplit:[2,1,1,""],stat:[2,2,1,""],dtypes:[2,2,1,""],cube:[2,1,1,""],saveAsTable:[2,1,1,""],corr:[2,1,1,""],head:[2,1,1,""],fillna:[2,1,1,""],subtract:[2,1,1,""],count:[2,1,1,""],drop_duplicates:[2,1,1,""],join:[2,1,1,""],crosstab:[2,1,1,""],cov:[2,1,1,""],agg:[2,1,1,""],unpersist:[2,1,1,""],drop:[2,1,1,""],foreach:[2,1,1,""],filter:[2,1,1,""],alias:[2,1,1,""],dropDuplicates:[2,1,1,""],limit:[2,1,1,""],collect:[2,1,1,""],first:[2,1,1,""],where:[2,1,1,""],groupby:[2,1,1,""],selectExpr:[2,1,1,""]},"pyspark.ml.classification.GBTClassifier":{getCheckpointInterval:[4,1,1,""],hasParam:[4,1,1,""],setCacheNodeIds:[4,1,1,""],getLossType:[4,1,1,""],setMinInstancesPerNode:[4,1,1,""],hasDefault:[4,1,1,""],setMaxBins:[4,1,1,""],maxIter:[4,2,1,""],maxMemoryInMB:[4,2,1,""],setParams:[4,1,1,""],subsamplingRate:[4,2,1,""],getMaxDepth:[4,1,1,""],getSubsamplingRate:[4,1,1,""],setSubsamplingRate:[4,1,1,""],copy:[4,1,1,""],cacheNodeIds:[4,2,1,""],fit:[4,1,1,""],extractParamMap:[4,1,1,""],labelCol:[4,2,1,""],featuresCol:[4,2,1,""],getPredictionCol:[4,1,1,""],stepSize:[4,2,1,""],params:[4,2,1,""],getParam:[4,1,1,""],setMaxIter:[4,1,1,""],getMaxMemoryInMB:[4,1,1,""],isSet:[4,1,1,""],getStepSize:[4,1,1,""],getLabelCol:[4,1,1,""],setPredictionCol:[4,1,1,""],setLossType:[4,1,1,""],getFeaturesCol:[4,1,1,""],setFeaturesCol:[4,1,1,""],setLabelCol:[4,1,1,""],explainParam:[4,1,1,""],setStepSize:[4,1,1,""],getCacheNodeIds:[4,1,1,""],maxDepth:[4,2,1,""],setMinInfoGain:[4,1,1,""],getOrDefault:[4,1,1,""],checkpointInterval:[4,2,1,""],minInfoGain:[4,2,1,""],getMaxBins:[4,1,1,""],predictionCol:[4,2,1,""],setMaxMemoryInMB:[4,1,1,""],explainParams:[4,1,1,""],getMinInfoGain:[4,1,1,""],isDefined:[4,1,1,""],minInstancesPerNode:[4,2,1,""],getMinInstancesPerNode:[4,1,1,""],lossType:[4,2,1,""],setMaxDepth:[4,1,1,""],setCheckpointInterval:[4,1,1,""],getMaxIter:[4,1,1,""],maxBins:[4,2,1,""]},"pyspark.mllib.stat":{MultivariateGaussian:[5,4,1,""],Statistics:[5,4,1,""],MultivariateStatisticalSummary:[5,4,1,""],ChiSqTestResult:[5,4,1,""]},"pyspark.mllib.evaluation.BinaryClassificationMetrics":{unpersist:[5,1,1,""],areaUnderPR:[5,2,1,""],areaUnderROC:[5,2,1,""]},"pyspark.mllib.regression.LinearModel":{intercept:[5,2,1,""],weights:[5,2,1,""]},"pyspark.ml.classification.RandomForestClassifier":{getCheckpointInterval:[4,1,1,""],hasParam:[4,1,1,""],getSeed:[4,1,1,""],setImpurity:[4,1,1,""],setCacheNodeIds:[4,1,1,""],copy:[4,1,1,""],setMinInstancesPerNode:[4,1,1,""],hasDefault:[4,1,1,""],setNumTrees:[4,1,1,""],setMaxBins:[4,1,1,""],seed:[4,2,1,""],getParam:[4,1,1,""],maxMemoryInMB:[4,2,1,""],setFeatureSubsetStrategy:[4,1,1,""],subsamplingRate:[4,2,1,""],getMaxDepth:[4,1,1,""],setMinInfoGain:[4,1,1,""],setSubsamplingRate:[4,1,1,""],setParams:[4,1,1,""],cacheNodeIds:[4,2,1,""],impurity:[4,2,1,""],predictionCol:[4,2,1,""],extractParamMap:[4,1,1,""],labelCol:[4,2,1,""],featuresCol:[4,2,1,""],getPredictionCol:[4,1,1,""],params:[4,2,1,""],getMaxBins:[4,1,1,""],featureSubsetStrategy:[4,2,1,""],minInfoGain:[4,2,1,""],getMaxMemoryInMB:[4,1,1,""],isSet:[4,1,1,""],getLabelCol:[4,1,1,""],setPredictionCol:[4,1,1,""],getSubsamplingRate:[4,1,1,""],getFeatureSubsetStrategy:[4,1,1,""],getFeaturesCol:[4,1,1,""],setFeaturesCol:[4,1,1,""],setLabelCol:[4,1,1,""],explainParam:[4,1,1,""],getMinInstancesPerNode:[4,1,1,""],maxDepth:[4,2,1,""],getOrDefault:[4,1,1,""],checkpointInterval:[4,2,1,""],getCacheNodeIds:[4,1,1,""],getImpurity:[4,1,1,""],getNumTrees:[4,1,1,""],fit:[4,1,1,""],setMaxMemoryInMB:[4,1,1,""],explainParams:[4,1,1,""],getMinInfoGain:[4,1,1,""],isDefined:[4,1,1,""],setSeed:[4,1,1,""],minInstancesPerNode:[4,2,1,""],numTrees:[4,2,1,""],setMaxDepth:[4,1,1,""],setCheckpointInterval:[4,1,1,""],maxBins:[4,2,1,""]},"pyspark.mllib.tree.DecisionTreeModel":{load:[5,5,1,""],numNodes:[5,1,1,""],predict:[5,1,1,""],toDebugString:[5,1,1,""],depth:[5,1,1,""],call:[5,1,1,""],save:[5,1,1,""]},"pyspark.ml.recommendation.ALSModel":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],rank:[4,2,1,""],transform:[4,1,1,""],explainParam:[4,1,1,""],userFactors:[4,2,1,""],isDefined:[4,1,1,""],getParam:[4,1,1,""],itemFactors:[4,2,1,""],params:[4,2,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.mllib.evaluation":{MulticlassMetrics:[5,4,1,""],RegressionMetrics:[5,4,1,""],RankingMetrics:[5,4,1,""],BinaryClassificationMetrics:[5,4,1,""]},"pyspark.mllib.linalg.Vector":{toArray:[5,1,1,""]},"pyspark.sql.Window":{orderBy:[2,6,1,""],partitionBy:[2,6,1,""]},"pyspark.mllib.linalg":{Matrix:[5,4,1,""],SparseVector:[5,4,1,""],Vectors:[5,4,1,""],Vector:[5,4,1,""],DenseMatrix:[5,4,1,""],DenseVector:[5,4,1,""],Matrices:[5,4,1,""],SparseMatrix:[5,4,1,""]},"pyspark.ml.classification.RandomForestClassificationModel":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],transform:[4,1,1,""],isDefined:[4,1,1,""],hasDefault:[4,1,1,""],explainParam:[4,1,1,""],params:[4,2,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.sql.types.ShortType":{simpleString:[2,1,1,""]},"pyspark.sql.types.DataType":{jsonValue:[2,1,1,""],typeName:[2,5,1,""],json:[2,1,1,""],simpleString:[2,1,1,""]},"pyspark.ml.feature.StandardScaler":{getOutputCol:[4,1,1,""],getWithMean:[4,1,1,""],getInputCol:[4,1,1,""],hasDefault:[4,1,1,""],getParam:[4,1,1,""],outputCol:[4,2,1,""],setParams:[4,1,1,""],fit:[4,1,1,""],extractParamMap:[4,1,1,""],getWithStd:[4,1,1,""],params:[4,2,1,""],inputCol:[4,2,1,""],withMean:[4,2,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],withStd:[4,2,1,""],explainParam:[4,1,1,""],setWithMean:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],setWithStd:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""]},"pyspark.ml.classification.DecisionTreeClassifier":{getCheckpointInterval:[4,1,1,""],getMinInfoGain:[4,1,1,""],setImpurity:[4,1,1,""],setCacheNodeIds:[4,1,1,""],getParam:[4,1,1,""],hasDefault:[4,1,1,""],setMaxBins:[4,1,1,""],setMinInstancesPerNode:[4,1,1,""],maxMemoryInMB:[4,2,1,""],setParams:[4,1,1,""],getMaxDepth:[4,1,1,""],setMinInfoGain:[4,1,1,""],checkpointInterval:[4,2,1,""],cacheNodeIds:[4,2,1,""],impurity:[4,2,1,""],fit:[4,1,1,""],getFeaturesCol:[4,1,1,""],labelCol:[4,2,1,""],featuresCol:[4,2,1,""],getPredictionCol:[4,1,1,""],params:[4,2,1,""],setPredictionCol:[4,1,1,""],minInfoGain:[4,2,1,""],getMaxMemoryInMB:[4,1,1,""],isSet:[4,1,1,""],getLabelCol:[4,1,1,""],setFeaturesCol:[4,1,1,""],setLabelCol:[4,1,1,""],explainParam:[4,1,1,""],getMinInstancesPerNode:[4,1,1,""],maxDepth:[4,2,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],getMaxBins:[4,1,1,""],getImpurity:[4,1,1,""],predictionCol:[4,2,1,""],setMaxMemoryInMB:[4,1,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],minInstancesPerNode:[4,2,1,""],getCacheNodeIds:[4,1,1,""],setMaxDepth:[4,1,1,""],setCheckpointInterval