(Complete documentation follows this change summary.)

What's new in version 0.96:

 Minor bug fixes only.

What's new in version 0.95:

 Flushing out the deferred-write buffer is now done in a single pass,
 regardless of whether the records in the buffer are contiguous.

 Various time and memory performance enhancements courtesy of Tels.
 (<[email protected]>)

 ->flock method now discards read cache and offsets table when
 successful.

 Miscellaneous minor bugs fixes and test suite enhancements.

 New ->offset method for recovering offset table data.  (Tels again.)

----------------------------------------------------------------


NAME
   Tie::File - Access the lines of a disk file via a Perl array

SYNOPSIS
           # This file documents Tie::File version 0.95
           use Tie::File;

           tie @array, 'Tie::File', filename or die ...;

           $array[13] = 'blah';     # line 13 of the file is now 'blah'
           print $array[42];        # display line 42 of the file

           $n_recs = @array;        # how many records are in the file?
           $#array -= 2;            # chop two records off the end

           for (@array) {
             s/PERL/Perl/g;         # Replace PERL with Perl everywhere in the file
           }

           # These are just like regular push, pop, unshift, shift, and splice
           # Except that they modify the file in the way you would expect

           push @array, new recs...;
           my $r1 = pop @array;
           unshift @array, new recs...;
           my $r2 = shift @array;
           @old_recs = splice @array, 3, 7, new recs...;

           untie @array;            # all finished


DESCRIPTION
   `Tie::File' represents a regular text file as a Perl array. Each
   element in the array corresponds to a record in the file. The
   first line of the file is element 0 of the array; the second
   line is element 1, and so on.

   The file is *not* loaded into memory, so this will work even for
   gigantic files.

   Changes to the array are reflected in the file immediately.

   Lazy people and beginners may now stop reading the manual.

 `recsep'

   What is a 'record'? By default, the meaning is the same as for
   the `<...>' operator: It's a string terminated by `$/', which is
   probably `"\n"'. (Minor exception: on DOS and Win32 systems, a
   'record' is a string terminated by `"\r\n"'.) You may change the
   definition of "record" by supplying the `recsep' option in the
   `tie' call:

           tie @array, 'Tie::File', $file, recsep => 'es';


   This says that records are delimited by the string `es'. If the
   file contained the following data:

           Curse these pesky flies!\n


   then the `@array' would appear to have four elements:

           "Curse th"
           "e p"
           "ky fli"
           "!\n"


   An undefined value is not permitted as a record separator.
   Perl's special "paragraph mode" semantics (� la `$/ = ""') are
   not emulated.

   Records read from the tied array do not have the record
   separator string on the end; this is to allow

           $array[17] .= "extra";


   to work as expected.

   (See the section on "autochomp", below.) Records stored into the
   array will have the record separator string appended before they
   are written to the file, if they don't have one already. For
   example, if the record separator string is `"\n"', then the
   following two lines do exactly the same thing:

           $array[17] = "Cherry pie";
           $array[17] = "Cherry pie\n";


   The result is that the contents of line 17 of the file will be
   replaced with "Cherry pie"; a newline character will separate
   line 17 from line 18. This means that this code will do nothing:

           chomp $array[17];


   Because the `chomp'ed value will have the separator reattached
   when it is written back to the file. There is no way to create a
   file whose trailing record separator string is missing.

   Inserting records that *contain* the record separator string is
   not supported by this module. It will probably produce a
   reasonable result, but what this result will be may change in a
   future version. Use 'splice' to insert records or to replace one
   record with several.

 `autochomp'

   Normally, array elements have the record separator removed, so
   that if the file contains the text

           Gold
           Frankincense
           Myrrh


   the tied array will appear to contain C<("Gold", "Frankincense",
   "Myrrh")>. If you set `autochomp' to a false value, the record
   separator will not be removed. If the file above was tied with

           tie @gifts, "Tie::File", $gifts, autochomp => 0;


   then the array `@gifts' would appear to contain C<("Gold\n",
   "Frankincense\n", "Myrrh\n")>, or (on Win32 systems)
   C<("Gold\r\n", "Frankincense\r\n", "Myrrh\r\n")>.

