NAME
   CAD::Calc - generic cad-related geometry calculations

AUTHOR
     Eric L. Wilhelm
     ewilhelm at sbcglobal dot net
     http://pages.sbcglobal.net/mycroft

COPYRIGHT
   This module is copyright (C) 2003 by Eric L. Wilhelm and A. Zahner Co.

LICENSE
   This module is distributed under the same terms as Perl. See the Perl
   source package for details.

   You may use this software under one of the following licenses:

     (1) GNU General Public License
       (found at http://www.gnu.org/copyleft/gpl.html)
     (2) Artistic License
       (found at http://www.perl.com/pub/language/misc/Artistic.html)

NO WARRANTY
   This software is distributed with ABSOLUTELY NO WARRANTY. The author and
   his employer will in no way be held liable for any loss or damages
   resulting from its use.

Modifications
   The source code of this module is made freely available and
   distributable under the GPL or Artistic License. Modifications to and
   use of this software must adhere to one of these licenses. Changes to
   the code should be noted as such and this notification (as well as the
   above copyright information) must remain intact on all copies of the
   code.

   Additionally, while the author is actively developing this code,
   notification of any intended changes or extensions would be most helpful
   in avoiding repeated work for all parties involved. Please contact the
   author with any such development plans.

CHANGES
     0.20
       Added sprintf("%0.9f") to seg_seg_intersection()

     0.21
       Several new functions and features.

Configuration
   Used to set package global values such as precision.

 import

   Not called directly. Triggered by the use() function.

     import(%options, @EXPORT_TAGS);

   Example:

     use CAD::Calc (
           -precision => 0.125,
           -angular   => 1.0e-6,
           qw(
                   seg_seg_intersection
                   dist2d
                   print_line
                   )
           );

Constants
 pi

   Returns the value of CAD::Calc::pi

     pi;

Functions
   These are all exported as options.

 distdivide

   Returns a list of point references resulting from dividing $line into as
   many parts as possible which are at least $dist apart.

     @points = distdivide(\@line, $dist);

 subdivide

   Returns a list of point references resulting from subdividing $line into
   $count parts. The list will be $count-1 items long, (does not include
   $line->[0] and $line->[1]);

   $line is of the form: [ [x1, y1, z1], [x2, y2, z2] ] where z1 and z2 are
   optional.

     @points = subdivide($line, $count);

 shorten_line

   Shortens the line by the distances given in $lead and $tail.

     @line = shorten_line(\@line, $lead, $tail);

 dist

   Returns the direct distance from ptA to ptB.

     dist($ptA, $ptB);

 dist2d

   Purposefully ignores a z (2) coordinate.

     dist2d($ptA, $ptB);

 line_vec

   Returns a Math::Vec object representing the vector from $ptA to $ptB
   (which is actually a segment.)

     $vec = line_vec($ptA, $ptB);

 slope

   Calculates the 2D slope between points @ptA and @ptB. Slope is defined
   as dy / dx (rise over run.)

   If dx is 0, will return the string "inf", which Perl so kindly treats as
   you would expect it to (except it doesn't like to answer the question
   "what is infinity over infinity?")

     $slope = slope(\@ptA, \@ptB);

 segs_as_transform

   Allows two segments to specify transform data.

   Returns: (\@translate, $rotate, $scale),

   where:

   @translate is a 2D array [$x, $y] basically describing segment @A

   $rotate is the angular difference between $A[0]->$B[0] and $A[1]->$B[1]

   $scale is the length of $A[1]->$B[1] divided by the length of
   $A[0]->$B[0]

     my ($translate, $rotate, $scale) = segs_as_transform(\@A, \@B);

 chevron_to_ray

   Converts a chevron into a directional line by finding the midpoint
   between the midpoints of each edge and connecting to the middle point.

     @line = chevron_to_ray(@pts);

 signdist

   Returns the signed distance

     signdist(\@ptA, \@ptB);

 offset

   Creates a contour representing the offset of @polygon by $dist. Positive
   distances are inward when @polygon is ccw.

     @polygons = offset(\@polygon, $dist);

 intersection_data

   Calculates the two numerators and the denominator which are required for
   various (seg-seg, line-line, ray-ray, seg-ray, line-ray, line-seg)
   intersection calculations.

     ($k, $l, $d) = intersection_data(\@line, \@line);

 line_intersection

   Returns the intersection point of two lines.

     @pt = line_intersection(\@line, \@line, $tolerance);
     @pt or die "no intersection";

   If tolerance is defined, it will be used to sprintf the parallel factor.
   Beware of this, it is clunky and might change if I come up with
   something better.

 seg_line_intersection

   Finds the intersection of @segment and @line.

     my @pt = seg_line_intersection(\@segment, \@line);
     @pt or die "no intersection";
     unless(defined($pt[1])) {
       die "lines are parallel";
     }

 seg_seg_intersection

     my @pt = seg_seg_intersection(\@segmenta, \@segmentb);

 seg_ray_intersection

   Intersects @seg with @ray, where $ray[1] is the direction of the
   infinite ray.

     seg_ray_intersection(\@seg, \@ray);

 ray_pgon_int_index

   Returns the first (lowest) index of @polygon which has a segment
   intersected by @ray.