:[4,1,1,""],maxBins:[4,2,1,""]},"pyspark.mllib.tree.GradientBoostedTreesModel":{totalNumNodes:[5,1,1,""],load:[5,5,1,""],predict:[5,1,1,""],toDebugString:[5,1,1,""],numTrees:[5,1,1,""],call:[5,1,1,""],save:[5,1,1,""]},"pyspark.mllib.recommendation.ALS":{trainImplicit:[5,5,1,""],train:[5,5,1,""]},"pyspark.mllib.linalg.Matrix":{toArray:[5,1,1,""]},"pyspark.mllib.clustering.KMeansModel":{load:[5,5,1,""],predict:[5,1,1,""],k:[5,2,1,""],save:[5,1,1,""],clusterCenters:[5,2,1,""],computeCost:[5,1,1,""]},"pyspark.mllib.feature":{ChiSqSelector:[5,4,1,""],Normalizer:[5,4,1,""],Word2Vec:[5,4,1,""],Word2VecModel:[5,4,1,""],StandardScalerModel:[5,4,1,""],IDFModel:[5,4,1,""],IDF:[5,4,1,""],HashingTF:[5,4,1,""],StandardScaler:[5,4,1,""],ChiSqSelectorModel:[5,4,1,""]},"pyspark.mllib.tree.RandomForest":{supportedFeatureSubsetStrategies:[5,2,1,""],trainRegressor:[5,5,1,""],trainClassifier:[5,5,1,""]},"pyspark.mllib.linalg.SparseMatrix":{toArray:[5,1,1,""],toDense:[5,1,1,""]},"pyspark.mllib.feature.ChiSqSelector":{fit:[5,1,1,""]},"pyspark.SparkContext":{parallelize:[1,1,1,""],defaultParallelism:[1,2,1,""],newAPIHadoopFile:[1,1,1,""],statusTracker:[1,1,1,""],setLocalProperty:[1,1,1,""],wholeTextFiles:[1,1,1,""],union:[1,1,1,""],runJob:[1,1,1,""],setLogLevel:[1,1,1,""],getLocalProperty:[1,1,1,""],pickleFile:[1,1,1,""],cancelJobGroup:[1,1,1,""],version:[1,2,1,""],cancelAllJobs:[1,1,1,""],hadoopRDD:[1,1,1,""],defaultMinPartitions:[1,2,1,""],newAPIHadoopRDD:[1,1,1,""],PACKAGE_EXTENSIONS:[1,2,1,""],setCheckpointDir:[1,1,1,""],binaryFiles:[1,1,1,""],stop:[1,1,1,""],broadcast:[1,1,1,""],show_profiles:[1,1,1,""],clearFiles:[1,1,1,""],setJobGroup:[1,1,1,""],startTime:[1,2,1,""],sparkUser:[1,1,1,""],binaryRecords:[1,1,1,""],hadoopFile:[1,1,1,""],addFile:[1,1,1,""],dump_profiles:[1,1,1,""],addPyFile:[1,1,1,""],accumulator:[1,1,1,""],range:[1,1,1,""],setSystemProperty:[1,5,1,""],textFile:[1,1,1,""],sequenceFile:[1,1,1,""]},"pyspark.ml.Estimator":{fit:[4,1,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],explainParam:[4,1,1,""],params:[4,2,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.mllib.linalg.DenseVector":{toArray:[5,1,1,""],parse:[5,6,1,""],dot:[5,1,1,""],squared_distance:[5,1,1,""],numNonzeros:[5,1,1,""],norm:[5,1,1,""]},"pyspark.RDD":{collectAsMap:[1,1,1,""],sortByKey:[1,1,1,""],mapPartitionsWithIndex:[1,1,1,""],foreachPartition:[1,1,1,""],persist:[1,1,1,""],lookup:[1,1,1,""],mapPartitionsWithSplit:[1,1,1,""],take:[1,1,1,""],flatMap:[1,1,1,""],repartitionAndSortWithinPartitions:[1,1,1,""],intersection:[1,1,1,""],partitionBy:[1,1,1,""],name:[1,1,1,""],fullOuterJoin:[1,1,1,""],saveAsPickleFile:[1,1,1,""],saveAsSequenceFile:[1,1,1,""],getNumPartitions:[1,1,1,""],mean:[1,1,1,""],getStorageLevel:[1,1,1,""],saveAsNewAPIHadoopDataset:[1,1,1,""],reduce:[1,1,1,""],fold:[1,1,1,""],aggregateByKey:[1,1,1,""],groupBy:[1,1,1,""],getCheckpointFile:[1,1,1,""],stats:[1,1,1,""],collect:[1,1,1,""],sum:[1,1,1,""],reduceByKeyLocally:[1,1,1,""],takeSample:[1,1,1,""],takeOrdered:[1,1,1,""],treeAggregate:[1,1,1,""],meanApprox:[1,1,1,""],stdev:[1,1,1,""],subtract:[1,1,1,""],subtractByKey:[1,1,1,""],saveAsTextFile:[1,1,1,""],filter:[1,1,1,""],union:[1,1,1,""],context:[1,2,1,""],treeReduce:[1,1,1,""],variance:[1,1,1,""],saveAsHadoopFile:[1,1,1,""],sampleByKey:[1,1,1,""],first:[1,1,1,""],combineByKey:[1,1,1,""],cache:[1,1,1,""],