NAME
   GitInsight - Predict your github contributions using Bayesian inference
   and Markov chain

SYNOPSIS
       gitinsight --username [githubusername] (--nodaystats) (--accuracy) #using the shipped bin

       #or using the module

       my $Insight= GitInsight->new(no_day_stats => 0, username => "markov", accuracy=> 1);
       my $Result= $Insight->process;
       my $accuracy = $Insight->{accuracy};
       $Result = $Insight->{result};
       # $Result contains the next week predictions and is an arrayref of arrayrefs    [  [ 'Sat', 1, '2014-07-1', [ 0 ,  '0.151515151515152', '0.0606060606060606', '0.0404040404040404',  0  ]  ],   ..   [            'DayofWeek',      'winner_label',  'day' ,  [             probability_label_0,  probability_label_1,              probability_label_2,          probability_label_3,              probability_label_4            ]          ]]

DESCRIPTION
   GitInsight is module that allow you to predict your github contributions
   in the "calendar contribution" style of github (the table of
   contribution that you see on your profile page).

HOW DOES IT WORK?
   GitInsight generates a transation probrability matrix from your github
   contrib_calendar to compute the possibles states for the following days.
   Given that GitHub split the states thru 5 states (or here also called
   label), the probability can be inferenced by using Bayesian methods to
   update the beliefs of the possible state transition, while markov chain
   is used to predict the states. The output of the submitted data is then
   plotted using Cellular Automata.

 THEORY
   We trace the transitions states in a matrix and increasing the count as
   far as we observe a transition
   (<https://en.wikipedia.org/wiki/Transition_matrix>), then we inference
   the probabilities using Bayesan method
   <https://en.wikipedia.org/wiki/Bayesian_inference>
   <https://en.wikipedia.org/wiki/Examples_of_Markov_chains>.

INSTALLATION
   GitInsight requires the installation of gsl (GNU scientific library),
   gd(http://libgd.org/), PDL and PDL::Stats (to be installed after the gsl
   library set).

   on Debian:

           apt-get install gsl-bin libgs10-devt
           apt-get install pdl libpdl-stats-perl libgd2-xpm-dev

   It's reccomended to use cpanm to install all the required deps, install
   it thru your package manager or just do:

       cpan App::cpanminus

   After the installation of gsl, clone the repository and install all the
   dependencies with cpanm:

       cpanm --installdeps .

   Then install it as usual:

       perl Build.PL
       ./Build
       ./Build test #ensure that the module works correctly
       ./Build install

OPTIONS
 username
   required, it's the GitHub username used to calculate the prediction

 ca_output
   you can enable/disable the cellular autmata output using this option
   (1/0)

 no_day_stats
   setting this option to 1, will slightly change the prediction: it will
   be calculated a unique transition matrix instead one for each day

 left_cutoff
   used to cut the days from the start (e.g. if you want to delete the
   first 20 days from the prediction, just set this to 20)

 cutoff_offset
   used to select a range where the prediction happens (e.g. if you want to
   calculate the prediction of a portion of your year of contribution)

 file_output
   here you can choose the file output name for ca.

 accuracy
   Enable/disable accuracy calculation (1/0)

 verbose
   Enable/disable verbosity (1/0)

METHODS
 contrib_calendar($username)
   Fetches the github contrib_calendar of the specified user

 process
   Calculate the predictions and generate the CA

 start_day
   Returns the first day of the contrib_calendar

 last_day
   Returns the last day of the contrib calendar (prediction included)

 prediction_start_day
   Returns the first day of the prediction (7 days of predictions)

AUTHOR
   mudler <[email protected]>

COPYRIGHT
   Copyright 2014- mudler

LICENSE
   This library is free software; you can redistribute it and/or modify it
   under the same terms as Perl itself.

SEE ALSO
   GitInsight::Util, PDL, PDL::Stats