Name
     Math::Algebra::Symbols

Synopsis
     Symbolic Algebra in Pure Perl

     use Math::Algebra::Symbols hyper=>1;
     use Test::Simple tests=>5;

     ($n, $x, $y) = symbols(qw(n x y));

     $a     += ($x**8 - 1)/($x-1);
     $b     +=  sin($x)**2 + cos($x)**2;
     $c     += (sin($n*$x) + cos($n*$x))->d->d->d->d / (sin($n*$x)+cos($n*$x));
     $d      =  tanh($x+$y) == (tanh($x)+tanh($y))/(1+tanh($x)*tanh($y));
     ($e,$f) =  @{($x**2 eq 5*$x-6) > $x};

     print "$a\n$b\n$c\n$d\n$e,$f\n";

     ok("$a"    eq '$x+$x**2+$x**3+$x**4+$x**5+$x**6+$x**7+1');
     ok("$b"    eq '1');
     ok("$c"    eq '$n**4');
     ok("$d"    eq '1');
     ok("$e,$f" eq '2,3');

Description
     This package supplies a set of functions and operators to manipulate
     operator expressions algebraically using the familiar Perl syntax.

     These expressions are constructed
     from L</Symbols>, L</Operators>, and L</Functions>, and processed via
     L</Methods>.  For examples, see: L</Examples>.

 Symbols
     Symbols are created with the exported B<symbols()> constructor routine:

     use Math::Algebra::Symbols;
     use Test::Simple tests=>1;

     my ($x, $y, $i, $o, $pi) = symbols(qw(x y i 1 pi));

     ok( "$x $y $i $o $pi"   eq   '$x $y i 1 $pi'  );

     The B<symbols()> routine constructs references to symbolic variables and
     symbolic constants from a list of names and integer constants.

     The special symbol B<i> is recognized as the square root of B<-1>.

     The special symbol B<pi> is recognized as the smallest positive real
     that satisfies:

     use Math::Algebra::Symbols;
     use Test::Simple tests=>2;

     my ($i, $pi) = symbols(qw(i pi));

     ok(  exp($i*$pi)  ==   -1  );
     ok(  exp($i*$pi) <=>  '-1' );

  Constructor Routine Name
     If you wish to use a different name for the constructor routine, say
     B<S>:

     use Math::Algebra::Symbols symbols=>'S';
     use Test::Simple tests=>2;

     my ($i, $pi) = S(qw(i pi));

     ok(  exp($i*$pi)  ==   -1  );
     ok(  exp($i*$pi) <=//>  '-1' );

  Big Integers
     Symbols automatically uses big integers if needed.

     use Math::Algebra::Symbols;
     use Test::Simple tests=>1;

     my $z = symbols('1234567890987654321/1234567890987654321');

     ok( eval $z eq '1');

 Operators
     L</Symbols> can be combined with L</Operators> to create symbolic
     expressions:

  Arithmetic operators
  Arithmetic Operators: + - * / **
     use Math::Algebra::Symbols;
     use Test::Simple tests=>3;

     my ($x, $y) = symbols(qw(x y));

     ok(  ($x**2-$y**2)/($x-$y)  ==  $x+$y  );
     ok(  ($x**2-$y**2)/($x-$y)  !=  $x-$y  );
     ok(  ($x**2-$y**2)/($x-$y) <=> '$x+$y' );

     The operators: B<+=> B<-=> B<*=> B</=> are overloaded to work symbolically
     rather than numerically. If you need numeric results, you can always
     B<eval()> the resulting symbolic expression.

  Square root Operator: sqrt
     use Math::Algebra::Symbols;
     use Test::Simple tests=>2;

     my ($x, $i) = symbols(qw(x i));

     ok(  sqrt(-$x**2)  ==  $i*$x  );
     ok(  sqrt(-$x**2)  <=> 'i*$x' );

     The square root is represented by the symbol B<i>, which allows complex
     expressions to be processed by Math::Complex.

