NAME
Benchmark::CSV - Report raw timing results in CSV-style format for
advanced processing.
VERSION
version 0.001000
SYNOPSIS
use Benchmark::CSV;
my $benchmark = Benchmark::CSV->new(
output => './test.csv',
sample_size => 10,
);
$benchmark->add_instance( 'method_a' => sub {});
$benchmark->add_instance( 'method_b' => sub {});
$benchmark->run_iterations(100_000);
RATIONALE.
I've long found all the other bench-marking utilities well meaning, but
easily confusing.
My biggest misgiving is that they give you one, or two values which it
has decided is "the time" your code took, whether its an average, a
median, or some other algorithm, ( Such as in "Benchmark::Dumb" ), they
all amount to basically giving you a data point, which you have to take
for granted.
That data point may also change wildly between test runs due to computer
load or other factors.
Essentially, the flaw as I see it, is trying to convey what is
essentially a *spectrum* of results as a single point.
"Benchmark::Dumb" at least gives you variation data, but its rather hard
to compare and visualize the results it gives to gain meaningful
insight.
So, I looked to modeling the data differently, and happened to
accidentally throw some hand-collected benchmark data into a Google
Spreadsheet Histogram plot, and found it hugely enlightening on what was
really going on.
One recurring observation I noticed is code run-time seems to have a
very lop-sided distribution
| ++
| |++
| | |
| | |
| | |
| | +++
| | |
| ++ ++++++++
| + +++++++++++++++++++++++
0 +-------------------------------------
0
Which suggests to me, that unlike many things people usually use
statistics for, where you have a bunch of things evenly on both sides of
the mode, code has an *inherent* minimum run time, which you might see
if your system has all factors in "ideal" conditions, and it has a
closely following *sub-optimal* but *common* run time, which I imagine
you see because the system can't deliver every cycle of code in perfect
situations every time, even the kernel is selfish and says "Well, if I
let your code have exactly 100% CPU for as long as you wanted it, I
doubt even kernel space would be able to do anything till you were quite
done" So observing the minimum time "AND" the median seem to me, useful
for comparing algorithm efficiency.
Observing the maximums is useful too, however, those values trend
towards being less useful, as they're likely to be impacted by CPU
randomness slowing things down.
RATIONALE FOR DUMMIES
Graphs are pretty. I like graphs. Why not benchmark distribution
graphs!?
METHODS
"add_instance"
Add a test block.
->add_instance( name => sub { } );
NOTE: You can only add test instances prior to executing the tests.
After executing tests, the number of columns and the column headings
become "finalized".
This is because of how the CSV file is written in parallel with the test
batches.
CSV is written headers first, top to bottom, one column at a time.
So adding a new column is impossible after the headers have been written
without starting over.
"new"
Create a benchmark object.
my $instance = Benchmark::CSV->new( \%hash );
my $instance = Benchmark::CSV->new( %hash );
%hash = {
sample_size => # number of times to call each sub in a sample
output => # A file path to write to
output_fh => # An output filehandle to write to
};
"sample_size"
The number of times to call each sub in a "Sample".
A sample is a block of timed code.
For instance:
->sample_size(4);
->add_instance( x => $y );
->run_iterations(40);
This will create a timer block similar to below.
my $start = time();
# Unrolled, because benchmarking indicated unrolling was faster.
$y->();
$y->();
$y->();
$y->();
return time() - $start;
That block will then be called 10 times ( 40 total code executions
batched into 10 groups of 4 ) and return 10 time values.
get:"sample_size"
my $size = $bench->sample_size;
Value will default to 1 if not passed during construction.
set:"sample_size"
$bench->sample_size(10);
Can be performed at any time prior, but not after running tests.
"output_fh"
An output "filehandle" to write very sloppy "CSV" data to.
Results will be in Columns, sorted by column name alphabetically.
"output_fh" defaults to *STDOUT, or opens a file passed to the
constructor as "output" for writing.
get:"output_fh"
my $fh = $bench->output_fh;
Either *STDOUT or an opened "filehandle".
set:"output_fh"
$bench->output_fh( \*STDERR );
Can be set at any time prior, but not after, running tests.
"run_iterations"
Executes the attached tests "n" times in batches of "sample_size".
->run_iterations( 10_000_000 );
Because of how it works, simply spooling results at the bottom of the
data file, you can call this method multiple times as necessary and
inject more results.
For instance, this could be used to give a progress report.
*STDOUT->autoflush(1);
print "[__________]\r[";
for ( 1 .. 10 ) {
$bench->run_iterations( 1_000_000 );
print "#";
}
print "]\n";
This is also how you can do timed batches:
my $start = [gettimeofday];
# Just execute as much as possible until 10 seconds of wallclock pass.
while( tv_interval( $start, [ gettimeofday ]) < 10 ) {
$bench->run_iterations( 1_000 );
}
AUTHOR
Kent Fredric <
[email protected]>
COPYRIGHT AND LICENSE
This software is copyright (c) 2014 by Kent Fredric
<
[email protected]>.
This is free software; you can redistribute it and/or modify it under
the same terms as the Perl 5 programming language system itself.