NAME
   Statistics::Descriptive::Discrete - Compute descriptive statistics for
   discrete data sets.

   To install, use the CPAN module
   (https://metacpan.org/pod/Statistics::Descriptive::Discrete).

SYNOPSIS
     use Statistics::Descriptive::Discrete;

     my $stats = new Statistics::Descriptive::Discrete;
     $stats->add_data(1,10,2,1,1,4,5,1,10,8,7);
     print "count = ",$stats->count(),"\n";
     print "uniq  = ",$stats->uniq(),"\n";
     print "sum = ",$stats->sum(),"\n";
     print "min = ",$stats->min(),"\n";
     print "min index = ",$stats->mindex(),"\n";
     print "max = ",$stats->max(),"\n";
     print "max index = ",$stats->maxdex(),"\n";
     print "mean = ",$stats->mean(),"\n";
     print "geometric mean = ",$stats->geometric_mean(),"\n";
     print "harmonic mean = ", $stats->harmonic_mean(),"\n";
     print "standard_deviation = ",$stats->standard_deviation(),"\n";
     print "variance = ",$stats->variance(),"\n";
     print "sample_range = ",$stats->sample_range(),"\n";
     print "mode = ",$stats->mode(),"\n";
     print "median = ",$stats->median(),"\n";
     my $f = $stats->frequency_distribution_ref(3);
     for (sort {$a <=> $b} keys %$f) {
       print "key = $_, count = $f->{$_}\n";
     }

DESCRIPTION
   This module provides basic functions used in descriptive statistics. It
   borrows very heavily from Statistics::Descriptive::Full (which is
   included with Statistics::Descriptive) with one major difference. This
   module is optimized for discretized data e.g. data from an A/D
   conversion that has a discrete set of possible values. E.g. if your data
   is produced by an 8 bit A/D then you'd have only 256 possible values in
   your data set. Even though you might have a million data points, you'd
   only have 256 different values in those million points. Instead of
   storing the entire data set as Statistics::Descriptive does, this module
   only stores the values seen and the number of times each value occurs.

   For very large data sets, this storage method results in significant
   speed and memory improvements. For example, for an 8-bit data set (256
   possible values), with 1,000,000 data points, this module is about 10x
   faster than Statistics::Descriptive::Full or
   Statistics::Descriptive::Sparse.

   Statistics::Descriptive run time is a factor of the size of the data
   set. In particular, repeated calls to `add_data' are slow.
   Statistics::Descriptive::Discrete's `add_data' is optimized for speed.
   For a give number of data points, this module's run time will increase
   as the number of unique data values in the data set increases. For
   example, while this module runs about 10x the speed of
   Statistics::Descriptive::Full for an 8-bit data set, the run speed drops
   to about 3x for an equivalent sized 20-bit data set.

   See sdd_prof.pl in the examples directory to play with profiling this
   module against Statistics::Descriptive::Full.

METHODS
   $stat = Statistics::Descriptive::Discrete->new();
       Create a new statistics object.

   $stat->add_data(1,2,3,4,5);
       Adds data to the statistics object. Sets a flag so that the
       statistics will be recomputed the next time they're needed.

   $stat->add_data_tuple(1,2,42,3);
       Adds data to the statistics object where every two elements are a
       value and a count (how many times did the value occur?) The above is
       equivalent to `$stat->add_data(1,1,42,42,42);' Use this when your
       data is in a form isomorphic to ($value, $occurrence).

   $stat->max();
       Returns the maximum value of the data set.

   $stat->min();
       Returns the minimum value of the data set.

   $stat->mindex();
       Returns the index of the minimum value of the data set. The index
       returned is the first occurence of the minimum value.

       Note: the index is determined by the order data was added using
       add_data() or add_data_tuple(). It is meaningless in context of
       get_data() as get_data() does not return values in the same order in
       which they were added. This behavior is different than
       Statistics::Descriptive which does preserve order.

   $stat->maxdex();
       Returns the index of the maximum value of the data set. The index
       returned is the first occurence of the maximum value.

       Note: the index is determined by the order data was added using
       `add_data()' or `add_data_tuple()'. It is meaningless in context of
       `get_data()' as `get_data()' does not return values in the same
       order in which they were added. This behavior is different than
       Statistics::Descriptive which does preserve order.

   $stat->count();
       Returns the total number of elements in the data set.

   $stat->uniq();
       If called in scalar context, returns the total number of unique
       elements in the data set. For example, if your data set is
       (1,2,2,3,3,3), uniq will return 3.

       If called in array context, returns an array of each data value in
       the data set in sorted order. In the above example, `@uniq =
       $stats->uniq();' would return (1,2,3)

       This function is specific to Statistics::Descriptive::Discrete and
       is not implemented in Statistics::Descriptive.

       It is useful for getting a frequency distribution for each discrete
       value in the data the set:

          my $stats = Statistics::Descriptive::Discrete->new();
                $stats->add_data_tuple(1,1,2,2,3,3,4,4,5,5,6,6,7,7);
                my @bins = $stats->uniq();
                my $f = $stats->frequency_distribution_ref(\@bins);
                for (sort {$a <=> $b} keys %$f) {
                        print "value = $_, count = $f->{$_}\n";
                }

   $stat->sum();
       Returns the sum of all the values in the data set.