  Exponential Operator: exp
     use Math::Algebra::Symbols;
     use Test::Simple tests=>2;

     my ($x, $i) = symbols(qw(x i));

     ok(   exp($x)->d($x)  ==   exp($x)  );
     ok(   exp($x)->d($x) <=>  'exp($x)' );

     The exponential operator.

  Logarithm Operator: log
     use Math::Algebra::Symbols;
     use Test::Simple tests=>1;

     my ($x) = symbols(qw(x));

     ok(   log($x) <=>  'log($x)' );

     Logarithm to base B<e>.

     Note: the above result is only true for x > 0.  B<Symbols> does not include
     domain and range specifications of the functions it uses.

  Sine and Cosine Operators: sin and cos
     use Math::Algebra::Symbols;
     use Test::Simple tests=>3;

     my ($x) = symbols(qw(x));

     ok(  sin($x)**2 + cos($x)**2  ==  1  );
     ok(  sin($x)**2 + cos($x)**2  !=  0  );
     ok(  sin($x)**2 + cos($x)**2 <=> '1' );

     This famous trigonometric identity is not preprogrammed into B<Symbols> as it
     is in commercial products.

     Instead: an expression for B<sin()> is constructed using the complex
     exponential: L</exp>, said expression is algebraically multiplied out to
     prove the identity. The proof steps involve large intermediate expressions in
     each step, as yet I have not provided a means to neatly lay out these
     intermediate steps and thus provide a more compelling demonstration of the
     ability of B<Symbols> to verify such statements from first principles.

  Relational operators
  Relational operators: ==, !=
     use Math::Algebra::Symbols;
     use Test::Simple tests=>3;

     my ($x, $y) = symbols(qw(x y));

     ok(  ($x**2-$y**2)/($x-$y)  ==  $x+$y  );
     ok(  ($x**2-$y**2)/($x-$y)  !=  $x-$y  );
     ok(  ($x**2-$y**2)/($x-$y) <=> '$x+$y' );

     The relational equality operator B<==> compares two symbolic expressions
     and returns TRUE(1) or FALSE(0) accordingly. B<!=> produces the opposite
     result.

  Relational operator: eq
     my ($x, $v, $t) = symbols(qw(x v t));

     ok(  ($v eq $x / $t)->solve(qw(x in terms of v t))  ==  $v*$t  );
     ok(  ($v eq $x / $t)->solve(qw(x in terms of v t))  !=  $v+$t  );
     ok(  ($v eq $x / $t)->solve(qw(x in terms of v t)) <=> '$t*$v' );

     The relational operator B<eq> is a synonym for the minus B<-> operator, with
     the expectation that later on the L<solve()|/Solving equations> function will
     be used to simplify and rearrange the equation. You may prefer to use B<eq>
     instead of B<-> to enhance readability, there is no functional difference.

  Complex operators
  Complex operators: the dot operator: ^
     use Math::Algebra::Symbols;
     use Test::Simple tests=>3;

     my ($a, $b, $i) = symbols(qw(a b i));

     ok(  (($a+$i*$b)^($a-$i*$b))  ==  $a**2-$b**2  );
     ok(  (($a+$i*$b)^($a-$i*$b))  !=  $a**2+$b**2  );
     ok(  (($a+$i*$b)^($a-$i*$b)) <=> '$a**2-$b**2' );



     Please note the use of brackets:  The B<^> operator has low priority.

     The B<^> operator treats its left hand and right hand arguments as
     complex numbers, which in turn are regarded as two dimensional vectors
     to which the vector dot product is applied.

  Complex operators: the cross operator: x
     use Math::Algebra::Symbols;
     use Test::Simple tests=>3;

     my ($x, $i) = symbols(qw(x i));

     ok(  $i*$x x $x  ==  $x**2  );
     ok(  $i*$x x $x  !=  $x**3  );
     ok(  $i*$x x $x <=> '$x**2' );

     The B<x> operator treats its left hand and right hand arguments as complex
     numbers, which in turn are regarded as two dimensional vectors defining the
     sides of a parallelogram. The B<x> operator returns the area of this
     parallelogram.

