uber.com_engineering.rss.xml - sfeed_tests - sfeed tests and RSS and Atom files | |
git clone git://git.codemadness.org/sfeed_tests | |
Log | |
Files | |
Refs | |
README | |
LICENSE | |
--- | |
uber.com_engineering.rss.xml (11233B) | |
--- | |
1 <?xml version="1.0" encoding="utf-8" ?> | |
2 <rss version="2.0"> | |
3 <channel> | |
4 <title> | |
5 <![CDATA[Engineering | Uber Blog]]> | |
6 </title> | |
7 <link>https://www.uber.com</link> | |
8 <description> | |
9 <![CDATA[]]> | |
10 </description> | |
11 <lastBuildDate>Fri Jan 31 2025 10:04:42 GMT+0000 (Coordinated Univer… | |
12 <language>en</language> | |
13 <item> | |
14 <title> | |
15 <![CDATA[MySQL At Uber]]> | |
16 </title> | |
17 <link> | |
18 <![CDATA[https://www.uber.com/blog/mysql-at-uber/]]> | |
19 </link> | |
20 <pubDate> | |
21 <![CDATA[2025-01-30 14:00:00]]> | |
22 </pubDate> | |
23 <category> | |
24 <![CDATA[Backend]]> | |
25 </category> | |
26 <description> | |
27 <![CDATA[<p>How does Uber achieve 99.99% availability across 2,0… | |
28 ]]> | |
29 </description> | |
30 </item> | |
31 <item> | |
32 <title> | |
33 <![CDATA[How Uber Uses Ray® to Optimize the Rides Business]]> | |
34 </title> | |
35 <link> | |
36 <![CDATA[https://www.uber.com/blog/how-uber-uses-ray-to-optimize… | |
37 </link> | |
38 <pubDate> | |
39 <![CDATA[2025-01-09 14:00:00]]> | |
40 </pubDate> | |
41 <category> | |
42 <![CDATA[Backend]]> | |
43 </category> | |
44 <description> | |
45 <![CDATA[<p>Large-scale computation is a major back end and infr… | |
46 ]]> | |
47 </description> | |
48 </item> | |
49 <item> | |
50 <title> | |
51 <![CDATA[Serving Millions of Apache Pinot™ Queries with Neutri… | |
52 </title> | |
53 <link> | |
54 <![CDATA[https://www.uber.com/blog/serving-millions-of-apache-pi… | |
55 </link> | |
56 <pubDate> | |
57 <![CDATA[2024-12-11 14:00:00]]> | |
58 </pubDate> | |
59 <category> | |
60 <![CDATA[Data / ML]]> | |
61 </category> | |
62 <description> | |
63 <![CDATA[<p>At Uber, we serve 500 million Pinot queries every da… | |
64 ]]> | |
65 </description> | |
66 </item> | |
67 <item> | |
68 <title> | |
69 <![CDATA[Introducing the Prompt Engineering Toolkit]]> | |
70 </title> | |
71 <link> | |
72 <![CDATA[https://www.uber.com/blog/introducing-the-prompt-engine… | |
73 </link> | |
74 <pubDate> | |
75 <![CDATA[2024-11-26 14:00:00]]> | |
76 </pubDate> | |
77 <category> | |
78 <![CDATA[Data / ML]]> | |
79 </category> | |
80 <description> | |
81 <![CDATA[<p>LLM iteration can happen with speed and safety! Expl… | |
82 ]]> | |
83 </description> | |
84 </item> | |
85 <item> | |
86 <title> | |
87 <![CDATA[The Accounter: Scaling Operational Throughput on Uber�… | |
88 </title> | |
89 <link> | |
90 <![CDATA[https://www.uber.com/blog/the-accounter/]]> | |
91 </link> | |
92 <pubDate> | |
93 <![CDATA[2024-11-21 14:00:00]]> | |
94 </pubDate> | |
95 <category> | |
96 <![CDATA[Backend]]> | |
97 </category> | |
98 <description> | |
99 <![CDATA[<p>Uber slashed operational costs using The Accounter�… | |
100 ]]> | |
101 </description> | |
102 </item> | |
103 <item> | |
