Abstract
Earth’s atmosphere, whose ionization stability plays a fundamental role
for the evolution and endurance of life, is exposed to the effect of
cosmic explosions producing high energy Gamma-ray-bursts. Being able to
abruptly increase the atmospheric ionization, they might deplete
stratospheric ozone on a global scale. During the last decades, an
average of more than one Gamma-ray-burst per day were recorded.
Nevertheless, measurable effects on the ionosphere were rarely
observed, in any case on its bottom-side (from about 60 km up to about
350 km of altitude). Here, we report evidence of an intense top-side
(about 500 km) ionospheric perturbation induced by significant sudden
ionospheric disturbance, and a large variation of the ionospheric
electric field at 500 km, which are both correlated with the October 9,
2022 Gamma-ray-burst (GRB221009A).
Introduction
Evidence of ionospheric disturbance induced by a gamma-ray burst (GRB)
was first reported in 1988 by Fishman and Inan^[1]1 as due to the GRB
occurred on 1st August 1983, the strongest ever observed at that time,
with a total fluence exceeding 10^−3ergs/cm^2/s. The measured bulk
effect on the ionosphere was the amplitude change of Very Low Frequency
(VLF) radio signals, proof of the perturbation induced in the lower
part of the ionosphere by that very energetic extrasolar event.
During cosmic GRB (and solar flare too), the intense high energy photon
flux can abnormally ionize the lower ionosphere^[2]2 by producing a
large increase of free electron density^[3]3. As a consequence, the
electron density grows giving rise to a variation of the ionospheric
conductivity leading to a pronounced alteration in both VLF and ELF
(Very Low and Extremely Low Frequency) electric field behaviour,
respectively. Using ground VLF emitters, Inan et al.^[4]4 showed that,
if the burst is sufficiently severe (total fluence exceeding
10^−3ergs/cm^2) and long-lasting, the ionospheric perturbation caused
by a GRB can be observed in the bottom-side ionosphere (from about 60
km up to about 350 km of altitude). Although dedicated satellites
recorded an average of more than one GRB per day in the last decade,
intensive ionospheric reactions were seldom observed. In fact, only a
handful of papers have reported the detection of ionospheric
perturbations due to GRBs events^[5]3,[6]4,[7]5,[8]6,[9]7,[10]8, though
always in the bottom-side ionosphere.
In addition, both Sentman et al.^[11]9, and Price and Mushtak^[12]10
have investigated GRB effects on Earth’s ionosphere finding no
significant variation on the ELF electromagnetic wave data.
Nonetheless, Tanaka et al.^[13]11 reported a clear detection of
transient ELF signal caused by the December 27, 2004, event, a very
intense cosmic gamma-ray flare, inducing a clear variation in the
ionospheric Schumann resonance^[14]12 detected by electromagnetic
ground stations.
In this work we present the evidence of variation of the ionospheric
electric field at about 500 km induced by the strong GRB occurred on
October 9th, 2022. Using both satellite observations and a new ad hoc
developed analytical model, we prove that the GRB221009A deeply
impacted on the Earth’s ionospheric conductivity, causing a strong
perturbation not only in the bottom-side ionosphere^[15]13,[16]14, but
also in the top-side ionosphere (at around 500 km).
Results
On October 9th, 2022, at 13:21 UT, a highly bright and long-lasting GRB
(hereafter GRB221009A), triggered many of the X and Gamma-ray space
observatories, in particular Swift^[17]15,[18]16, Fermi^[19]17,[20]18,
MAXI^[21]19, AGILE^[22]20,[23]21 and INTEGRAL^[24]22,[25]23. The GRB
follow-up was observed by most operative telescopes in space and
on-ground. The INTEGRAL (see Integral satellite data section for more
details) gamma-ray observatory^[26]24 detected the GRB both using the
SPI spectrometer (SPectrometer of Integral) and the IBIS imager (Imager
on-Board the INTEGRAL Satellite) as a complex, impulsive, very strong
photon signal followed by a very intense gamma-ray afterglow^[27]25.
The GRB221009A zenith was located over India and the GRB photon flux
was illuminating Europe, Africa, Asia and part of Australia (Fig.
[28]1).
Fig. 1: Superposition of the GRB illumination area and CSES satellite
orbit.
[29]figure 1
A map of the Earth with the CSES satellite orbit trace shown in blue.
The green-colored part along the orbit marks the time of the electric
field variation triggered by the GRB and detected by EFD. The gray
shaded area shows the estimated illumination area of GRB221009A
impinged at a latitude of 19.8^∘ and a longitude of 71^∘ (red circle).
The light curves from the SPI detector and the IBIS imager (Fig. [30]2)
show a multi-peaked structure with a moderately intense precursor,
starting at 13:16:58 UTC, followed by a very strong prompt GRB
emission, peaking at 13:21 UTC and, a long-lasting, sustained, soft
gamma afterglow detected by both instruments in the energy range
75–1000 keV (SPI) and 0.250–2.6 MeV (IBIS), respectively. Optical
follow-up with the OSIRIS (Optical System for Imaging and
low-Intermediate-Resolution Integrated Spectroscopy) at the 10.4m GTC
(Gran Telescopio CANARIAS) telescope confirmed the presence of a strong
optical afterglow in the range 3700-10000Å with features suggesting a
supernova progenitor^[31]26.
Fig. 2: Light curves from INTEGRAL satellite observations.
[32]figure 2
Time profile of GRB221009A detected by INTEGRAL, scaled for background.
The red curve shows the SPI/ACS count rate on 1s time-bin plotted in
erg/cm^2/s in the energy range 75-1000 keV; the black curve shows the
IBIS/PICsIT data in the energy range 0.25–2.60 MeV. The differences
between the two light curves are due to: i) difference in computing the
two energy bands, ii) statistical fluctuations (IBIS/PICSiT is less
sensitive in this case because of the partial shield absorption to low
energy photons), iii) instrument saturation and/or telemetry loss due
to the exceptionally strong photon flux from GRB221009A.