     Note the space before the B<x>, otherwise Perl is unable to disambiguate the
     expression correctly.

  Complex operators: the conjugate operator: ~
     use Math::Algebra::Symbols;
     use Test::Simple tests=>3;

     my ($x, $y, $i) = symbols(qw(x y i));

     ok(  ~($x+$i*$y)  ==  $x-$i*$y  );
     ok(  ~($x-$i*$y)  ==  $x+$i*$y  );
     ok(  (($x+$i*$y)^($x-$i*$y)) <=> '$x**2-$y**2' );

     The B<~> operator returns the complex conjugate of its right hand side.

  Complex operators: the modulus operator: abs
     use Math::Algebra::Symbols;
     use Test::Simple tests=>3;

     my ($x, $i) = symbols(qw(x i));

     ok(  abs($x+$i*$x)  ==  sqrt(2*$x**2)  );
     ok(  abs($x+$i*$x)  !=  sqrt(2*$x**3)  );
     ok(  abs($x+$i*$x) <=> 'sqrt(2*$x**2)' );

     The B<abs> operator returns the modulus (length) of its right hand side.

  Complex operators: the unit operator: !
     use Math::Algebra::Symbols;
     use Test::Simple tests=>4;

     my ($i) = symbols(qw(i));

     ok(  !$i      == $i                         );
     ok(  !$i     <=> 'i'                        );
     ok(  !($i+1) <=>  '1/(sqrt(2))+i/(sqrt(2))' );
     ok(  !($i-1) <=> '-1/(sqrt(2))+i/(sqrt(2))' );

     The B<!> operator returns a complex number of unit length pointing in the
     same direction as its right hand side.

  Equation Manipulation Operators
  Equation Manipulation Operators: Simplify operator: +=
     use Math::Algebra::Symbols;
     use Test::Simple tests=>2;

     my ($x) = symbols(qw(x));

     ok(  ($x**8 - 1)/($x-1)  ==  $x+$x**2+$x**3+$x**4+$x**5+$x**6+$x**7+1  );
     ok(  ($x**8 - 1)/($x-1) <=> '$x+$x**2+$x**3+$x**4+$x**5+$x**6+$x**7+1' );

     The simplify operator B<+=> is a synonym for the
     L<simplify()|/"simplifying_equations:_simplify()"> method, if and only if,
     the target on the left hand side initially has a value of undef.

     Admittedly this is very strange behaviour: it arises due to the shortage of
     over-ride-able operators in Perl: in particular it arises due to the shortage
     of over-ride-able unary operators in Perl. Never-the-less: this operator is
     useful as can be seen in the L<Synopsis|/"synopsis">, and the desired
     pre-condition can always achieved by using B<my>.

  Equation Manipulation Operators: Solve operator: >
     use Math::Algebra::Symbols;
     use Test::Simple tests=>2;

     my ($t) = symbols(qw(t));

     my $rabbit  = 10 + 5 * $t;
     my $fox     = 7 * $t * $t;
     my ($a, $b) = @{($rabbit eq $fox) > $t};

     ok( "$a" eq  '1/14*sqrt(305)+5/14'  );
     ok( "$b" eq '-1/14*sqrt(305)+5/14'  );

     The solve operator B<E<gt>> is a synonym for the
     L<solve()|/"Solving_equations:_solve()"> method.

     The priority of B<E<gt>> is higher than that of B<eq>, so the brackets around
     the equation to be solved are necessary until Perl provides a mechanism for
     adjusting operator priority (cf. Algol 68).

     If the equation is in a single variable, the single variable may be named
     after the B<E<gt>> operator without the use of [...]:

     use Math::Algebra::Symbols;

     my $rabbit  = 10 + 5 * $t;
     my $fox     = 7 * $t * $t;
     my ($a, $b) = @{($rabbit eq $fox) > $t};

     print "$a\n";

     # 1/14*sqrt(305)+5/14

     If there are multiple solutions, (as in the case of polynomials), B<E<gt>>
     returns an array of symbolic expressions containing the solutions.