saveAsNewAPIHadoopFile:[1,1,1,""],groupWith:[1,1,1,""],cartesian:[1,1,1,""],zip:[1,1,1,""],reduceByKey:[1,1,1,""],distinct:[1,1,1,""],top:[1,1,1,""],toLocalIterator:[1,1,1,""],checkpoint:[1,1,1,""],coalesce:[1,1,1,""],leftOuterJoin:[1,1,1,""],mapPartitions:[1,1,1,""],saveAsHadoopDataset:[1,1,1,""],setName:[1,1,1,""],repartition:[1,1,1,""],toDebugString:[1,1,1,""],keyBy:[1,1,1,""],histogram:[1,1,1,""],sumApprox:[1,1,1,""],sortBy:[1,1,1,""],sampleStdev:[1,1,1,""],count:[1,1,1,""],foldByKey:[1,1,1,""],join:[1,1,1,""],countByKey:[1,1,1,""],unpersist:[1,1,1,""],values:[1,1,1,""],countApprox:[1,1,1,""],sampleVariance:[1,1,1,""],countApproxDistinct:[1,1,1,""],zipWithIndex:[1,1,1,""],randomSplit:[1,1,1,""],groupByKey:[1,1,1,""],sample:[1,1,1,""],isCheckpointed:[1,1,1,""],id:[1,1,1,""],min:[1,1,1,""],countByValue:[1,1,1,""],isEmpty:[1,1,1,""],foreach:[1,1,1,""],flatMapValues:[1,1,1,""],map:[1,1,1,""],glom:[1,1,1,""],keys:[1,1,1,""],rightOuterJoin:[1,1,1,""],cogroup:[1,1,1,""],aggregate:[1,1,1,""],max:[1,1,1,""],zipWithUniqueId:[1,1,1,""],mapValues:[1,1,1,""],pipe:[1,1,1,""]},"pyspark.PickleSerializer":{dumps:[1,1,1,""],loads:[1,1,1,""]},"pyspark.sql.DataFrameWriter":{jdbc:[2,1,1,""],format:[2,1,1,""],insertInto:[2,1,1,""],saveAsTable:[2,1,1,""],json:[2,1,1,""],mode:[2,1,1,""],parquet:[2,1,1,""],save:[2,1,1,""],options:[2,1,1,""],partitionBy:[2,1,1,""]},"pyspark.ml.Pipeline":{getStages:[4,1,1,""],copy:[4,1,1,""],fit:[4,1,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],explainParam:[4,1,1,""],setStages:[4,1,1,""],getParam:[4,1,1,""],params:[4,2,1,""],getOrDefault:[4,1,1,""],setParams:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.MarshalSerializer":{dumps:[1,1,1,""],loads:[1,1,1,""]},"pyspark.mllib":{clustering:[5,0,0,"-"],stat:[5,0,0,"-"],classification:[5,0,0,"-"],linalg:[5,0,0,"-"],fpm:[5,0,0,"-"],random:[5,0,0,"-"],tree:[5,0,0,"-"],feature:[5,0,0,"-"],util:[5,0,0,"-"],recommendation:[5,0,0,"-"],evaluation:[5,0,0,"-"],regression:[5,0,0,"-"]},"pyspark.ml.evaluation.Evaluator":{extractParamMap:[4,1,1,""],evaluate:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],explainParam:[4,1,1,""],params:[4,2,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.ml.regression.LinearRegressionModel":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],transform:[4,1,1,""],isDefined:[4,1,1,""],hasDefault:[4,1,1,""],explainParam:[4,1,1,""],intercept:[4,2,1,""],params:[4,2,1,""],getParam:[4,1,1,""],weights:[4,2,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.ml.feature.Binarizer":{getOutputCol:[4,1,1,""],getInputCol:[4,1,1,""],hasDefault:[4,1,1,""],getParam:[4,1,1,""],threshold:[4,2,1,""],outputCol:[4,2,1,""],setParams:[4,1,1,""],extractParamMap:[4,1,1,""],transform:[4,1,1,""],params:[4,2,1,""],inputCol:[4,2,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],getThreshold:[4,1,1,""],explainParam:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],setThreshold:[4,1,1,""]},"pyspark.ml.feature":{Normalizer:[4,4,1,""],Word2Vec:[4,4,1,""],Word2VecModel:[4,4,1,""],RegexTokenizer:[4,4,1,""],OneHotEncoder:[4,4,1,""],StringIndexerModel:[4,4,1,""],IDFModel:[4,4,1,""],PolynomialExpansion:[4,4,1,""],StandardScaler:[4,4,1,""],Tokenizer:[4,4,1,""],Binarizer:[4,4,1,""],StringIndexer:[4,4,1,""],IDF:[4,4,1,""],HashingTF:[4,4,1,""],VectorAssembler:[4,4,1,""],StandardScalerModel:[4,4,1,""],VectorIndexer