 `mode'

   Normally, the specified file will be opened for read and write
   access, and will be created if it does not exist. (That is, the
   flags `O_RDWR | O_CREAT' are supplied in the `open' call.) If
   you want to change this, you may supply alternative flags in the
   `mode' option. See the Fcntl manpage for a listing of available
   flags. For example:

           # open the file if it exists, but fail if it does not exist
           use Fcntl 'O_RDWR';
           tie @array, 'Tie::File', $file, mode => O_RDWR;

           # create the file if it does not exist
           use Fcntl 'O_RDWR', 'O_CREAT';
           tie @array, 'Tie::File', $file, mode => O_RDWR | O_CREAT;

           # open an existing file in read-only mode
           use Fcntl 'O_RDONLY';
           tie @array, 'Tie::File', $file, mode => O_RDONLY;


   Opening the data file in write-only or append mode is not
   supported.

 `memory'

   This is an upper limit on the amount of memory that `Tie::File'
   will consume at any time while managing the file. This is used
   for two things: managing the *read cache* and managing the
   I<deferred write buffer>.

   Records read in from the file are cached, to avoid having to re-
   read them repeatedly. If you read the same record twice, the
   first time it will be stored in memory, and the second time it
   will be fetched from the *read cache*. The amount of data in the
   read cache will not exceed the value you specified for `memory'.
   If `Tie::File' wants to cache a new record, but the read cache
   is full, it will make room by expiring the least-recently
   visited records from the read cache.

   The default memory limit is 2Mib. You can adjust the maximum
   read cache size by supplying the `memory' option. The argument
   is the desired cache size, in bytes.

           # I have a lot of memory, so use a large cache to speed up access
           tie @array, 'Tie::File', $file, memory => 20_000_000;


   Setting the memory limit to 0 will inhibit caching; records will
   be fetched from disk every time you examine them.

   The `memory' value is not an absolute or exact limit on the
   memory used. `Tie::File' objects contains some structures
   besides the read cache and the deferred write buffer, whose
   sizes are not charged against `memory'.

   The cache itself consumes about 310 bytes per cached record, so
   if your file has many short records, you may want to decrease
   the cache memory limit, or else the cache overhead may exceed
   the size of the cached data.

 `dw_size'

   (This is an advanced feature. Skip this section on first
   reading.)

   If you use deferred writing (See the section on "Deferred
   Writing", below) then data you write into the array will not be
   written directly to the file; instead, it will be saved in the
   *deferred write buffer* to be written out later. Data in the
   deferred write buffer is also charged against the memory limit
   you set with the `memory' option.

   You may set the `dw_size' option to limit the amount of data
   that can be saved in the deferred write buffer. This limit may
   not exceed the total memory limit. For example, if you set
   `dw_size' to 1000 and `memory' to 2500, that means that no more
   than 1000 bytes of deferred writes will be saved up. The space
   available for the read cache will vary, but it will always be at
   least 1500 bytes (if the deferred write buffer is full) and it
   could grow as large as 2500 bytes (if the deferred write buffer
   is empty.)

   If you don't specify a `dw_size', it defaults to the entire
   memory limit.

 Option Format

   `-mode' is a synonym for `mode'. `-recsep' is a synonym for
   `recsep'. `-memory' is a synonym for `memory'. You get the idea.

Public Methods
   The `tie' call returns an object, say `$o'. You may call

           $rec = $o->FETCH($n);
           $o->STORE($n, $rec);


   to fetch or store the record at line `$n', respectively;
   similarly the other tied array methods. (See the perltie manpage
   for details.) You may also call the following methods on this
   object:

 `flock'

           $o->flock(MODE)


   will lock the tied file. `MODE' has the same meaning as the
   second argument to the Perl built-in `flock' function; for
   example `LOCK_SH' or `LOCK_EX | LOCK_NB'. (These constants are
   provided by the `use Fcntl ':flock'' declaration.)

   `MODE' is optional; the default is `LOCK_EX'.

   `Tie::File' maintains an internal table of the byte offset of
   each record it has seen in the file.