104 <title> | |
105 <![CDATA[Unified Checkout: Streamlining Uber’s Payment Ecosyst… | |
106 </title> | |
107 <link> | |
108 <![CDATA[https://www.uber.com/blog/unified-checkout/]]> | |
109 </link> | |
110 <pubDate> | |
111 <![CDATA[2024-11-14 14:00:00]]> | |
112 </pubDate> | |
113 <category> | |
114 <![CDATA[Backend]]> | |
115 </category> | |
116 <description> | |
117 <![CDATA[<p>From payment chaos to calm: Discover how Uber’… | |
118 ]]> | |
119 </description> | |
120 </item> | |
121 <item> | |
122 <title> | |
123 <![CDATA[Presto® Express: Speeding up Query Processing with Min… | |
124 </title> | |
125 <link> | |
126 <![CDATA[https://www.uber.com/blog/presto-express/]]> | |
127 </link> | |
128 <pubDate> | |
129 <![CDATA[2024-11-07 14:00:00]]> | |
130 </pubDate> | |
131 <category> | |
132 <![CDATA[Data / ML]]> | |
133 </category> | |
134 <description> | |
135 <![CDATA[<p>Slow Presto® queries can hinder data-driven operati… | |
136 ]]> | |
137 </description> | |
138 </item> | |
139 <item> | |
140 <title> | |
141 <![CDATA[Enabling Infinite Retention for Upsert Tables in Apache… | |
142 </title> | |
143 <link> | |
144 <![CDATA[https://www.uber.com/blog/enabling-infinite-retention-f… | |
145 </link> | |
146 <pubDate> | |
147 <![CDATA[2024-10-31 13:00:00]]> | |
148 </pubDate> | |
149 <category> | |
150 <![CDATA[Data / ML]]> | |
151 </category> | |
152 <description> | |
153 <![CDATA[<p>With contributions from Uber and others, Apache Pino… | |
154 ]]> | |
155 </description> | |
156 </item> | |
157 <item> | |
158 <title> | |
159 <![CDATA[Streamlining Financial Precision: Uber’s Advanced Set… | |
160 </title> | |
161 <link> | |
162 <![CDATA[https://www.uber.com/blog/ubers-advanced-settlement-acc… | |
163 </link> | |
164 <pubDate> | |
165 <![CDATA[2024-10-24 13:00:00]]> | |
166 </pubDate> | |
167 <category> | |
168 <![CDATA[Backend]]> | |
169 </category> | |
170 <description> | |
171 <![CDATA[<p>Discover how Uber’s cutting-edge settlement accoun… | |
172 ]]> | |
173 </description> | |
174 </item> | |
175 <item> | |
176 <title> | |
177 <![CDATA[Open Source and In-House: How Uber Optimizes LLM Traini… | |
178 </title> | |
179 <link> | |
180 <![CDATA[https://www.uber.com/blog/open-source-and-in-house-how-… | |
181 </link> | |
182 <pubDate> | |
183 <![CDATA[2024-10-17 15:30:00]]> | |
184 </pubDate> | |
185 <category> | |
186 <![CDATA[Engineering]]> | |
187 </category> | |
188 <description> | |
189 <![CDATA[<p>Exploring beyond third-party LLMs, Uber leverages in… | |
190 ]]> | |
191 </description> | |
192 </item> | |
193 <item> | |
194 <title> | |
195 <![CDATA[Genie: Uber’s Gen AI On-Call Copilot]]> | |
196 </title> | |
197 <link> | |
198 <![CDATA[https://www.uber.com/blog/genie-ubers-gen-ai-on-call-co… | |
199 </link> | |
200 <pubDate> | |
201 <![CDATA[2024-10-10 13:00:00]]> | |
202 </pubDate> | |
203 <category> | |
204 <![CDATA[Data / ML]]> | |
205 </category> | |
206 <description> | |
207 <![CDATA[<p>Explore how Uber is leveraging Genie, its Generative… | |
208 ]]> | |
209 </description> | |
210 </item> | |
