NAME
   Math::Combinatorics - Perform combinations and permutations on lists

SYNOPSIS
   Available as an object oriented API.

     use Math::Combinatorics;

     my @n = qw(a b c);
     my $combinat = Math::Combinatorics->new(count => 2,
                                             data => [@n],
                                            );

     print "combinations of 2 from: ".join(" ",@n)."\n";
     print "------------------------".("--" x scalar(@n))."\n";
     while(my @combo = $combinat->next_combination){
       print join(' ', @combo)."\n";
     }

     print "\n";

     print "combinations of 2 from: ".join(" ",@n)."\n";
     print "------------------------".("--" x scalar(@n))."\n";
     while(my @permu = $combinat->next_permutation){
       print join(' ', @permu)."\n";
     }

     output:

   Or available via exported functions 'permute', 'combine', and
   'factorial'.

     use Math::Combinatorics;

     my @n = qw(a b c);
     print "combinations of 2 from: ".join(" ",@n)."\n";
     print "------------------------".("--" x scalar(@n))."\n";
     print join("\n", map { join " ", @$_ } combine(2,@n)),"\n";
     print "\n";
     print "permutations of 3 from: ".join(" ",@n)."\n";
     print "------------------------".("--" x scalar(@n))."\n";
     print join("\n", map { join " ", @$_ } permute(@n)),"\n";

   Output:

     combinations of 2 from: a b c
     ------------------------------
     a b
     a c
     b c

     combinations of 2 from: a b c
     ------------------------------
     a b c
     a c b
     b a c
     b c a
     c a b
     c b a

   Output from both types of calls is the same, but the object-oriented
   approach consumes much less memory for large sets.

DESCRIPTION
   Combinatorics is the branch of mathematics studying the enumeration,
   combination, and permutation of sets of elements and the mathematical
   relations that characterize their properties. As a jumping off point,
   refer to:

   http://mathworld.wolfram.com/Combinatorics.html

   This module provides a pure-perl implementation of nCk, nPk, and n!
   (combination, permutation, and factorial, respectively). Functional and
   object-oriented usages allow problems such as the following to be
   solved:

   nCk "Fun questions to ask the pizza parlor wait staff: how many possible
   combinations of 2 toppings can I get on my pizza?".

   nPk "Master Mind Game: ways to arrange pieces of different colors in a
   certain number of positions, without repetition of a color".

   Object-oriented usage additionally allows solving these problems by
   calling the new() entry elsewhere in this document with a frequency
   vector:

   nPRk "morse signals: diferent signals of 3 positions using the 2 two
   symbol - and .".

   nCRk "ways to extract 3 balls at once of a bag with black and white
   balls".

   nPRk "different words obtained permuting the letters of the word
   PARROT".

AUTHOR
   Allen Day <[email protected]>, with algorithmic contributions from
   Christopher Eltschka and Tye.

ACKNOWLEDGEMENTS
   Thanks to everyone for helping to make this a better module.

   For adding new features: Carlos Rica, David Coppit

   For bug reports: Ying Yang, Joerg Beyer, Marc Logghe

LICENSE AND COPYRIGHT

   Copyright (c) 2004 Allen Day. All rights reserved. This program is
   free software; you can redistribute it and/or modify it under the same
   terms as Perl itself.