   When you use `flock' to lock the file, `Tie::File' assumes that
   the read cache is no longer trustworthy, because another process
   might have modified the file since the last time it was read.
   Therefore, a successful call to `flock' discards the contents of
   the read cache and the internal record offset table.

   `Tie::File' promises that the following sequence of operations
   will be safe:

           my $o = tie @array, "Tie::File", $filename;
           $o->flock;


   In particular, `Tie::File' will *not* read or write the file
   during the `tie' call. (Exception: Using `mode => O_TRUNC' will,
   of course, erase the file during the `tie' call. If you want to
   do this safely, then open the file without `O_TRUNC', lock the
   file, and use `@array = ()'.)

   The best way to unlock a file is to discard the object and untie
   the array. It is probably unsafe to unlock the file without also
   untying it, because if you do, changes may remain unwritten
   inside the object. That is why there is no shortcut for
   unlocking. If you really want to unlock the file prematurely,
   you know what to do; if you don't know what to do, then don't do
   it.

   All the usual warnings about file locking apply here. In
   particular, note that file locking in Perl is advisory, which
   means that holding a lock will not prevent anyone else from
   reading, writing, or erasing the file; it only prevents them
   from getting another lock at the same time. Locks are analogous
   to green traffic lights: If you have a green light, that does
   not prevent the idiot coming the other way from plowing into you
   sideways; it merely guarantees to you that the idiot does not
   also have a green light at the same time.

 `autochomp'

           my $old_value = $o->autochomp(0);    # disable autochomp option
           my $old_value = $o->autochomp(1);    #  enable autochomp option

           my $ac = $o->autochomp();   # recover current value


   See the section on "autochomp", above.

 `defer', `flush', `discard', and `autodefer'

   See the section on "Deferred Writing", below.

 `offset'

           $off = $o->offset($n);


   This method returns the byte offset of the start of the `$n'th
   record in the file. If there is no such record, it returns an
   undefined value.

Tying to an already-opened filehandle
   If `$fh' is a filehandle, such as is returned by `IO::File' or
   one of the other `IO' modules, you may use:

           tie @array, 'Tie::File', $fh, ...;


   Similarly if you opened that handle `FH' with regular `open' or
   `sysopen', you may use:

           tie @array, 'Tie::File', \*FH, ...;


   Handles that were opened write-only won't work. Handles that
   were opened read-only will work as long as you don't try to
   modify the array. Handles must be attached to seekable sources
   of data---that means no pipes or sockets. If `Tie::File' can
   detect that you supplied a non-seekable handle, the `tie' call
   will throw an exception. (On Unix systems, it can detect this.)

Deferred Writing
   (This is an advanced feature. Skip this section on first
   reading.)

   Normally, modifying a `Tie::File' array writes to the underlying
   file immediately. Every assignment like `$a[3] = ...' rewrites
   as much of the file as is necessary; typically, everything from
   line 3 through the end will need to be rewritten. This is the
   simplest and most transparent behavior. Performance even for
   large files is reasonably good.

   However, under some circumstances, this behavior may be
   excessively slow. For example, suppose you have a million-record
   file, and you want to do:

           for (@FILE) {
             $_ = "> $_";
           }


   The first time through the loop, you will rewrite the entire
   file, from line 0 through the end. The second time through the
   loop, you will rewrite the entire file from line 1 through the
   end. The third time through the loop, you will rewrite the
   entire file from line 2 to the end. And so on.

   If the performance in such cases is unacceptable, you may defer
   the actual writing, and then have it done all at once. The
   following loop will perform much better for large files:

           (tied @a)->defer;
           for (@a) {
             $_ = "> $_";
           }
           (tied @a)->flush;


   If `Tie::File''s memory limit is large enough, all the writing
   will done in memory. Then, when you call `->flush', the entire
   file will be rewritten in a single pass.

   (Actually, the preceding discussion is something of a fib. You
   don't need to enable deferred writing to get good performance
   for this common case, because `Tie::File' will do it for you
   automatically unless you specifically tell it not to. See the
   section on "autodeferring", below.)