The fluence of the prompt emission (i.e. the total time-integrated
energy per unit area), lasting about 800s, was 0.013 erg/cm^2 in the
75–1000 keV energy range^[33]23. This value is a lower limit estimate,
due to the partial saturation and pile-up caused by the intense GRB
photon flux. As far as we know, this GRB is among the largest ever
detected. Assuming both a measured distance corresponding to a
red-shift z=0.151^[34]27 and an isotropic emission (E-Iso) only in the
high energy band, the energy emitted during the prompt GRB was about
8 ⋅ 10^53 ergs. It should be noted that both fluence and E-Iso values
are lower limits, due to the partial saturation of instruments (SPI)
and telemetry data transmission (IBIS). The prompt emission was
followed by an unusual strong soft gamma-ray long tail^[35]25 decaying
with a power index around -2, and lasting at least 40 minutes before
crossing the detection threshold of both SPI and IBIS detectors (Fig.
[36]2).
GRB221009A strongly perturbed the D-region^[37]13 (about 60−100 km of
altitude) and, for the first time, its effect was observed also in the
top-side ionosphere (507 km) by the Electric Field Detector
(EFD)^[38]28 onboard the Low Earth Orbit (LEO) Chinese Seismo
Electromagnetic Satellite (CSES - see CSES satellite electric field
data section for more details)^[39]29, which was orbiting from North to
South over the European sector (blue line in Fig. [40]1). Figure [41]3
shows the comparison between the SPI/ACS gamma-ray flux (panel a) and
the ionospheric electric field measured by EFD (panel b). At 13:17:01
UT, EFD was switched on just before entering the Auroral Oval (AO). In
this region (blue-shaded region), the electric field variations are
strongly dominated by the auroral electrojet (a large horizontal
current flowing mainly in the E region of the ionosphere, located at an
altitude of about 100 − 150 km), generated by complex solar
wind-magnetosphere interaction processes^[42]30,[43]31,[44]32. This
effect results in the impossibility to correlate the evolution of
GRB221009A peaks from 13:17:07 to 13:20:44 UT. The position of the AO
boundaries were determined by using Ding et al. algorithm^[45]33. At
13:25:03, about 1.5 min (Δt[GI]) after the beginning of the third and
final peak of GRB221009A, the EFD observed a strong peak in the
ionospheric electric value of about 54mV/m. We hypothesize that such an
electric field variation in the top-side ionosphere can be driven by
the GRB221009A occurrence.
Fig. 3: Comparison of INTEGRAL gamma-ray and CSES electric field
measurements.
[46]figure 3
Comparison between the SPI gamma-ray flux (panel a) and the ionospheric
electric field observed by the CSES satellite (panel b), after the
subtraction of the v[s] × B induced electric field (v[s] and B are the
spacecraft speed and the local magnetic field, respectively). The
blue-shaded region corresponds to the CSES flight over the Auroral
Region. The CSES electric field observations were measured at an
altitude of 507 km.
In fact, Δt[GI] might be related to a characteristic feature of the
ionosphere in response to ionizing flux^[47]34,[48]35, which in
general, depends on the balance between the electron production rate
(dominated by photo-ionization) and the electron losses (resulting from
recombination)^[49]34,[50]36,[51]37. The physical effect caused by the
electron loss process is to delay the response of the changes in
electron density ρ[e] to changes induced by the photo-ionization
process. As a consequence Δt[GI] should represents the time taken for
the ionospheric photo-ionization recombination processes to recover the
equilibrium after an increase of irradiance. The higher is the
ionospheric density, the larger is the delay time^[52]35,[53]37,[54]38.
Figure [55]4 shows the CSES electric field observations during the
GRB221009A occurrence for the three geographical components E[x] (panel
a), E[y] (panel b) and E[z] (panel c), where x is directed northward, y
westward, and z along the (negative) radial direction. It can be easily
seen that the EFD variation (black curve) is superimposed to a
low-frequency modulation induced by v[s] × B effect^[56]28.
Fig. 4: Ionospheric Electric field observations from CSES satellite.
[57]figure 4
CSES electric field waveform as function of time during the GRB221009A
occurrence for the three components E[x] (panel a), E[y] (panel b) and
E[z] (panel c) with (black curve) and without (blue curve) the v[s] × B
induced electric field component. The blue-shaded region corresponds to
the CSES flight over the Auroral Region. The CSES electric field
observations were measured at an altitude of 507 km.
At 13:25:03 UT a large peak in the ionospheric electric field is
visible along the three components, whose amplitudes are:
ΔE[x] = 32.6mV/m; ΔE[y] = − 39.5mV/m; ΔE[z] = 27.9mV/m.
Discussion
These observations are consistent with an anomalous high ionization in
the ionosphere. In general, such a ionospheric perturbations are caused
by solar flares and/or solar particle events leading to sudden radio
wave absorption (in both the medium frequency - MF - and high frequency
- HF - ranges)^[58]39. These effects are detected in the D-region and
are called Sudden Ionospheric Disturbances (SID)^[59]40. In the present
case, the very strong and long-lasting photon flux due to GRB221009A
triggered an unprecedented level of ionization in the ionosphere
producing both a significant SID in the bottom-side ionosphere and a
strong electric field variation in the top-side ionosphere.