211 <item> | |
212 <title> | |
213 <![CDATA[Making Uber’s ExperimentEvaluation Engine 100x Faster… | |
214 </title> | |
215 <link> | |
216 <![CDATA[https://www.uber.com/blog/making-ubers-experiment-evalu… | |
217 </link> | |
218 <pubDate> | |
219 <![CDATA[2024-10-03 13:00:00]]> | |
220 </pubDate> | |
221 <category> | |
222 <![CDATA[Backend]]> | |
223 </category> | |
224 <description> | |
225 <![CDATA[<p>Learn how Uber was able to reduce evaluation latenci… | |
226 ]]> | |
227 </description> | |
228 </item> | |
229 <item> | |
230 <title> | |
231 <![CDATA[Preon: Presto Query Analysis for Intelligent and Effici… | |
232 </title> | |
233 <link> | |
234 <![CDATA[https://www.uber.com/blog/preon/]]> | |
235 </link> | |
236 <pubDate> | |
237 <![CDATA[2024-09-26 13:00:00]]> | |
238 </pubDate> | |
239 <category> | |
240 <![CDATA[Data / ML]]> | |
241 </category> | |
242 <description> | |
243 <![CDATA[<p>Discover how to enable intelligent and efficient dat… | |
244 ]]> | |
245 </description> | |
246 </item> | |
247 <item> | |
248 <title> | |
249 <![CDATA[How to Measure Design System at Scale]]> | |
250 </title> | |
251 <link> | |
252 <![CDATA[https://www.uber.com/blog/design-system-at-scale/]]> | |
253 </link> | |
254 <pubDate> | |
255 <![CDATA[2024-09-24 13:00:00]]> | |
256 </pubDate> | |
257 <category> | |
258 <![CDATA[Engineering]]> | |
259 </category> | |
260 <description> | |
261 <![CDATA[<p>Learn how Uber made a breakthrough in tracking desig… | |
262 ]]> | |
263 </description> | |
264 </item> | |
265 <item> | |
266 <title> | |
267 <![CDATA[QueryGPT – Natural Language to SQL Using Generative A… | |
268 </title> | |
269 <link> | |
270 <![CDATA[https://www.uber.com/blog/query-gpt/]]> | |
271 </link> | |
272 <pubDate> | |
273 <![CDATA[2024-09-19 13:00:00]]> | |
274 </pubDate> | |
275 <category> | |
276 <![CDATA[Backend]]> | |
277 </category> | |
278 <description> | |
279 <![CDATA[<p>Discover how QueryGPT revolutionizes SQL query gener… | |
280 ]]> | |
281 </description> | |
282 </item> | |
283 <item> | |
284 <title> | |
285 <![CDATA[Transforming Executive Travel: Delegate Booking with Ub… | |
286 </title> | |
287 <link> | |
288 <![CDATA[https://www.uber.com/blog/executive-travel/]]> | |
289 </link> | |
290 <pubDate> | |
291 <![CDATA[2024-09-12 13:00:00]]> | |
292 </pubDate> | |
293 <category> | |
294 <![CDATA[Backend]]> | |
295 </category> | |
296 <description> | |
297 <![CDATA[<p>Find out how Uber for Business launched delegate pro… | |
298 ]]> | |
299 </description> | |
300 </item> | |
301 <item> | |
302 <title> | |
303 <![CDATA[DataMesh: How Uber laid the foundations for the data la… | |
304 </title> | |
305 <link> | |
306 <![CDATA[https://www.uber.com/blog/datamesh/]]> | |
307 </link> | |
308 <pubDate> | |
309 <![CDATA[2024-09-10 13:00:00]]> | |
310 </pubDate> | |
311 <category> | |
312 <![CDATA[Data / ML]]> | |
313 </category> | |
314 <description> | |
315 <![CDATA[<p>Learn how Uber is streamlining the Cloud migration o… | |
316 ]]> | |
317 </description> | |
318 </item> | |
319 </channel> | |
320 |