   Calling `->flush' returns the array to immediate-write mode. If
   you wish to discard the deferred writes, you may call `-
   >discard' instead of `->flush'. Note that in some cases, some of
   the data will have been written already, and it will be too late
   for `->discard' to discard all the changes. Support for `-
   >discard' may be withdrawn in a future version of `Tie::File'.

   Deferred writes are cached in memory up to the limit specified
   by the `dw_size' option (see above). If the deferred-write
   buffer is full and you try to write still more deferred data,
   the buffer will be flushed. All buffered data will be written
   immediately, the buffer will be emptied, and the now-empty space
   will be used for future deferred writes.

   If the deferred-write buffer isn't yet full, but the total size
   of the buffer and the read cache would exceed the `memory'
   limit, the oldest records will be expired from the read cache
   until the total size is under the limit.

   `push', `pop', `shift', `unshift', and `splice' cannot be
   deferred. When you perform one of these operations, any deferred
   data is written to the file and the operation is performed
   immediately. This may change in a future version.

   If you resize the array with deferred writing enabled, the file
   will be resized immediately, but deferred records will not be
   written. This has a surprising consequence: `@a = (...)' erases
   the file immediately, but the writing of the actual data is
   deferred. This might be a bug. If it is a bug, it will be fixed
   in a future version.

 Autodeferring

   `Tie::File' tries to guess when deferred writing might be
   helpful, and to turn it on and off automatically.

           for (@a) {
             $_ = "> $_";
           }


   In this example, only the first two assignments will be done
   immediately; after this, all the changes to the file will be
   deferred up to the user-specified memory limit.

   You should usually be able to ignore this and just use the
   module without thinking about deferring. However, special
   applications may require fine control over which writes are
   deferred, or may require that all writes be immediate. To
   disable the autodeferment feature, use

           (tied @o)->autodefer(0);


   or

           tie @array, 'Tie::File', $file, autodefer => 0;


   Similarly, `->autodefer(1)' re-enables autodeferment, and `-
   >autodefer()' recovers the current value of the autodefer
   setting.

CONCURRENT ACCESS TO FILES
   Caching and deferred writing are inappropriate if you want the
   same file to be accessed simultaneously from more than one
   process. You will want to disable these features. You should do
   that by including the `memory => 0' option in your `tie' calls;
   this will inhibit caching and deferred writing.

   You will also want to lock the file while reading or writing it.
   You can use the `->flock' method for this. A future version of
   this module may provide an 'autolocking' mode.

CAVEATS
   (That's Latin for 'warnings'.)

   *   Reasonable effort was made to make this module efficient.
       Nevertheless, changing the size of a record in the middle of
       a large file will always be fairly slow, because everything
       after the new record must be moved.

   *   The behavior of tied arrays is not precisely the same as for
       regular arrays. For example:

               # This DOES print "How unusual!"
               undef $a[10];  print "How unusual!\n" if defined $a[10];


       `undef'-ing a `Tie::File' array element just blanks out the
       corresponding record in the file. When you read it back
       again, you'll get the empty string, so the supposedly-
       `undef''ed value will be defined. Similarly, if you have
       `autochomp' disabled, then

               # This DOES print "How unusual!" if 'autochomp' is disabled
               undef $a[10];
               print "How unusual!\n" if $a[10];


       Because when `autochomp' is disabled, `$a[10]' will read
       back as `"\n"' (or whatever the record separator string is.)

       There are other minor differences, particularly regarding
       `exists' and `delete', but in general, the correspondence is
       extremely close.

   *   I have supposed that since this module is concerned with file
       I/O, almost all normal use of it will be heavily I/O bound.
       This means that the time to maintain complicated data
       structures inside the module will be dominated by the time
       to actually perform the I/O. When there was an opportunity
       to spend CPU time to avoid doing I/O, I usually tried to
       take it.

   *   You might be tempted to think that deferred writing is like
       transactions, with `flush' as `commit' and `discard' as
       `rollback', but it isn't, so don't.

   *   There is a large memory overhead for each record offset and for
       each cache entry: about 310 bytes per cached data record,
       and about 21 bytes per offset table entry.