We hypothesize that the strong variations of the ionospheric electric
field measured by CSES at an altitude of 507 km can only originate from
a strong variation in the ionospheric parallel conductivity
(σ[0])^[60]41,[61]42, which is directly dependent on the plasma density
(see equation ([62]5) in Analytical model for top-side Ionospheric
Electric field variation induced by a GRB section). To confirm such a
scenario, on the one hand we investigated the distribution of the
ionospheric Total Electron Content (TEC) over Europe, as measured by
Global Navigation Satellite System (GNSS) receivers (see GNSS Total
Electron Content Data section). As from Fig. [63]5, GNSS receivers
located in the Mediterranean area recorded a significant TEC increase
on October 9th (panel b) between 13:00 and 14:00 UT compared to the day
before (panel a) and after (panel c) at the same time, thus confirming
the ionizing effect of the intense GRB^[64]1,[65]13,[66]43.
Fig. 5: TEC map over Europe during the GRB occurrence.
[67]figure 5
Map of the vertical total electron content (TEC) around the CSES
satellite position one day before (panel a), at the moment of (panel b)
and one day after (panel c) the GRB occurrence. All the maps have been
averaged over 1 hour, between 13:00 UT and 14:00 UT. Colors are
representative of the TEC value.
On the other hand, we developed an analytical model (see Analytical
model for top-side Ionospheric Electric field variation induced by a
GRB for more details) able to give a first rough quantitative
evaluation of the top-side ionospheric electric field variation driven
by an impulsive photon flux (e.g., the impinging of a GRB). As can be
seen from Fig. [68]6, an impulsive photon source can generate a
variation in the top-side ionospheric electric field of about 30mV/m
only if the ratio R[αβ] between ion production (α) and absorption (β)
rates are greater than 5. In addition, if R[αβ] is lower than 2, the
effect of the ionization seems not to be able to produce significant
variation in the electric field. Such a result is in agreement with the
previous experimental observations related to GRBs impinging the
ionosphere^[69]1,[70]4,[71]43,[72]44.
Fig. 6: Modelling of ionospheric electric field variation induced by a
GRB.
[73]figure 6
Model results of top-side ionospheric electric field time variation
induced by a impulsive photon source. Colours are representative of
different photon production/absorption rate ratio.
In addition, our model predicts a time delay (Δt[th]) between the peak
of the GRB and the peak of the ionospheric electric field variation of
1.22 minutes for R[αβ] = 5. This Δt[th] is in agreement with the Δt[GI]
observed.
As previously said, being the observations in the bottom-side
ionosphere analogous to the effects induced by solar flares (Solar
Flare Effect - SFE)^[74]45,[75]46, we investigated the possibility of a
sudden intensification of the Solar quiet (Sq) ionospheric current
system^[76]47,[77]48 and of the ionospheric Equatorial Electrojet
(EEJ)^[78]49,[79]50 induced by the GRB221009A^[80]51. The Sq
ionospheric electric currents are located in the E-region and are
responsible of the diurnal variation in the geomagnetic field observed
at ground^[81]52. Figure [82]7b shows the comparison between the
equatorial electrojet, estimated in terms of the variation of the
North-South component of the geomagnetic field (H - see Equatorial
electrojet evaluation section for more details), calculated for a solar
quiet day (October 12^th, 2022, black line) and for the day of the GRB
occurrence (October 9^th, 2022, red line). It can be seen that the
occurrence of the GRB221009A (vertical black dashed line) generated a
perturbation of the EEJ. Indeed, superimposed to the long-term
variation, featured in both days and characterized by a minimum around
both dawn and dusk, and by a maximum around the noon, at about 13:21 UT
a low frequency (0.35 mHz) fluctuation appears. Such a variation is
more clear in the original magnetometer data used for the EEJ
evaluation (panels a, b, c and d) in Fig. [83]7). In fact, looking at
Tatuoka data (panels b and d) which is located inside the EEJ, we can
see that during quiet conditions (panel b) the geomagnetic field
reaches its maximum values around the local noon remaining almost
stable for about 2.5 hours before decreasing down as the station
approaches the local dusk^[84]49. Differently, on October 9th (panel
d), before the GRB occurrence, as expected the H field reaches its
maximum value, but, around 13:21 UT, in coincidence with the occurrence
of the first peak of the GRB (vertical black dashed line), instead of
remaining stable, starts to fluctuate with a low frequency of 0.35 mHz.
Interestingly, such alteration lasted up to 19:00 UT, possibly
sustained by the hard GRB221009A long tail (Fig. [85]2), containing
more than 10% of the total energy of the prompt emission.
Fig. 7: Comparison between Equatorial Electrojet during quiet period
and GRB occurrence.
[86]figure 7
Estimation of the Equatorial Electrojet for the a solar quiet day of
October 2022 (black line) and for the day of the GRB occurrence (red
line): panel a) and c) show original observations of the H component of
the geomagnetic field from San Juan magnetometer station during quiet
and GRB day, respectively; panel b) and d) show original observations
of the H component of the geomagnetic field from Tatuoka magnetometer
station during quiet and GRB day, respectively; panel e) shows the EEJ
results in terms of ΔH. Black dashed lines represent the time
occurrence of the first peak of the GRB.
In conclusion, the unprecedented photon-flux associated to the
GRB221009A deeply impacted on the Earth’s ionospheric conductivity,
causing a strong perturbation not only in the bottom side
ionosphere^[87]13,[88]14, where it is typically observed using ground
VLF antennas^[89]53, but also in the top-side ionosphere (at around 500
km). In fact, a huge variation of the ionospheric electric field,
induced by the strong ionospheric conductivity change was detected in
the top side ionosphere (507 km) as a consequence of a GRB impact,
which increased the ionospheric plasma density by the huge
photo-ionization (even in the dayside), as depicted in Fig. [90]5. The
analytical model described in this work supports the observations and
confirms the hypothesis that the interaction between GRB and top-side
ionosphere is a threshold process^[91]1,[92]4,[93]44. Our model
suggests that such a threshold strictly depends on both the
production-to-loss-rate ratio of ions and the time duration of the
ionization process.