:[4,4,1,""]},"pyspark.ml.regression.DecisionTreeRegressor":{getCheckpointInterval:[4,1,1,""],getMinInfoGain:[4,1,1,""],setImpurity:[4,1,1,""],setCacheNodeIds:[4,1,1,""],setMinInstancesPerNode:[4,1,1,""],hasDefault:[4,1,1,""],setMaxBins:[4,1,1,""],getParam:[4,1,1,""],maxMemoryInMB:[4,2,1,""],setParams:[4,1,1,""],getMaxDepth:[4,1,1,""],setMinInfoGain:[4,1,1,""],checkpointInterval:[4,2,1,""],cacheNodeIds:[4,2,1,""],impurity:[4,2,1,""],fit:[4,1,1,""],getFeaturesCol:[4,1,1,""],labelCol:[4,2,1,""],featuresCol:[4,2,1,""],getPredictionCol:[4,1,1,""],params:[4,2,1,""],setPredictionCol:[4,1,1,""],minInfoGain:[4,2,1,""],getMaxMemoryInMB:[4,1,1,""],isSet:[4,1,1,""],setFeaturesCol:[4,1,1,""],getLabelCol:[4,1,1,""],setLabelCol:[4,1,1,""],explainParam:[4,1,1,""],getMinInstancesPerNode:[4,1,1,""],maxDepth:[4,2,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],getMaxBins:[4,1,1,""],getImpurity:[4,1,1,""],predictionCol:[4,2,1,""],setMaxMemoryInMB:[4,1,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],minInstancesPerNode:[4,2,1,""],getCacheNodeIds:[4,1,1,""],setMaxDepth:[4,1,1,""],setCheckpointInterval:[4,1,1,""],maxBins:[4,2,1,""]},"pyspark.ml.feature.IDF":{getOutputCol:[4,1,1,""],getInputCol:[4,1,1,""],hasDefault:[4,1,1,""],getParam:[4,1,1,""],outputCol:[4,2,1,""],setParams:[4,1,1,""],fit:[4,1,1,""],extractParamMap:[4,1,1,""],params:[4,2,1,""],inputCol:[4,2,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],getMinDocFreq:[4,1,1,""],explainParam:[4,1,1,""],setMinDocFreq:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],minDocFreq:[4,2,1,""]},"pyspark.mllib.random":{RandomRDDs:[5,4,1,""]},"pyspark.ml.feature.Word2Vec":{getOutputCol:[4,1,1,""],getSeed:[4,1,1,""],getInputCol:[4,1,1,""],getParam:[4,1,1,""],hasDefault:[4,1,1,""],seed:[4,2,1,""],maxIter:[4,2,1,""],setMinCount:[4,1,1,""],setParams:[4,1,1,""],outputCol:[4,2,1,""],setVectorSize:[4,1,1,""],fit:[4,1,1,""],extractParamMap:[4,1,1,""],numPartitions:[4,2,1,""],stepSize:[4,2,1,""],params:[4,2,1,""],inputCol:[4,2,1,""],isSet:[4,1,1,""],getStepSize:[4,1,1,""],setOutputCol:[4,1,1,""],getVectorSize:[4,1,1,""],explainParam:[4,1,1,""],setStepSize:[4,1,1,""],setNumPartitions:[4,1,1,""],getNumPartitions:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],setMaxIter:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],setSeed:[4,1,1,""],getMinCount:[4,1,1,""],vectorSize:[4,2,1,""],minCount:[4,2,1,""],getMaxIter:[4,1,1,""]},"pyspark.mllib.feature.IDFModel":{idf:[5,1,1,""],transform:[5,1,1,""]},"pyspark.ml.tuning.ParamGridBuilder":{addGrid:[4,1,1,""],build:[4,1,1,""],baseOn:[4,1,1,""]},"pyspark.mllib.recommendation":{Rating:[5,4,1,""],MatrixFactorizationModel:[5,4,1,""],ALS:[5,4,1,""]},"pyspark.mllib.regression.LinearRegressionModel":{predict:[5,1,1,""],load:[5,5,1,""],save:[5,1,1,""],weights:[5,2,1,""],intercept:[5,2,1,""]},"pyspark.sql.types.StructType":{jsonValue:[2,1,1,""],simpleString:[2,1,1,""],fromJson:[2,5,1,""]},"pyspark.Broadcast":{load:[1,1,1,""],unpersist:[1,1,1,""],dump:[1,1,1,""],value:[1,2,1,""]},"pyspark.mllib.classification.NaiveBayesModel":{predict:[5,1,1,""],load:[5,5,1,""],save:[5,1,1,""]},"pyspark.ml.regression.GBTRegressor":{getCheckpointInterval:[4,1,1,""],hasParam:[4,1,1,""],setCacheNodeIds:[4,1,1,""],getLossType:[4,1,1,""],setMinInstancesPerNode:[4,1,1,""],hasDefault:[4,1,1,""],setMaxBins:[4,1,1,""],maxIter:[4,2,1,""],getMaxDepth:[4,1,1,""],setParams:[4,1,1,""],subsamplingRate:[4,2,1,""],maxMemoryInMB:[4,2,1,""],setMinInfoGain:[4,1,1,""],setSubsamplingRate:[4,1,1,""],copy:[4,1,1,""],cacheNodeIds:[4,2,1,""],fit:[4,1,1,""],extractParamMap:[4,1,1,""],labelCol:[4,2,1,""],featuresCol:[4,2,1,""],getPredictionCol:[4,1,1,""],stepSize:[4,2,1,""],params:[4,2,1,""],minInfoGain:[4,2,1,""],getMaxMemoryInMB:[4,1,1,""],isSet:[4,1,1,""],lossType:[4,2,1,""],setFeaturesCol:[4,1,1,""],getSubsamplingRate:[4,1,1,""],getFeaturesCol:[4,1,1,""],getLabelCol:[4,1,1,""],setLabelCol:[4,1,1,""],explainParam:[4,1,1,""],setStepSize:[4,1,1,""],getCacheNodeIds:[4,1,1,""],maxDepth:[4,2,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],setPredictionCol:[4,1,1,""],setMaxIter:[4,1,1,""],getMaxBins:[4,1,1,""],predictionCol:[4,2,1,""],setMaxMemoryInMB:[4,1,1,""],explainParams:[4,1,1,""],getMinInfoGain:[4,1,1,""],checkpointInterval:[4,2,1,""],isDefined:[4,1,1,""],minInstancesPerNode:[4,2,1,""],getMinInstancesPerNode:[4,1,1,""],getStepSize:[4,1,1,""],setMaxDepth:[4,1,1,""],setLossType:[4,1,1,""],setCheckpointInterval:[4,1,1,""],getMaxIter:[4,1,1,""],maxBins:[4,2,1,""]},"pyspark.sql.types.ByteType":{simpleString:[2,1,1,""]},"pyspark.ml.regression.RandomForestRegressionModel":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],transform:[4,1,1,""],explainParam:[4,1,1,""],params:[4,2,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.sql.types":{StringType:[2,4,1,""],LongType:[2,4,1,""],TimestampType:[2,4,1,""],IntegerType:[2,4,1,""],StructType:[2,4,1,""],DataType:[2,4,1,""],StructField:[2,4,1,""],FloatType:[2,4,1,""],ArrayType:[2,4,1,""],NullType:[2,4,1,""],BinaryType:[2,4,1,""],ByteType:[2,4,1,""],BooleanType:[2,4,1,""],ShortType:[2,4,1,""],DateType:[2,4,1,""],DoubleType:[2,4,1,""],DecimalType:[2,4,1,""],MapType:[2,4,1,""]},"pyspark.mllib.tree.DecisionTree":{trainRegressor:[5,5,1,""],trainClassifier:[5,5,1,""]},"pyspark.ml.feature.HashingTF":{hasParam:[4,1,1,""],getInputCol:[4,1,1,""],hasDefault:[4,1,1,""],setNumFeatures:[4,1,1,""],getParam:[4,1,1,""],outputCol:[4,2,1,""],setParams:[4,1,1,""],getNumFeatures:[4,1,1,""],transform:[4,1,1,""],params:[4,2,1,""],inputCol:[4,2,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],explainParam:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],getOutputCol:[4,1,1,""],isDefined:[4,1,1,""],numFeatures:[4,2,1,""]},"pyspark.sql.WindowSpec":{orderBy:[2,1,1,""],rangeBetween:[2,1,1,""],rowsBetween:[2,1,1,""],partitionBy:[2,1,1,""]},"pyspark.mllib.tree.GradientBoostedTrees":{trainRegressor:[5,5,1,""],trainClassifier:[5,5,1,""]},"pyspark.ml.feature.Normalizer":{getOutputCol:[4,1,1,""],getInputCol:[4,1,1,""],hasDefault:[4,1,1,""],getParam:[4,1,1,""],getP:[4,1,1,""],outputCol:[4,2,1,""],setParams:[4,1,1,""],extractParamMap:[4,1,1,""],transform:[4,1,1,""],params:[4,2,1,""],inputCol:[4,2,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],explainParam:[4,1,1,""],setP:[4,1,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],p:[4,2,1,""]},"pyspark.ml.param.Params":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],hasDefault:[4,1,1,""],isDefined:[4,1,1,""],explainParam:[4,1,1,""],params:[4,2,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.streaming.DStream":{combineByKey:[3,1,1,""],reduce:[3,1,1,""],mapPartitionsWithIndex:[3,1,1,""],repartition:[3,1,1,""],groupByKey:[3,1,1,""],updateStateByKey:[3,1,1,""],countByValue:[3,1,1,""],slice:[3,1,1,""],union:[3,1,1,""],reduceByKeyAndWindow:[3,1,1,""],pprint:[3,1,1,""],transform:[3,1,1,""],checkpoint:[3,1,1,""],reduceByKey:[3,1,1,""],window:[3,1,1,""],leftOuterJoin:[3,1,1,""],persist:[3,1,1,""],flatMapValues:[3,1,1,""],map:[3,1,1,""],flatMap:[3,1,1,""],saveAsTextFiles:[3,1,1,""],glom:[3,1,1,""],rightOuterJoin:[3,1,1,""],cache:[3,1,1,""],cogroup:[3,1,1,""],transformWith:[3,1,1,""],reduceByWindow:[3,1,1,""],foreachRDD:[3,1,1,""],partitionBy:[3,1,1,""],countByWindow:[3,1,1,""],count:[3,1,1,""],join:[3,1,1,""],mapValues:[3,1,1,""],groupByKeyAndWindow:[3,1,1,""],filter:[3,1,1,""],fullOuterJoin:[3,1,1,""],context:[3,1,1,""],mapPartitions:[3,1,1,""],countByValueAndWindow:[3,1,1,""]},"pyspark.ml.recommendation.ALS":{getCheckpointInterval:[4,1,1,""],setRegParam:[4,1,1,""],getSeed:[4,1,1,""],copy:[4,1,1,""],getParam:[4,1,1,""],hasDefault:[4,1,1,""],rank:[4,2,1,""],seed:[4,2,1,""],isDefined:[4,1,1,""],userCol:[4,2,1,""],maxIter:[4,2,1,""],setParams:[4,1,1,""],itemCol:[4,2,1,""],getRegParam:[4,1,1,""],getPredictionCol:[4,1,1,""],ratingCol:[4,2,1,""],setAlpha:[4,1,1,""],fit:[4,1,1,""],extractParamMap:[4,1,1,""],getNumItemBlocks:[4,1,1,""],implicitPrefs:[4,2,1,""],setPredictionCol:[4,1,1,""],getUserCol:[4,1,1,""],params:[4,2,1,""],setMaxIter:[4,1,1,""],setUserCol:[4,1,1,""],getItemCol:[4,1,1,""],isSet:[4,1,1,""],getRatingCol:[4,1,1,""],setRatingCol:[4,1,1,""],setImplicitPrefs:[4,1,1,""],setNonnegative:[4,1,1,""],getImplicitPrefs:[4,1,1,""],setNumUserBlocks:[4,1,1,""],explainParam:[4,1,1,""],setNumItemBlocks:[4,1,1,""],alpha:[4,2,1,""],getOrDefault:[4,1,1,""],checkpointInterval:[4,2,1,""],regParam:[4,2,1,""],getNonnegative:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],setRank:[4,1,1,""],numItemBlocks:[4,2,1,""],nonnegative:[4,2,1,""],setSeed:[4,1,1,""],getRank:[4,1,1,""],numUserBlocks:[4,2,1,""],getNumUserBlocks:[4,1,1,""],setNumBlocks:[4,1,1,""],setItemCol:[4,1,1,""],getAlpha:[4,1,1,""],predictionCol:[4,2,1,""],setCheckpointInterval:[4,1,1,""],getMaxIter:[4,1,1,""]},"pyspark.mllib.regression.LassoModel":{load:[5,5,1,""],save:[5,1,1,""],predict:[5,1,1,""],intercept:[5,2,1,""],weights:[5,2,1,""]},"pyspark.AccumulatorParam":{zero:[1,1,1,""],addInPlace:[1,1,1,""]},"pyspark.mllib.regression.IsotonicRegressionModel":{load:[5,5,1,""],predict:[5,1,1,""],save:[5,1,1,""]},"pyspark.ml.feature.VectorIndexer":{getOutputCol:[4,1,1,""],getInputCol:[4,1,1,""],hasDefault:[4,1,1,""],getParam:[4,1,1,""],outputCol:[4,2,1,""],setParams:[4,1,1,""],fit:[4,1,1,""],extractParamMap:[4,1,1,""],params:[4,2,1,""],inputCol:[4,2,1,""],isSet:[4,1,1,""],setOutputCol:[4,1,1,""],explainParam:[4,1,1,""],maxCategories:[4,2,1,""],setInputCol:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],getMaxCategories:[4,1,1,""],setMaxCategories:[4,1,1,""]},"pyspark.mllib.feature.Word2Vec":{fit:[5,1,1,""],setSeed:[5,1,1,""],setNumPartitions:[5,1,1,""],setLearningRate:[5,1,1,""],setMinCount:[5,1,1,""],setNumIterations:[5,1,1,""],setVectorSize:[5,1,1,""]},"pyspark.mllib.clustering.GaussianMixtureModel":{predict:[5,1,1,""],predictSoft:[5,1,1,""],k:[5,2,1,""],weights:[5,2,1,""],gaussians:[5,2,1,""]},"pyspark.ml.regression.RandomForestRegressor":{getCheckpointInterval:[4,1,1,""],getMinInfoGain:[4,1,1,""],getSeed:[4,1,1,""],setImpurity:[4,1,1,""],setCacheNodeIds:[4,1,1,""],setMinInstancesPerNode:[4,1,1,""],hasDefault:[4,1,1,""],setNumTrees:[4,1,1,""],setMaxBins:[4,1,1,""],seed:[4,2,1,""],getParam:[4,1,1,""],getMaxDepth:[4,1,1,""],setFeatureSubsetStrategy:[4,1,1,""],subsamplingRate:[4,2,1,""],maxMemoryInMB:[4,2,1,""],setMinInfoGain:[4,1,1,""],setSubsamplingRate:[4,1,1,""],setParams:[4,1,1,""],cacheNodeIds:[4,2,1,""],impurity:[4,2,1,""],fit:[4,1,1,""],getFeaturesCol:[4,1,1,""],labelCol:[4,2,1,""],featuresCol:[4,2,1,""],getPredictionCol:[4,1,1,""],params:[4,2,1,""],setPredictionCol:[4,1,1,""],minInfoGain:[4,2,1,""],getMaxMemoryInMB:[4,1,1,""],isSet:[4,1,1,""],getLabelCol:[4,1,1,""],getSubsamplingRate:[4,1,1,""],getFeatureSubsetStrategy:[4,1,1,""],setFeaturesCol:[4,1,1,""],setLabelCol:[4,1,1,""],explainParam:[4,1,1,""],getMinInstancesPerNode:[4,1,1,""],maxDepth:[4,2,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],getMaxBins:[4,1,1,""],getImpurity:[4,1,1,""],getNumTrees:[4,1,1,""],predictionCol:[4,2,1,""],setMaxMemoryInMB:[4,1,1,""],extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],checkpointInterval:[4,2,1,""],isDefined:[4,1,1,""],getCacheNodeIds:[4,1,1,""],setSeed:[4,1,1,""],featureSubsetStrategy:[4,2,1,""],minInstancesPerNode:[4,2,1,""],numTrees:[4,2,1,""],setMaxDepth:[4,1,1,""],setCheckpointInterval:[4,1,1,""],maxBins:[4,2,1,""]},"pyspark.ml.param":{Params:[4,4,1,""],Param:[4,4,1,""]},"pyspark.ml.evaluation.RegressionEvaluator":{hasDefault:[4,1,1,""],getParam:[4,1,1,""],setMetricName:[4,1,1,""],setParams:[4,1,1,""],copy:[4,1,1,""],predictionCol:[4,2,1,""],extractParamMap:[4,1,1,""],labelCol:[4,2,1,""],getPredictionCol:[4,1,1,""],params:[4,2,1,""],isSet:[4,1,1,""],evaluate:[4,1,1,""],getLabelCol:[4,1,1,""],setLabelCol:[4,1,1,""],explainParam:[4,1,1,""],getMetricName:[4,1,1,""],getOrDefault:[4,1,1,""],setPredictionCol:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],isDefined:[4,1,1,""],metricName:[4,2,1,""]},"pyspark.ml.feature.StringIndexerModel":{extractParamMap:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],transform:[4,1,1,""],isDefined:[4,1,1,""],hasDefault:[4,1,1,""],explainParam:[4,1,1,""],params:[4,2,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],copy:[4,1,1,""],isSet:[4,1,1,""]},"pyspark.mllib.fpm.FPGrowthModel":{freqItemsets:[5,1,1,""]},"pyspark.sql.types.IntegerType":{simpleString:[2,1,1,""]},"pyspark.mllib.clustering.KMeans":{train:[5,5,1,""]},"pyspark.sql.types.LongType":{simpleString:[2,1,1,""]},"pyspark.ml.feature.VectorAssembler":{getOutputCol:[4,1,1,""],copy:[4,1,1,""],extractParamMap:[4,1,1,""],hasDefault:[4,1,1,""],setInputCols:[4,1,1,""],explainParams:[4,1,1,""],hasParam:[4,1,1,""],inputCols:[4,2,1,""],transform:[4,1,1,""],isDefined:[4,1,1,""],isSet:[4,1,1,""],explainParam:[4,1,1,""],params:[4,2,1,""],getInputCols:[4,1,1,""],getParam:[4,1,1,""],getOrDefault:[4,1,1,""],setParams:[4,1,1,""],outputCol:[4,2,1,""],setOutputCol:[4,1,1,""]},"pyspark.mllib.util.Loader":{load:[5,5,1,""]},"pyspark.mllib.classification.LogisticRegressionWithSGD":{train:[5,5,1,""]}},titleterms:{classif:[4,5],featur:[4,5],stream:3,modul:[2,4,3,5],random:5,pipelin:4,indic:0,kafka:3,packag:[4,5,1],api:[0,4],tabl:0,evalu:[4,5],fpm:5,pyspark:[2,4,3,5,1],mllib:5,param:4,content:[3,1],recommend:[4,5],type:2,"function":2,core:0,stat:5,linalg:5,python:0,util:5,sql:2,spark:0,"class":0,tune:4,welcom:0,subpackag:1,cluster:5,doc:0,tree:5,context:2,regress:[4,5]}})