NAME
   Lingua::TFIDF - Language-independent TF-IDF calculator.

VERSION
   version 0.01

SYNOPSIS
     use Lingua::TFIDF;
     use Lingua::TFIDF::WordSegmenter::SplitBySpace;

     my $tf_idf_calc = Lingua::TFIDF->new(
       # Use a word segmenter for japanese text.
       word_segmenter => Lingua::TFIDF::WordSegmenter::SplitBySpace->new,
     );

     my $document1 = 'Humpty Dumpty sat on a wall...';
     my $document2 = 'Remember, remember, the fifth of November...';

     my $tf = $tf_idf_calc->tf(document => $document1);
     # TF of word "Dumpty" in $document1.
     say $tf->{'Dumpty'};  # 2, if you are referring same text as mine.

     my $idf = $tf_idf_calc->idf(documents => [$document1, $document2]);
     say $idf->{'Dumpty'};  # log(2/1) ≒ 0.693147

     my $tf_idfs = $tf_idf_calc->tf_idf(documents => [$document1, $document2]);
     # TF-IDF of word "Dumpty" in $document1.
     say $tf_idfs->[0]{'Dumpty'};  # 2 log(2/1) ≒ 1.386294
     # Ditto. But in $document2.
     say $tf_idfs->[1]{'Dumpty'};  # 0

DESCRIPTION
   Quoting Wikipedia <http://en.wikipedia.org/wiki/Tf%E2%80%93idf>:

     tf–idf, short for term frequency–inverse document frequency, is a numerical statistic that is intended to reflect how important a word is to a document in a collection or corpus. It is often used as a weighting factor in information retrieval and text mining.

   This module provides feature for calculating TF, IDF and TF-IDF.

 MOTIVATION
   There are several TF-IDF calculator modules in CPAN already, for example
   Text::TFIDF and Lingua::JA::TFIDF. So why I reinvent the wheel? The
   reason is language dependency: "Text::TFIDF" assumes that words in
   sentence are separated by spaces. This assumption is not true in most
   east asian languages. And "Lingua::JA::TFIDF" works only on japanese
   text.

   "Lingua::TFIDF" solves this problem by separating word segmentation
   process from word frequency counting. You can process documents written
   in any languages, by providing appropriate word segmenter (see "CUSTOM
   WORD SEGMENTER" below.)

METHODS
 new(word_segmenter => $segmenter)
   Constructor. Takes 1 mandatory parameter "word_segmenter".

  CUSTOM WORD SEGMENTER
   Although this distribution bundles some language-independent word
   segmenter, like Lingua::TFIDF::WordSegmenter::SplitBySpace, sometimes
   language-specifiec word segmenters are more appropriate. You can pass a
   custom word segmenter object to the calculator.

   The word segmenter is a plain Perl object that implements "segment"
   method. The method takes 1 positional argument $document, which is a
   string or a reference to string. It is expected to return an word
   iterator as CodeRef.

   Roughly speaking, given custom word segmenter will be used like:

     my $document = 'foo bar baz';

     # Can be called with a reference, like |->segment(\$document)|.
     # Detecting data type is callee's responsibility.
     my $iter = $word_segmenter->segment($document);

     while (defined(my $word = $iter->())) {
        ...
     }

 idf(documents => \@documents)
   Calculates IDFs. Result is returned as HashRef, which the keys and
   values are words and corresponding IDFs respectively.

 tf(document => $document | \$document [, normalize => 0])
   Calculates TFs. Result is returned as HashRef, which the keys and values
   are words and corresponding TFs respectively.

   If optional parameter <normalize> is set true, the TFs are devided by
   the number of words in the $document. It is useful when comparing TFs
   with other documents.

 tf_idf(documents => \@documents [, normalize => 0])
   Calculates TF-IDFs. Result is returned as ArrayRef of HashRef. Each
   HashRef contains TF-IDF values for corresponding document.

SEE ALSO
   Lingua::TFIDF::WordSegmenter::LetterNgram
   Lingua::TFIDF::WordSegmenter::SplitBySpace
   Lingua::TFIDF::WordSegmenter::JA::MeCab

AUTHOR
   Koichi SATOH <[email protected]>

COPYRIGHT AND LICENSE
   This software is Copyright (c) 2014 by Koichi SATOH.

   This is free software, licensed under:

     The MIT (X11) License