As a closing remark, we want to highlight that, differently to previous
similar studies^[94]13 focused on the impact of GRB on both D- and F-
regions by using TEC data^[95]6,[96]43 and/or VLF ground
electromagnetic transmitters^[97]1,[98]4,[99]14, our work represents,
at our knowledge, the first-ever top-side ionospheric (507km)
measurement of electric field variation triggered by impulsive cosmic
photons.
Methods
This section contains the description of the datasets used in this
study and the analytical description of the model developed for the
explanation of the experimental results.
INTEGRAL satellite data
INTEGRAL, an ESA lead space observatory for observations in the energy
range from a few keV up to 10 MeV, was launched in 2002 and is still
fully operative. In this study data from the Imager IBIS^[100]54 and
the SPectrometer SPI^[101]55 have been used. In particular, IBIS
observes from 25 keV to 10 MeV, with an angular resolution of 12
arcmin, enabling a bright source to be located to better than 1 arcmin.
SPI observes radiation between 20 keV and 8 MeV with an high energy
resolution of 2 keV at 1 MeV, capable to resolve candidate gamma-ray
lines^[102]56. The INTEGRAL instruments were pointed to a sky direction
at about 60 degree offset respect to the GRB arrival direction and the
signal were detected by the omni-directional SPI/ACS shield and by the
IBIS/PICsIT detector through the telescope shield (see annex material
for detailed telescope response^[103]57). The INTEGRAL data are
transmitted continuously in real-time to ground, and distributed in
almost real-time via GCN web network and also through the
Interplanetary Network (IPN).
CSES satellite electric field data
CSES-01 (Chinese Seismo-Electromagnetic Satellite) is a LEO satellite
orbiting sun-synchronously at about 507 km since February
2018^[104]29,[105]58. CSES-01 has nine instruments on board for the
electromagnetic field, waves and charged particle observations in the
upper ionosphere. For this analysis we used electric field data from
the Electric Field Detector (EFD)^[106]59. EFD is able to measure the
electric field in four frequency bands: ULF (DC -16 Hz) with a sampling
frequency of 125 Hz; ELF (6 Hz–2.2 kHz) with a sampling frequency of 5
kHz; VLF (1.8 kHz–20 kHz) with a sampling frequency of 50 kHz; and HF
(High-frequency, 18 kHz–3.5 MHz) with a sampling frequency of 50 kHz.
Due to the limitation of telemetry capability, the waveform data are
only available for both the ULF and ELF bands, and for a few minutes,
over the global seismic belts, for both VLF and HF bands. During the
remaining part of the orbit the VLF and HF data are transmitted as Fast
Fourier Transform (FFT)^[107]28.
To eliminate the v[s] × B effect (v[s] and B are the spacecraft speed
and the local magnetic field, respectively), induced by the motion of
the satellite inside the geomagnetic field, from the E field
components, we applied the technique described in Diego et al.^[108]28.
GNSS total electron content data
To investigate the ionospheric scenario leading to the observed
impulsive variation of the current generated in the ionosphere, we
collected and processed standard daily RINEX files provided by the
permanent stations, located in Europe, of the University NAVSTAR
Consortium and of the Rete Integrata Nazionale GNSS^[109]60 managed by
the Istituto Nazionale di Geofisica e Vulcanologia (INGV). In
particular, to calibrate vertical total electron content (vTEC) data,
we processed GNSS measurements as described in D’Angelo et al.^[110]61
by using the technique by Ciraolo et al.^[111]62 and Cesaroni et
al.^[112]63. Specifically, to generate maps over a specific world zone,
we performed an average of one hour vTEC observations over 1^∘ × 1^∘ of
geographic latitude and longitude bin using data recorded by all
satellites in view of each selected GNSS ground receiver.
Equatorial electrojet evaluation
The equatorial electrojet (EEJ) was obtained using the method described
in Soares et al.^[113]64. We considered the H (North-South) component
the geomagnetic field at ground alone, being directly related to the
east-west flow of the EEJ^[114]49. We used two pairs of ground stations
consisting of one magnetometer close to the magnetic equator and one
out at almost the same meridian. This assumption allows to have only
one observatory under the influence of the EEJ. To estimate the EEJ, we
evaluated the difference between the H component measured by the two
pair stations after the subtraction of the nighttime baseline. Finally
the EEJ signal at the longitude of the equatorial stations is obtained
referred to as ΔH. The ground stations information used for the EEJ
estimation are reported in Table [115]1.
Table 1 Magnetometer Ground Station Location: Information about the
location of the ground magnetometer stations used for the EEJ
estimation
Magnetometer data were obtained from INTERMAGNET magnetometer array
network. INTERMAGNET is a consortium of observatories and operating
institutes that guarantees a common standard of data released to the
scientific community, allowing the possibility to compare the
measurements carried out at different observation points.