       The per-record overhead will limit the maximum number of
       records you can access per file. Note that *accessing* the
       length of the array via `$x = scalar @tied_file' accesses
       all records and stores their offsets. The same for `foreach
       (@tied_file)', even if you exit the loop early.


SUBCLASSING
   This version promises absolutely nothing about the internals,
   which may change without notice. A future version of the module
   will have a well-defined and stable subclassing API.

WHAT ABOUT `DB_File'?
   People sometimes point out that the DB_File manpage will do
   something similar, and ask why `Tie::File' module is necessary.

   There are a number of reasons that you might prefer `Tie::File'.
   A list is available at `http://perl.plover.com/TieFile/why-not-
   DB_File'.

AUTHOR
   Mark Jason Dominus

   To contact the author, send email to: `mjd-perl-
   [email protected]'

   To receive an announcement whenever a new version of this module
   is released, send a blank email message to `mjd-perl-tiefile-
   [email protected]'.

   The most recent version of this module, including documentation
   and any news of importance, will be available at

           http://perl.plover.com/TieFile/


LICENSE
   `Tie::File' version 0.95 is copyright (C) 2002 Mark Jason
   Dominus.

   This library is free software; you may redistribute it and/or
   modify it under the same terms as Perl itself.

   These terms are your choice of any of (1) the Perl Artistic
   Licence, or (2) version 2 of the GNU General Public License as
   published by the Free Software Foundation, or (3) any later
   version of the GNU General Public License.

   This library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
   General Public License for more details.

   You should have received a copy of the GNU General Public
   License along with this library program; it should be in the
   file `COPYING'. If not, write to the Free Software Foundation,
   Inc., 59 Temple Place, Suite 330, Boston, MA 02111 USA

   For licensing inquiries, contact the author at:

           Mark Jason Dominus
           255 S. Warnock St.
           Philadelphia, PA 19107


WARRANTY
   `Tie::File' version 0.95 comes with ABSOLUTELY NO WARRANTY. For
   details, see the license.

THANKS
   Gigantic thanks to Jarkko Hietaniemi, for agreeing to put this
   in the core when I hadn't written it yet, and for generally
   being helpful, supportive, and competent. (Usually the rule is
   "choose any one.") Also big thanks to Abhijit Menon-Sen for all
   of the same things.

   Special thanks to Craig Berry and Peter Prymmer (for VMS
   portability help), Randy Kobes (for Win32 portability help),
   Clinton Pierce and Autrijus Tang (for heroic eleventh-hour Win32
   testing above and beyond the call of duty), Michael G Schwern
   (for testing advice), and the rest of the CPAN testers (for
   testing generally).

   Special thanks to Tels for suggesting several speed and memory
   optimizations.

   Additional thanks to: Edward Avis / Mattia Barbon / Gerrit Haase
   / Jarkko Hietaniemi (again) / Nikola Knezevic / John Kominetz /
   Nick Ing-Simmons / Tassilo von Parseval / H. Dieter Pearcey /
   Slaven Rezic / Eric Roode / Peter Scott / Peter Somu / Autrijus
   Tang (again) / Tels (again) / Juerd Waalboer

TODO
   More tests. (Stuff I didn't think of yet.)

   Paragraph mode?

   Fixed-length mode. Leave-blanks mode.

   Maybe an autolocking mode?

   For many common uses of the module, the read cache is a
   liability. For example, a program that inserts a single record,
   or that scans the file once, will have a cache hit rate of zero.
   This suggests a major optimization: The cache should be
   initially disabled. Here's a hybrid approach: Initially, the
   cache is disabled, but the cache code maintains statistics about
   how high the hit rate would be *if* it were enabled. When it
   sees the hit rate get high enough, it enables itself. The STAT
   comments in this code are the beginning of an implementation of
   this.

   Record locking with fcntl()? Then the module might support an
   undo log and get real transactions. What a tour de force that
   would be.

   Keeping track of the highest cached record. This would allow
   reads-in-a-row to skip the cache lookup faster (if reading from
   1..N with empty cache at start, the last cached value will be
   always N-1).

   More tests.