     This example was provided by Mike Schilli [email protected].

 Functions
     Perl operator overloading is very useful for producing compact
     representations of algebraic expressions. Unfortunately there are only a
     small number of operators that Perl allows to be overloaded. The following
     functions are used to provide capabilities not easily expressed via Perl
     operator overloading.

     These functions may either be called as methods from symbols constructed by
     the L</Symbols> construction routine, or they may be exported into the user's
     name space as described in L</EXPORT>.

  Trigonometric and Hyperbolic functions
  Trigonometric functions
     use Math::Algebra::Symbols;
     use Test::Simple tests=>1;

     my ($x, $y) = symbols(qw(x y));

     ok( (sin($x)**2 == (1-cos(2*$x))/2) );

     The trigonometric functions B<cos>, B<sin>, B<tan>, B<sec>, B<csc>, B<cot>
     are available, either as exports to the caller's name space, or as methods.

  Hyperbolic functions
     use Math::Algebra::Symbols hyper=>1;
     use Test::Simple tests=>1;

     my ($x, $y) = symbols(qw(x y));

     ok( tanh($x+$y)==(tanh($x)+tanh($y))/(1+tanh($x)*tanh($y)));

     The hyperbolic functions B<cosh>, B<sinh>, B<tanh>, B<sech>, B<csch>,
     B<coth> are available, either as exports to the caller's name space, or
     as methods.

  Complex functions
  Complex functions: re and im
     use Math::Algebra::Symbols;
     use Test::Simple tests=>2;

     my ($x, $i) = symbols(qw(x i));

     ok( ($i*$x)->re   <=>  0    );
     ok( ($i*$x)->im   <=>  '$x' );

     The B<re> and B<im> functions return an expression which represents the real
     and imaginary parts of the expression, assuming that symbolic variables
     represent real numbers.

  Complex functions: dot and cross
     use Math::Algebra::Symbols;
     use Test::Simple tests=>2;

     my $i = symbols(qw(i));

     ok( ($i+1)->cross($i-1)   <=>  2 );
     ok( ($i+1)->dot  ($i-1)   <=>  0 );

     The B<dot> and B<cross> operators are available as functions, either as
     exports to the caller's name space, or as methods.

  Complex functions: conjugate, modulus and unit
     use Math::Algebra::Symbols;
     use Test::Simple tests=>3;

     my $i = symbols(qw(i));

     ok( ($i+1)->unit      <=>  '1/(sqrt(2))+i/(sqrt(2))' );
     ok( ($i+1)->modulus   <=>  'sqrt(2)'                 );
     ok( ($i+1)->conjugate <=>  '1-i'                     );

     The B<conjugate>, B<abs> and B<unit> operators are available as functions:
     B<conjugate>, B<modulus> and B<unit>, either as exports to the caller's name
     space, or as methods. The confusion over the naming of: the B<abs> operator
     being the same as the B<modulus> complex function; arises over the limited
     set of Perl operator names available for overloading.

 Methods
  Methods for manipulating Equations
  Simplifying equations: simplify()
   Example t/simplify2.t

     use Math::Algebra::Symbols;
     use Test::Simple tests=>2;

     my ($x) = symbols(qw(x));

     my $y  = (($x**8 - 1)/($x-1))->simplify();  # Simplify method
     my $z +=  ($x**8 - 1)/($x-1);               # Simplify via +=

     ok( "$y" eq '$x+$x**2+$x**3+$x**4+$x**5+$x**6+$x**7+1' );
     ok( "$z" eq '$x+$x**2+$x**3+$x**4+$x**5+$x**6+$x**7+1' );

     B<Simplify()> attempts to simplify an expression. There is no general
     simplification algorithm: consequently simplifications are carried out on
     ad-hoc basis. You may not even agree that the proposed simplification for a
     given expressions is indeed any simpler than the original. It is for these
     reasons that simplification has to be explicitly requested rather than being
     performed auto-magically.