Analytical model for top-side Ionospheric Electric field variation induced by
a GRB
In order to develop a model able to represent the effect of GRB
impinging the top-side ionosphere, we started from the ionospheric
Ohm’s law^[116]65:
$${{{{{{{\bf{J}}}}}}}}={{{{{{{\boldsymbol{\sigma }}}}}}}}\cdot
{{{{{{{\bf{E}}}}}}}}={\sigma }_{0}{{{{{{{{\bf{E}}}}}}}}}_{| | }+{\sigma
}_{p}{{{{{{{{\bf{E}}}}}}}}}_{{{{{{{{\boldsymbol{\perp }}}}}}}}}+{\sigma
}_{H}\frac{{{{{{{{\bf{B}}}}}}}}\times
{{{{{{{\bf{E}}}}}}}}}{{{{{{{{\bf{B}}}}}}}}},$$
(1)
where E is the electric field, B is the ambient magnetic field, σ is
the conductivity tensor with σ[p], σ[H], and σ[0] being respectively
the Pedersen, Hall, and parallel conductivity. The formation of the
electric current in the ionized layer is caused by the difference
between the velocities of ions (typically NO^+, O\({}_{2}^{+}\), O^+,
H^+, H\({}_{e}^{+}\) and N^+) and electrons. In ionosphere, the
temporal variability of the electrodynamics processes is slow enough
that one can ignore the displacement current in Maxwell’s equations
(i.e., the term ∂E/∂t)^[117]41, therefore Ampère-Maxwell law reduces to
$${\mu }_{0}{{{{{{{\boldsymbol{\nabla }}}}}}}}\cdot
{{{{{{{\bf{J}}}}}}}}={{{{{{{\boldsymbol{\nabla }}}}}}}}\cdot
({{{{{{{\boldsymbol{\nabla }}}}}}}}\times {{{{{{{\bf{B}}}}}}}})=0,$$
(2)
where μ[0] is vacuum magnetic permeability. By combining equations
([118]1) and ([119]2), we obtain:
$${{{{{{{\boldsymbol{\nabla }}}}}}}}\cdot ({{{{{{{\boldsymbol{\sigma
}}}}}}}}\cdot {{{{{{{\bf{E}}}}}}}})=0.$$
(3)
At about 500 km (i.e. CSES orbiting altitude) both σ[H] and σ[p] are
negligible with respect to σ[0] (see Fig. [120]7 in Denisenko et
al.^[121]66). As a consequence, equation ([122]3) simplifies to
$${{{{{{{\boldsymbol{\nabla }}}}}}}}\cdot ({{{{{{{{\boldsymbol{\sigma
}}}}}}}}}_{{{{{{{{\bf{O}}}}}}}}}\cdot {{{{{{{{\bf{E}}}}}}}}}_{| |
})=0.$$
(4)
Once σ[0] is known, equation ([123]4) can be numerically solved to
obtain the E field behaviour. Equation for the parallel conductivity in
the ionosphere as given by Maeda^[124]42 reads
$${\sigma }_{0}=\frac{{n}_{e}{q}_{e}^{2}}{{m}_{e}{\nu }_{e}}$$
(5)
$${\nu }_{e}={\nu }_{e,i}+{\nu }_{e,n},$$
(6)
where n[e] is the electron density, ν[e,n] is electron-neutral
collision frequency, ν[e,i] electron-ion collision frequency, q[e] is
the unsigned electric charge (i.e. 1.602 ⋅ 10^−19C), and m[e] is the
electron mass (i.e. 9.109 ⋅ 10^−31kg). Following the results of
Aggarwal et al.^[125]67, we can estimate the electron collision
frequency at about 500 km as ν[e] = 10^2sec^−1.
Being σ[0] directly dependent on the electron density, it is
straightforward that any variation of n[e] causes a changes in E. In
general, the rate of change of the electron density is expressed by a
continuity equation^[126]68:
$$\frac{d{n}_{e}}{dt}=A-L,$$
(7)
where A is the production coefficient and L the loss coefficient by
recombination/losses. Naturally, the recombination coefficient depends
of what ion species are present, and hence on the ionospheric altitude.
At high altitudes (>200km, i.e. top-side ionosphere) where O^+ is the
dominant ion species, L becomes proportional to the electron
density^[127]68. So, equation ([128]7) becomes:
$$\frac{d{n}_{e}}{dt}=A-\beta {n}_{e},$$
(8)
where β is the loss rate. Equation ([129]8) is valid only at altitudes
higher than 200 km (and hence at the altitude of our electric field
observations), being L, at lower altitudes (bottom-side ionosphere),
proportional to the square of the electron density^[130]68. To simulate
the production rate induced by a GRB, we used a Gaussian impulsive
function of the form \(\alpha
{e}^{-{(\frac{t-{t}_{0}}{{s}_{0}})}^{2}}\), so that equation ([131]8)
can be written as:
$$\frac{d{n}_{e}}{dt}=\alpha
{e}^{-{\left(\frac{t-{t}_{0}}{{s}_{0}}\right)}^{2}}-\beta {n}_{e},$$
(9)
where α is the production rate induced by the GRB that depends on its
photon flux, t[0] is the time of the maximum production rate, and s[0]
is the width of the pulse.
Putting together equations ([132]4), ([133]5), and ([134]9), and
assuming at 500 km both an average electron density of
1.2 ⋅ 10^11cm^−3 ^[135]69 and an average loss rate coefficient of
0.6 ⋅ 10^−6sec^−1 ^[136]70,[137]71,[138]72, we can model the electric
field variation induced by a GRB as a function of the ionospheric
plasma density variation at 500 km of altitude. Figure [139]6 shows the
results of our model for different ratios between production (α) and
loss (β) rate. It can be easily seen that the effect of a GRB is
negligible if α/β < 3. To obtain results similar to what was observed
on October 9th, 2022, our model requires a production-to-loss ratio
greater than 5.
The usage of a formalism directly related to the ratio between α and β
allows the model to being independent (for the present analysis) of the
calculation of a realistic photon production rate caused by a GRB,
whose evaluation needs a Montecarlo approach and the estimation of the
real top-side ionospheric ion cross-section, which is out of the scope
of the present work but a more accurate modelling of the effect of a
GRB on the top-side ionospheric electric field is in progress.
Anyway, despite being very simplified, our model can be used to give a
first quantitative explanation of the effect induced in the top-side
ionosphere by GRB221009.
