NAME
   Algorithm::CurveFit - Nonlinear Least Squares Fitting

SYNOPSIS
   use Algorithm::CurveFit;

     # Known form of the formula
     my $formula = 'c + a * x^2';
     my $variable = 'x';
     my @xdata = read_file('xdata'); # The data corresponsing to $variable
     my @ydata = read_file('ydata'); # The data on the other axis
     my @parameters = (
         # Name    Guess   Accuracy
         ['a',     0.9,    0.00001],  # If an iteration introduces smaller
         ['c',     20,     0.00005],  # changes that the accuracy, end.
     );
     my $max_iter = 100; # maximum iterations

     my $square_residual = Algorithm::CurveFit->curve_fit(
         formula            => $formula, # may be a Math::Symbolic tree instead
         params             => \@parameters,
         variable           => $variable,
         xdata              => \@xdata,
         ydata              => \@ydata,
         maximum_iterations => $max_iter,
     );

     use Data::Dumper;
     print Dumper \@parameters;
     # Prints
     # $VAR1 = [
     #          [
     #            'a',
     #            '0.201366784209602',
     #            '1e-05'
     #          ],
     #          [
     #            'c',
     #            '1.94690440147554',
     #            '5e-05'
     #          ]
     #        ];
     #
     # Real values of the parameters (as demonstrated by noisy input data):
     # a = 0.2
     # c = 2

DESCRIPTION
   "Algorithm::CurveFit" implements a nonlinear least squares curve fitting
   algorithm. That means, it fits a curve of known form (sine-like,
   exponential, polynomial of degree n, etc.) to a given set of data
   points.

   For details about the algorithm and its capabilities and flaws, you're
   encouraged to read the MathWorld page referenced below. Note, however,
   that it is an iterative algorithm that improves the fit with each
   iteration until it converges. The following rule of thumb usually holds
   true:

   * A good guess improves the probability of convergence and the quality
     of the fit.

   * Increasing the number of free parameters decreases the quality and
     convergence speed.

   * Make sure that there are no correlated parameters such as in 'a + b *
     e^(c+x)'. (The example can be rewritten as 'a + b * e^c * e^x' in
     which 'c' and 'b' are basically equivalent parameters.

   The curve fitting algorithm is accessed via the 'curve_fit' subroutine.
   It requires the following parameters as 'key => value' pairs:

   formula
     The formula should be a string that can be parsed by Math::Symbolic.
     Alternatively, it can be an existing Math::Symbolic tree. Please refer
     to the documentation of that module for the syntax.

     Evaluation of the formula for a specific value of the variable
     (X-Data) and the parameters (see below) should yield the associated
     Y-Data value in case of perfect fit.

   variable
     The 'variable' is the variable in the formula that will be replaced
     with the X-Data points for evaluation. If omitted in the call to
     "curve_fit", the name 'x' is default. (Hence 'xdata'.)

   params
     The parameters are the symbols in the formula whose value is varied by
     the algorithm to find the best fit of the curve to the data. There may
     be one or more parameters, but please keep in mind that the number of
     parameters not only increases processing time, but also decreases the
     quality of the fit.

     The value of this options should be an anonymous array. This array
     should hold one anonymous array for each parameter. That array should
     hold (in order) a parameter name, an initial guess, and optionally an
     accuracy measure.

     Example:

       $params = [
         ['parameter1', 5,  0.00001],
         ['parameter2', 12, 0.0001 ],
         ...
       ];

       Then later:
       curve_fit(
       ...
         params => $params,
       ...
       );

     The accuracy measure means that if the change of parameters from one
     iteration to the next is below each accuracy measure for each
     parameter, convergence is assumed and the algorithm stops iterating.

     In order to prevent looping forever, you are strongly encouraged to
     make use of the accuracy measure (see also: maximum_iterations).

     The final set of parameters is not returned from the subroutine but
     the parameters are modified in-place. That means the original data
     structure will hold the best estimate of the parameters.

   xdata
     This should be an array reference to an array holding the data for the
     variable of the function. (Which defaults to 'x'.)

   ydata
     This should be an array reference to an array holding the function
     values corresponding to the x-values in 'xdata'.

   maximum_iterations
     Optional parameter to make the process stop after a given number of
     iterations. Using the accuracy measure and this option together is
     encouraged to prevent the algorithm from going into an endless loop in
     some cases.

   The subroutine returns the sum of square residuals after the final
   iteration as a measure for the quality of the fit.

 EXPORT
   None by default, but you may choose to export "curve_fit" using the
   standard Exporter semantics.

 SUBROUTINES
   This is a list of public subroutines

   curve_fit
     This subroutine implements the curve fitting as explained in
     DESCRIPTION above.

NOTES AND CAVEATS
   * When computing the derivative symbolically using "Math::Symbolic", the
     formula simplification algorithm can sometimes fail to find the
     equivalent of "(x-x_0)/(x-x_0)". Typically, these would be hidden in a
     more complex product. The effect is that for "x -> x_0", the
     evaluation of the derivative becomes undefined.

     Since version 1.05, we fall back to numeric differentiation using
     five-point stencil in such cases. This should help with one of the
     primary complaints about the reliability of the module.

   * This module is NOT fast. For slightly better performance, the formulas
     are compiled to Perl code if possible.

SEE ALSO
   The algorithm implemented in this module was taken from:

   Eric W. Weisstein. "Nonlinear Least Squares Fitting." From MathWorld--A
   Wolfram Web Resource.
   http://mathworld.wolfram.com/NonlinearLeastSquaresFitting.html

   New versions of this module can be found on http://steffen-mueller.net
   or CPAN.

   This module uses the following modules. It might be a good idea to be
   familiar with them. Math::Symbolic, Math::MatrixReal, Test::More

AUTHOR
   Steffen Mueller, <[email protected]<gt>

COPYRIGHT AND LICENSE
   Copyright (C) 2005-2010 by Steffen Mueller

   This library is free software; you can redistribute it and/or modify it
   under the same terms as Perl itself, either Perl version 5.6 or, at your
   option, any later version of Perl 5 you may have available.