   $stat->mean();
       Returns the mean of the data.

   $stat->harmonic_mean();
       Returns the harmonic mean of the data. Since the mean is undefined
       if any of the data are zero or if the sum of the reciprocals is
       zero, it will return undef for both of those cases.

   $stat->geometric_mean();
       Returns the geometric mean of the data. Returns `undef' if any of
       the data are less than 0. Returns 0 if any of the data are 0.

   $stat->median();
       Returns the median value of the data.

   $stat->mode();
       Returns the mode of the data.

   $stat->variance();
       Returns the variance of the data.

   $stat->standard_deviation();
       Returns the standard_deviation of the data.

   $stat->sample_range();
       Returns the sample range (max - min) of the data set.

   $stat->frequency_distribution_ref($num_partitions);
   $stat->frequency_distribution_ref(\@bins);
   $stat->frequency_distribution_ref();
       `frequency_distribution_ref($num_partitions)' slices the data into
       `$num_partitions' sets (where $num_partitions is greater than 1) and
       counts the number of items that fall into each partition. It returns
       a reference to a hash where the keys are the numerical values of the
       partitions used. The minimum value of the data set is not a key and
       the maximum value of the data set is always a key. The number of
       entries for a particular partition key are the number of items which
       are greater than the previous partition key and less then or equal
       to the current partition key. As an example,

          $stat->add_data(1,1.5,2,2.5,3,3.5,4);
          $f = $stat->frequency_distribution_ref(2);
          for (sort {$a <=> $b} keys %$f) {
             print "key = $_, count = $f->{$_}\n";
          }

       prints

          key = 2.5, count = 4
          key = 4, count = 3

       since there are four items less than or equal to 2.5, and 3 items
       greater than 2.5 and less than 4.

       `frequency_distribution_ref(\@bins)' provides the bins that are to
       be used for the distribution. This allows for non-uniform
       distributions as well as trimmed or sample distributions to be
       found. `@bins' must be monotonic and must contain at least one
       element. Note that unless the set of bins contains the full range of
       the data, the total counts returned will be less than the sample
       size.

       Calling `frequency_distribution_ref()' with no arguments returns the
       last distribution calculated, if such exists.

   my %hash = $stat->frequency_distribution($partitions);
   my %hash = $stat->frequency_distribution(\@bins);
   my %hash = $stat->frequency_distribution();
       Same as `frequency_distribution_ref()' except that it returns the
       hash clobbered into the return list. Kept for compatibility reasons
       with previous versions of Statistics::Descriptive::Discrete and
       using it is discouraged.

       Note: in earlier versions of Statistics:Descriptive::Discrete,
       `frequency_distribution()' behaved differently than the
       Statistics::Descriptive implementation. Any code that uses this
       function should be carefully checked to ensure compatability with
       the current implementation.

   $stat->get_data();
       Returns a copy of the data array. Note: This array could be very
       large and would thus defeat the purpose of using this module. Make
       sure you really need it before using get_data().

       The returned array contains the values sorted by value. It does not
       preserve the order in which the values were added. Preserving order
       would defeat the purpose of this module which trades speed and
       memory usage over preserving order. If order is important, use
       Statistics::Descriptive.

   $stat->clear();
       Clears all data and resets the instance as if it were newly created

       Effectively the same as

         my $class = ref($stat);
         undef $stat;
         $stat = new $class;

NOTE
   The interface for this module strives to be identical to
   Statistics::Descriptive. Any differences are noted in the description
   for each method.

BUGS
   *   Code for calculating mode is not as robust as it should be.

   *   Other bugs are lurking I'm sure.

TODO
   *   Add rest of methods (at least ones that don't depend on original
       order of data) from Statistics::Descriptive

AUTHOR
   Rhet Turnbull, [email protected]

CREDIT
   Thanks to the following individuals for finding bugs, providing
   feedback, and submitting changes:

   *   Peter Dienes for finding and fixing a bug in the variance
       calculation.

   *   Bill Dueber for suggesting the add_data_tuple method.

COPYRIGHT
     Copyright (c) 2002, 2019 Rhet Turnbull. All rights reserved.  This
     program is free software; you can redistribute it and/or modify it
     under the same terms as Perl itself.

     Portions of this code is from Statistics::Descriptive which is under
     the following copyrights:

     Copyright (c) 1997,1998 Colin Kuskie. All rights reserved.  This
     program is free software; you can redistribute it and/or modify it
     under the same terms as Perl itself.

     Copyright (c) 1998 Andrea Spinelli. All rights reserved.  This program
     is free software; you can redistribute it and/or modify it under the
     same terms as Perl itself.

     Copyright (c) 1994,1995 Jason Kastner. All rights
     reserved.  This program is free software; you can redistribute it
     and/or modify it under the same terms as Perl itself.

SEE ALSO
   Statistics::Descriptive

   Statistics::Discrete