Data availability
We cannot supply our source data in any public depository since they
are property of: European Space Agency (INTEGRAL satellite data);
Italian Space Agency (CSES satellite data); International Real-time
Magnetic Observatory Network (ground magnetometer data); University
NAVSTAR Consortium (GNSS satellite data). Anyway all of them can be
freely downloaded from the relative website after registration. CSES
satellite data are freely available at the LEOS repository
([140]www.leos.ac.cn/#/home, accessed on 08/09/2023) after
registration; GNSS data are freely available at University NAVSTAR
Consortium ([141]
https://www.unavco.org/accessedon08/09/2023) after
registrtion. INTEGRAL SPI data are freely available at the ISDC
([142]
https://www.isdc.unige.ch/integral/, accessed on 08/09/2023)
repository. INTEGRAL PiCsIt/IBIS data are proprietary data of authors
of the paper without any restriction. Ground magnetometer data are
freely available at INTERMAGNET website
([143]
https://imag-data.bgs.ac.uk/GIN_V1/GINForms2, accessed on
08/09/2023). The datasets generated during and/or analysed during the
current study are available from the corresponding author on request.
Code availability
Codes used to produce results and figures were obtained using Matlab
software package. They are not public but can be made available upon
request to the corresponding author.
References
1. Fishman, G. & Inan, U. Observation of an ionospheric disturbance
caused by a gamma-ray burst. Nature 331, 418–420 (1988).
[144]Article [145]ADS [146]Google Scholar
2. Hargreaves, J. K. The upper atmosphere and solar-terrestrial
relations - An introduction to the aerospace environment (Cambridge
University Press, 1979).
3. Tanaka, Y. et al. First very low frequency detection of short
repeated bursts from magnetar sgr j1550- 5418. Astrophys. J. Lett.
721, L24 (2010).
[147]Article [148]ADS [149]Google Scholar
4. Inan, U. S. et al. Massive disturbance of the daytime lower
ionosphere by the giant γ-ray flare from magnetar sgr 1806-20.
Geophys. Res. Lett. 34 (2007).
5. Maeda, K. et al. Ionospheric effects of the cosmic gamma ray burst
of 29 march 2003. Geophys. Res. Lett. 32,
[150]
https://doi.org/10.1029/2005GL023525 (2005).
6. Huang, W.-G., Gu, S.-F. & Shen, H. Response of the total electron
content of terrestrial ionosphere to grb041227. Chin. Astron.
Astrophys. 32, 65–72 (2008).
[151]Article [152]ADS [153]Google Scholar
7. Hudec, R. et al. Detection of grbs and ots by all-sky optical and
sid monitors. Adv. Astron. (2010).
8. Slosiar, R., Hudec, R., Kocka, M., Marko, R. and Zatko, M. Indirect
detections and analyses of grbs by ionospheric response: toward a
sid-monitor network. In AIP Conference Proceedings, vol. 1358,
393–396 (American Institute of Physics, 2011).
9. Sentman, D., Heavner, M., Baker, D., Cayton, T. and Fraser, B.
Effects of solar storms on the schumann resonances in late 1989. In
10th Annual Conference on Atmospheric Electricity. Soc. of Atmos.
Electr. of Japan, Osaka, Japan (1996).
10. Price, C. & Mushtak, V. The impact of the august 27, 1998, γ-ray
burst on the schumann resonances. J. Atmos. Sol.-Terrest. Phys. 63,
1043–1047 (2001).
[154]Article [155]ADS [156]Google Scholar
11. Tanaka, Y. T. et al. Detection of transient elf emission caused by
the extremely intense cosmic gamma-ray flare of 27 december 2004.
Geophys. Res. Lett. 38, [157]
https://doi.org/10.1029/2011GL047008
(2011).
12. Schumann, W. O. Über die strahlungslosen eigenschwingungen einer
leitenden kugel, die von einer luftschicht und einer
ionosphärenhülle umgeben ist. Z. f.ür. Naturforsch. A 7, 149–154
(1952).
[158]Article [159]ADS [160]MATH [161]Google Scholar
13. Hayes, L. A. & Gallagher, P. T. A significant sudden ionospheric
disturbance associated with gamma-ray burst grb 221009a. Res. Notes
AAS 6, 222 (2022).
[162]Article [163]ADS [164]Google Scholar
14. Pal, S. et al. First detection of global ionospheric disturbances
associated with the most powerful gamma ray burst grb221009a.
Atmosphere 14, 217 (2023).
[165]Article [166]ADS [167]Google Scholar
15. Dichiara, S. et al. Swift j1913.1+1946 a new bright hard x-ray and
optical transient. GRB Coord. Netw. 32632, 1 (2022).
[168]Google Scholar
16. Kennea, J. A. & Williams, M. Grb 221009a: Swift detected transient
may be grb. GRB Coord. Netw. 32635, 1 (2022).
[169]Google Scholar
17. Veres, P., Burns, E., Bissaldi, E., Lesage, S. & Roberts, O. Grb
221009a: Fermi gbm detection of an extraordinarily bright grb. GRB
Coord. Netw. 32636, 1 (2022).
[170]Google Scholar
18. Bissaldi, E., Omodei, N. & Kerr, M. Grb 221009a or swift
j1913.1+1946: Fermi-lat detection. GRB Coord. Netw. 32637, 1
(2022).
[171]Google Scholar
19. Negoro, H. et al. MAXI/GSC detection of the new X-ray transient
Swift J1913.1+1946. Astron. Telegr. 15651, 1 (2022).
[172]ADS [173]Google Scholar
20. Ursi, A. et al. Grb 221009a (swift j1913.1+1946): Agile/mcal
detection. GCN Circ. 32650 (2022).
21. Piano, G. et al. Grb 221009a (swift j1913.1+1946): Agile/grid
detection. GCN Circ. 32657 (2022).
22. Svinkin, D. et al. Ipn triangulation of extremely bright grb
221009a. GCN Circ. 32641 (2022).
23. Gotz, D., Mereghetti, S., Savchenko, V., Ferrigno, C. & Bozzo, E.
Grb221009a/swift j1913.1+1946: Integral spi/acs observations. GRB
Coord. Netw. 32691, 1 (2022).