     At the moment, simplifications consist of polynomial division: when the
     expression consists, in essence, of one polynomial divided by another, an
     attempt is made to perform polynomial division, the result is returned if
     there is no remainder.

     The B<+=> operator may be used to simplify and assign an expression to a Perl
     variable. Perl operator overloading precludes the use of B<=> in this manner.

  Substituting into equations: sub()
     use Math::Algebra::Symbols;
     use Test::Simple tests=>2;

     my ($x, $y) = symbols(qw(x y));

     my $e  = 1+$x+$x**2/2+$x**3/6+$x**4/24+$x**5/120;

     ok(  $e->sub(x=>$y**2, z=>2)  <=> '$y**2+1/2*$y**4+1/6*$y**6+1/24*$y**8+1/120*$y**10+1'  );
     ok(  $e->sub(x=>1)            <=>  '163/60');

     The B<sub()> function example on line B<#1> demonstrates replacing variables
     with expressions. The replacement specified for B<z> has no effect as B<z> is
     not present in this equation.

     Line B<#2> demonstrates the resulting rational fraction that arises when all
     the variables have been replaced by constants. This package does not convert
     fractions to decimal expressions in case there is a loss of accuracy,
     however:

     my $e2 = $e->sub(x=>1);
     $result = eval "$e2";

     or similar will produce approximate results.

     At the moment only variables can be replaced by expressions. Mike Schilli,
     [email protected], has proposed that substitutions for expressions should
     also be allowed, as in:

     $x/$y => $z

  Solving equations: solve()
      use Math::Algebra::Symbols;
      use Test::Simple tests=>3;

      my ($x, $v, $t) = symbols(qw(x v t));

      ok(   ($v eq $x / $t)->solve(qw(x in terms of v t))  ==  $v*$t  );
      ok(   ($v eq $x / $t)->solve(qw(x in terms of v t))  !=  $v/$t  );
      ok(   ($v eq $x / $t)->solve(qw(x in terms of v t)) <=> '$t*$v' );

     B<solve()> assumes that the equation on the left hand side is equal to zero,
     applies various simplifications, then attempts to rearrange the equation to
     obtain an equation for the first variable in the parameter list assuming that
     the other terms mentioned in the parameter list are known constants. There
     may of course be other unknown free variables in the equation to be solved:
     the proposed solution is automatically tested against the original equation
     to check that the proposed solution removes these variables, an error is
     reported via B<die()> if it does not.

     use Math::Algebra::Symbols;
     use Test::Simple tests => 2;

     my ($x) = symbols(qw(x));

     my  $p = $x**2-5*$x+6;        # Quadratic polynomial
     my ($a, $b) = @{($p > $x )};  # Solve for x

     print "x=$a,$b\n";            # Roots

     ok($a == 2);
     ok($b == 3);

     If there are multiple solutions, (as in the case of polynomials), B<solve()>
     returns an array of symbolic expressions containing the solutions.

  Methods for performing Calculus
  Differentiation: d()
     use Math::Algebra::Symbols;
     use Test::More tests => 5;

     $x = symbols(qw(x));

     ok(  sin($x)    ==  sin($x)->d->d->d->d);
     ok(  cos($x)    ==  cos($x)->d->d->d->d);
     ok(  exp($x)    ==  exp($x)->d($x)->d('x')->d->d);
     ok( (1/$x)->d   == -1/$x**2);
     ok(  exp($x)->d->d->d->d <=> 'exp($x)' );

     B<d()> differentiates the equation on the left hand side by the named
     variable.

     The variable to be differentiated by may be explicitly specified, either as a
     string or as single symbol; or it may be heuristically guessed as follows:

     If the equation to be differentiated refers to only one symbol, then that
     symbol is used. If several symbols are present in the equation, but only one
     of B<t>, B<x>, B<y>, B<z> is present, then that variable is used in honour of
     Newton, Leibnitz, Cauchy.