     $index = ray_pgon_int_index(\@ray, \@polygon);

 ray_pgon_closest_index

   Returns the closest (according to dist2d) index of @polygon which has a
   segment intersected by @ray.

     $index = ray_pgon_closest_index(\@ray, \@polygon);

 perp_through_point

     @line = perp_through_point(\@pt, \@line);

 foot_on_segment

   Returns the perpendicular foot of @pt on @seg. See seg_ray_intersection.

     @pt = foot_on_segment(\@pt, \@seg);

 Determinant

     Determinant($x1, $y1, $x2, $y2);

 pgon_as_segs

   Returns a list of [[@ptA],[@ptB]] segments representing the edges of
   @pgon, where segment "0" is from $pgon[0] to $pgon[1]

     @segs = pgon_as_segs(@pgon);

 pgon_area

     $area = pgon_area(@polygon);

 pgon_angles

   Returns the angle of each edge of polygon in xy plane. These fall
   between -$pi and +$pi due to the fact that it is basically just a call
   to the atan2() builtin.

   Edges are numbered according to the index of the point which starts the
   edge.

     @angles = pgon_angles(@points);

 pgon_deltas

   Returns the differences between the angles of each edge of @polygon.
   These will be indexed according to the point at which they occur, and
   will be positive radians for ccw angles. Summing the @deltas will yield
   +/-2pi (negative for cw polygons.)

     @deltas = pgon_deltas(@pgon);

 ang_deltas

   Returns the same thing as pgon_deltas, but saves a redundant call to
   pgon_angles.

     my @angs = pgon_angles(@pts);
     my @dels = ang_deltas(@angs);

 pgon_direction

   Returns 1 for counterclockwise and 0 for clockwise. Uses the sum of the
   differences of angles of @polygon. If this sum is less than 0, the
   polygon is clockwise.

     $ang_sum = pgon_direction(@polygon);

 angs_direction

   Returns the same thing as pgon_direction, but saves a redundant call to
   pgon_deltas.

     my @angs = pgon_deltas(@pgon);
     my $dir = angs_direction(@angs);

 pgon_bisectors

     pgon_bisectors();

 sort_pgons_lr

   Sorts polygons by their average points returning a list which reads from
   left to right. (Rather odd place for this?)

     @pgons = sort_pgons_lr(@pgons);

 shift_line

   Shifts line to right or left by $distance.

     @line = shift_line(\@line, $distance, right|left);

 line_to_rectangle

   Creates a rectangle, centered about @line.

     my @rec = line_to_rectangle(\@line, $offset, \%options);

   The direction of the returned points will be counter-clockwise around
   the original line, with the first point at the 'lower-left' (e.g. if
   your line points up, $rec[0] will be below and to the left of $line[0].)

   Available options
     ends => 1|0,   # extend endpoints by $offset (default = 1)

 isleft

   Returns positive if @point is left of @line.

     isleft(\@line, \@point);

 iswithin

   Returns true if @pt is within the polygon @bound.

     $fact = iswithin(\@bound, \@pt);

 iswithinc

   Seems to be consistently much faster than the typical winding-number
   iswithin.

     iswithinc();

 unitleft

   Returns a unit vector which is perpendicular and to the left of @line.
   Purposefully ignores any z-coordinates.

     $vec = unitleft(@line);

 unitright

   Negative of unitleft().

     $vec = unitright(@line);

 unit_angle

   Returns a Math::Vec vector which has a length of one at angle $ang (in
   the XY plane.) $ang is fed through angle_parse().

     $vec = unit_angle($ang);

 angle_reduce

   Reduces $ang (in radians) to be between -pi and +pi.

     $ang = angle_reduce($ang);

 angle_parse

   Parses the variable $ang and returns a variable in radians. To convert
   degrees to radians: $rad = angle_parse($deg . "d")

     $rad = angle_parse($ang);

 angle_quadrant

   Returns the index of the quadrant which contains $angle. $angle is in
   radians.

     $q = angle_quadrant($angle);
     @syms = qw(I II III IV);
     print "angle is in quadrant: $syms[$q]\n";

 collinear

     $fact = collinear(\@pt1, \@pt2, \@pt3);

 triangle_angles

   Calculates the angles of a triangle based on it's lengths.

     @angles = triangle_angles(@lengths);

   The order of the returned angle will be "the angle before the edge".

 stringify

   Turns point into a string rounded according to $rnd. The optional $count
   allows you to specify how many coordinates to use.

     $string = stringify(\@pt, $rnd, $count);

 pol_to_cart

   Convert from polar to cartesian coordinates.

     my ($x, $y, $z) = pol_to_cart($radius, $theta, $z);

 cart_to_pol

   Convert from polar to cartesian coordinates.

     my ($radius, $theta, $z) = cart_to_pol($x, $y, $z);

 print_line

     print_line(\@line, $message);

 point_avg

   Averages the x and y coordinates of a list of points.

           my ($x, $y) = point_avg(@points);