[174]Google Scholar
24. Winkler, C. et al. The integral mission. Astron. Astrophys. 411,
L1–L6 (2003).
[175]Article [176]ADS [177]CAS [178]Google Scholar
25. Savchenko, V. et al. Grb221009a: Integral detection of hard x-ray
emission up to 38 hours after trigger. GRB Coord. Netw. 32691, 1
(2022).
[179]Google Scholar
26. de Ugarte Postigo, A. et al. Grb 221009a: Spectroscopic detection
of emerging sn features. GRB Coord. Netw. 32800, 1 (2022).
[180]Google Scholar
27. de Ugarte Postigo, A. et al. Grb 221009a: Redshift from
x-shooter/vlt. GRB Coord. Netw. 32648, 1 (2022).
[181]Google Scholar
28. Diego, P. et al. The electric field detector on board the china
seismo electromagnetic satellite-in-orbit results and validation.
Instruments 5, [182]
https://doi.org/10.3390/instruments5010001
(2021).
29. Shen, X., Zong, Q.-G. & Zhang, X. Introduction to special section
on the china seismo-electromagnetic satellite and initial results.
Earth Planet. Phys. 2, 439 (2018).
[183]Article [184]ADS [185]Google Scholar
30. Smith, A. R. A., Beggan, C. D., Macmillan, S. & Whaler, K. A.
Climatology of the auroral electrojets derived from the along-track
gradient of magnetic field intensity measured by pogo, magsat,
champ, and swarm. Space Weather. 15, 1257–1269 (2017).
[186]Article [187]ADS [188]Google Scholar
31. Materassi, M. et al. Stepping into the equatorward boundary of the
auroral oval: preliminary results of multi scale statistical
analysis. Ann. Geophys. 62, GM455–GM455 (2019).
[189]Google Scholar
32. Consolini, G. et al. On turbulent features of e × b plasma motion
in the auroral topside ionosphere: Some results from cses-01
satellite. Remote. Sens. 14,
[190]
https://doi.org/10.3390/rs14081936 (2022).
33. Ding, G.-X., He, F., Zhang, X.-X. & Chen, B. A new auroral boundary
determination algorithm based on observations from timed/guvi and
dmsp/ssusi. J. Geophys. Res. Space Phys. 122, 2162–2173 (2017).
[191]Article [192]ADS [193]Google Scholar
34. Mitra, A. P. Ionospheric effects of solar flares, vol. 46 (Springer
Nature, 1974).
35. Appleton, E. V. A note on the “sluggishness" of the ionosphere. J.
Atmos. Terr. Phys. 3, 282–284 (1953).
[194]Article [195]ADS [196]Google Scholar
36. Nina, A., Cadež, V., Sreckovic, V. & Šulic, D. Altitude
distribution of electron concentration in ionospheric d-region in
presence of time-varying solar radiation flux. Nucl. Instrum.
Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 279, 110–113
(2012).
[197]Article [198]ADS [199]CAS [200]Google Scholar
37. Žigman, V., Grubor, D. & Šulic, D. D-region electron density
evaluated from vlf amplitude time delay during x-ray solar flares.
J. Atmos. Sol.-terrest. Phys. 69, 775–792 (2007).
[201]Article [202]ADS [203]Google Scholar
38. Basak, T. & Chakrabarti, S. K. Effective recombination coefficient
and solar zenith angle effects on low-latitude d-region ionosphere
evaluated from vlf signal amplitude and its time delay during x-ray
solar flares. Astrophys. Space Sci. 348, 315–326 (2013).
[204]Article [205]ADS [206]CAS [207]Google Scholar
39. Hegde, S., Bobra, M. G. & Scherrer, P. H. Classifying signatures of
sudden ionospheric disturbances. Res. Notes AAS 2, 162 (2018).
[208]Article [209]ADS [210]Google Scholar
40. Dellinger, J. H. Sudden ionospheric disturbances. Terr. Magn.
Atmos. Electr. 42, 49–53 (1937).
[211]Article [212]Google Scholar
41. Kelley, M. C. The Earth’s ionosphere: Plasma physics and
electrodynamics (Academic press, 2009).
42. Maeda, K.-I. Conductivity and drifts in the ionosphere. J. Atmos.
Terr. Phys. 39, 1041–1053 (1977).
[213]Article [214]ADS [215]Google Scholar
43. Mahrous, A. Ionospheric response to magnetar flare: signature of
sgr j1550-5418 on coherent ionospheric doppler radar. Ann. Geophys.
35, 345–351 (2017).
[216]Article [217]ADS [218]Google Scholar
44. Mondal, S. K. & Chakrabarti, S. K. Earth’s Ionosphere as a Gigantic
Detector of Extra-terrestrial Energetic Phenomena: A eview. AIP
Conf. Proc. 1286, 311–330 (2010).
[219]Article [220]ADS [221]Google Scholar
45. Rastogi, R. Electromagnetic induction due to solar flares at
equatorial stations. J. Atmos. Sol.-Terrest. Phys. 63, 599–604
(2001).
[222]Article [223]ADS [224]Google Scholar
46. Rastogi, R. Effect of solar disturbances on the geomagnetic h, y,
and z fields in american equatorial electrojet stations. solar
flare effects. J. Indian Geophys. Union 7, 43–51 (2003).
[225]Google Scholar
47. Matsushita, S. & Xu, W.-Y. Equivalent ionospheric current systems
representing solar daily variations of the polar geomagnetic field.
J. Geophys. Res. Space Phys. 87, 8241–8254 (1982).
[226]Article [227]ADS [228]Google Scholar
48. Campbell, W. The regular geomagnetic-field variations during quiet
solar conditions. Geomatik 3, 385–460 (1989).
[229]ADS [230]Google Scholar
49. Chapman, S. & Rao, K. R. The h and z variations along and near the
equatorial electrojet in india, africa and the pacific. J. Atmos.
