* NAME
    * SYNOPSIS
    * WARNING
    * DESCRIPTION
    * METHODS
    * IMPLEMENTATION NOTE
    * RUNNING TIME
    * SEE ALSO
    * BIBLIOGRAPHY
    * AUTHOR
    * LICENSE
    * TODO
    _________________________________________________________________

                                    NAME

  Crypt::Primes - Provable Prime Number Generator suitable for
  Cryptographic Applications.
    _________________________________________________________________

                                  SYNOPSIS

   # generate a random, provable 512-bit prime.

   use Crypt::Primes qw( maurer );
   my $prime = maurer ( Size => 512 );

   # generate a random, provable 2048-bit prime and report
   # progress on console.

   my $another_prime = maurer (
                        Size => 2048,
                        Verbosity => 1
                       );
   # generate a random 1024-bit prime and a group
   # generator of Z*(n).

   my $hash_ref = maurer (
                   Size => 1024,
                   Generator => 1,
                   Verbosity => 1
                  );
    _________________________________________________________________

                                   WARNING

  The codebase is stable, but the API will change in a future release.
  Be warned.
    _________________________________________________________________

                                 DESCRIPTION

  This module implements Ueli Maurer's algorithm for generating large
  provable primes and secure parameters for public-key cryptosystems.
  The generated primes are almost uniformly distributed over the set of
  primes of the specified bitsize and expected time for generation is
  less than the time required for generating a pseudo-prime of the same
  size with Miller-Rabin tests. Detailed description and running time
  analysis of the algorithm can be found in Maurer's paper[1].

  Crypt::Primes is a pure perl implementation. It uses Math::Pari for
  multiple precision integer arithmetic and number theoretic functions.
  Random numbers are gathered with Crypt::Random, a perl interface to
  /dev/u?random devices found on modern Unix operating systems.
    _________________________________________________________________

                                   METHODS

  maurer()
         Generates a prime number of the specified bitsize. Takes a hash
         as parameter and returns a Math::Pari object (prime number) or
         a hash reference (prime number and generator) when group
         generator computation is requested. Following hash keys are
         understood:

  Size
         Bitsize of the required prime number.

  Verbosity
         Level of verbosity of progress reporting. Report is printed on
         STDOUT. Level of 1 indicates normal, terse reporting. Level of
         2 prints lots of intermediate computations, useful for
         debugging.

  Generator
         When Generator key is set to a non-zero value, a group
         generator of Z*(n) is computed. Group generators are required
         key material in public-key cryptosystems like Elgamal and
         Diffie-Hellman that are based on intractability of the discrete
         logarithm problem. When this option is present, maurer()
         returns a hash reference that contains two keys, Prime and
         Generator.

  trialdiv($n,$limit)
         Performs trial division on $n to ensure it's not divisible by
         any prime smaller than or equal to $limit. The module maintains
         a lookup table of primes (from 2 to 65521) for this purpose. If
         $limit is not provided, a suitable value is computed
         automatically. trialdiv() is used by maurer() to weed out
         composite random numbers before performing computationally
         intensive modular exponentiation tests. It is, however,
         documented should you need to use it directly.
    _________________________________________________________________

                             IMPLEMENTATION NOTE

  This module implements a modified FastPrime, as described in [1], to
  facilitate group generator computation. (Refer to [1] and [2] for
  description and pseudo-code of FastPrime). The modification involves
  introduction of an additional constraint on relative size r of q.
  While computing r, we ensure k * r is always greater than maxfact,
  where maxfact is the bitsize of the largest number we can factor
  easily. This value defaults to 140 bits. As a result, R is always
  smaller than maxfact, which allows us to get a complete factorization
  of 2Rq and use it to find a generator of the cyclic group Z*(2Rq).
    _________________________________________________________________

                                RUNNING TIME

  Crypt::Primes generates 512-bit primes in 7 seconds (on average), and
  1024-bit primes in 37 seconds (on average), on my PII 300 Mhz
  notebook. There are no computational limits by design; primes upto
  8192-bits were generated to stress test the code. For detailed runtime
  analysis see [1].
    _________________________________________________________________

                                  SEE ALSO

  largeprimes(1), Crypt::Random(3)
    _________________________________________________________________

                                BIBLIOGRAPHY

   1. Fast Generation of Prime Numbers and Secure Public-Key
      Cryptographic Parameters, Ueli Maurer (1994).
   2. Corrections to Fast Generation of Prime Numbers and Secure
      Public-Key Cryptographic Parameters, Ueli Maurer (1996).
   3. Handbook of Applied Cryptography by Menezes, Paul C. van Oorschot
      and Scott Vanstone (1997).
  Documents 1 & 2 can be found under docs/ of the source distribution.
    _________________________________________________________________

                                   AUTHOR

  Vipul Ved Prakash, <[email protected]>
    _________________________________________________________________

                                   LICENSE

  Copyright (c) 1998-2000, Vipul Ved Prakash. All rights reserved. This
  code is free software; you can redistribute it and/or modify it under
  the same terms as Perl itself.
    _________________________________________________________________

                                    TODO

  Maurer's algorithm generates primes of progressively larger bitsize
  using a recursive construction method. The algorithm enters recursion
  with a prime number and bitsize of the next prime to be generated.
  (Bitsizes of the intermediate primes are computed using a probability
  distribution that ensures generated primes are sufficiently random.)
  This recursion can be distributed over multiple machines,
  participating in a competitive computation model, to achieve close to
  best running time of the algorithm. Support for this will be
  implemented some day, possibly when the next version of Penguin hits
  CPAN.