 Example of Equation Solving: the focii of a hyperbola:
     use Math::Algebra::Symbols;

     my ($a, $b, $x, $y, $i, $o) = symbols(qw(a b x y i 1));

     print
     "Hyperbola: Constant difference between distances from focii to locus of y=1/x",
     "\n  Assume by symmetry the focii are on ",
     "\n    the line y=x:                     ",  $f1 = $x + $i * $x,
     "\n  and equidistant from the origin:    ",  $f2 = -$f1,
     "\n  Choose a convenient point on y=1/x: ",  $a = $o+$i,
     "\n        and a general point on y=1/x: ",  $b = $y+$i/$y,
     "\n  Difference in distances from focii",
     "\n    From convenient point:            ",  $A = abs($a - $f2) - abs($a - $f1),
     "\n    From general point:               ",  $B = abs($b - $f2) + abs($b - $f1),
     "\n\n  Solving for x we get:            x=", ($A - $B) > $x,
     "\n                         (should be: sqrt(2))",
     "\n  Which is indeed constant, as was to be demonstrated\n";

     This example demonstrates the power of symbolic processing by finding the
     focii of the curve B<y=1/x>, and incidentally, demonstrating that this curve
     is a hyperbola.

Exports
    use Math::Algebra::Symbols
      symbols=>'s',
      trig   => 1,
      hyper  => 1,
      complex=> 1;

   symbols=>'s'
         Create a function with name B<s()> in the callers name space to create new
         symbols. The default is B<symbols()>.

   trig=>0
         The default, do not export trigonometric functions.

   trig=>1
         Export trigonometric functions: B<tan>, B<sec>, B<csc>, B<cot> to the
         caller's name space. B<sin>, B<cos> are created by default by overloading the
         existing Perl B<sin> and B<cos> operators.

   trigonometric
         Alias of B<trig>

   hyperbolic=>0
         The default, do not export hyperbolic functions.

   hyper=>1
         Export hyperbolic functions: B<sinh>, B<cosh>, B<tanh>, B<sech>,
         B<csch>, B<coth> to the caller's name space.

   hyperbolic
         Alias of B<hyper>

   complex=>0
         The default, do not export complex functions

   complex=>1
         Export complex functions: B<conjugate>, B<cross>, B<dot>, B<im>, B<modulus>,
         B<re>, B<unit> to the caller's name space.

Packages
     The B<Symbols> packages manipulate a sum of products representation of an
     algebraic equation. The B<Symbols> package is the user interface to the
     functionality supplied by the B<Symbols::Sum> and B<Symbols::Term> packages.

 Math::Algebra::Symbols::Term
     B<Symbols::Term> represents a product term. A product term consists of the
     number B<1>, optionally multiplied by:

   Variables
         any number of variables raised to integer powers,

   Coefficient
         An integer coefficient optionally divided by a positive integer divisor, both
         represented as BigInts if necessary.

   Sqrt
         The sqrt of of any symbolic expression representable by the B<Symbols>
         package, including minus one: represented as B<i>.

   Reciprocal
         The multiplicative inverse of any symbolic expression representable by the
         B<Symbols> package: i.e. a B<SymbolsTerm> may be divided by any symbolic
         expression representable by the B<Symbols> package.

   Exp
         The number B<e> raised to the power of any symbolic expression representable
         by the B<Symbols> package.

   Log
         The logarithm to base B<e> of any symbolic expression representable by the
         B<Symbols> package.

     Thus B<SymbolsTerm> can represent expressions like:

       2/3*$x**2*$y**-3*exp($i*$pi)*sqrt($z**3) / $x

     but not:

       $x + $y

     for which package B<Symbols::Sum> is required.

 Math::Algebra::Symbols::Sum
     B<Symbols::Sum> represents a sum of product terms supplied by
     B<Symbols::Term> and thus behaves as a polynomial. Operations such as
     equation solving and differentiation are applied at this level.

Author
     Philip R Brenan at B<[email protected]>

Copyright
     Philip R Brenan at B<[email protected]> 2004-2016

License
     Perl License.