Terrest. Phys. 27, 559–581 (1965).
[231]Article [232]ADS [233]Google Scholar
50. Lühr, H. & Manoj, C. The complete spectrum of the equatorial
electrojet related to solar tides: Champ observations. Ann.
Geophys. 31, 1315–1331 (2013).
[234]Article [235]ADS [236]Google Scholar
51. Nogueira, P. A. B. et al. Modeling the equatorial and low-latitude
ionospheric response to an intense x-class solar flare. J. Geophys.
Res. Space Phys. 120, 3021–3032 (2015).
[237]Article [238]ADS [239]Google Scholar
52. Campbell, W. H. An introduction to quiet daily geomagnetic fields.
Quiet Dly. Geomagn. Fields 315–331 (1989).
53. Scherrer, D. et al. Distributing space weather monitoring
instruments and educational materials worldwide for ihy 2007: The
awesome and sid project. Adv. Space Res. 42, 1777–1785 (2008).
[240]Article [241]ADS [242]Google Scholar
54. Ubertini, P. et al. Ibis: The imager on-board integral. Astron.
Astrophys. 411, L131–L139 (2003).
[243]Article [244]ADS [245]CAS [246]Google Scholar
55. Vedrenne, G. et al. Spi: The spectrometer aboard integral. Astron.
Astrophys. 411, L63–L70 (2003).
[247]Article [248]ADS [249]CAS [250]Google Scholar
56. Kuulkers, E. et al. Integral reloaded: Spacecraft, instruments and
ground system. N. Astron. Rev. 93, 101629 (2021).
[251]Article [252]Google Scholar
57. Savchenko, V. et al. Integral ibis, spi, and jem-x observations of
lvt151012. Astron. Astrophys. 603, A46 (2017).
[253]Article [254]Google Scholar
58. Shen, X. et al. The state of the art of the china
seismo-electromagnetic satellite mission. Sci. China Technol. Sci.
61, 634 (2018).
[255]Article [256]ADS [257]Google Scholar
59. Huang, J. et al. The electric field detector (efd) onboard the zh-1
satellite and first observational results. Earth Planet. Phys. 2,
469 (2018).
[258]Article [259]ADS [260]Google Scholar
60. Selvaggi, G. et al. Rete integrata nazionale gps. Istituto
Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy (2016).
61. D’Angelo, G. et al. Investigation of the physical processes
involved in gnss amplitude scintillations at high latitude: A case
study. Remote. Sens. 13, 2493 (2021).
[261]Article [262]ADS [263]Google Scholar
62. Ciraolo, L., Azpilicueta, F., Brunini, C., Meza, A. & Radicella, S.
M. Calibration errors on experimental slant total electron content
(tec) determined with gps. J. Geod. 81, 111–120 (2007).
[264]Article [265]ADS [266]Google Scholar
63. Cesaroni, C. et al. L-band scintillations and calibrated total
electron content gradients over brazil during the last solar
maximum. J. Space Weather. Space Clim. 5, A36 (2015).
[267]Article [268]Google Scholar
64. Soares, G. et al. Equatorial counter electrojet longitudinal and
seasonal variability in the american sector. J. Geophys. Res. Space
Phys. 123, 9906–9920 (2018).
[269]Article [270]ADS [271]Google Scholar
65. Vasyliunas, V. M. The physical basis of ionospheric
electrodynamics. Ann. Geophys. 30, 357–369 (2012).
[272]Article [273]ADS [274]Google Scholar
66. Denisenko, V., Rycroft, M. & Harrison, R. Mathematical simulation
of the ionospheric electric field as a part of the global electric
circuit. Surv. Geophys. 40, 1–35 (2019).
[275]Article [276]ADS [277]Google Scholar
67. Aggarwal, K., Nath, N. & Setty, C. Collision frequency and
transport properties of electrons in the ionosphere. Planet. Space
Sci. 27, 753–768 (1979).
[278]Article [279]ADS [280]CAS [281]Google Scholar
68. Briggs, B. H. & Rishbeth, H. An analogue solution of the continuity
equation of the ionospheric f region. Proc. Phys. Soc. 78, 409
(1961).
[282]Article [283]ADS [284]Google Scholar
69. Pignalberi, A. et al. Inter-calibration and statistical validation
of topside ionosphere electron density observations made by cses-01
mission. Remote. Sens. 14, 4679 (2022).
[285]Article [286]ADS [287]Google Scholar
70. Ratcliffe, J. A., Schmerling, E. & Setty, C. The rates of
production and loss of electrons in the f region of the ionosphere.
Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 248, 621–642
(1956).
[288]ADS [289]Google Scholar
71. Taylor, G. Integrated electron production and loss rates in the
ionosphere. Planet. Space Sci. 13, 507–520 (1965).
[290]Article [291]ADS [292]CAS [293]Google Scholar
72. smith III, F. Electron production and loss rates in the f region.
J. Geophys. Res. 73, 7385–7398 (1968).
[294]Article [295]ADS [296]Google Scholar
[297]Download references
Acknowledgements
The authors thank the Italian Space Agency for the financial support
under the contract ASI “LIMADOU Scienza+” n^∘ 2020-31-HH.0, and the
financial support under the “ INTEGRAL ASI-INAF” agreement n^∘
2019-35-HH.0. M.P., and G.d.A. thank the ISSI-BJ project “The
electromagnetic data validation and scientific application research
based on CSES satellite” and Dragon 5 cooperation 2020-2024 (ID.
59236). Part of the research leading to the result has receiving
founding support from the EuropeanUnion’s Horizon 2020 Programme under
the AHEAD2020 project (grant agreement n. 871158). This material is
based on services provided by the GAGE Facility, operated by EarthScope
Consortium, with support from the National Science Foundation, the
National Aeronautics and Space Administration, and the U.S. Geological
Survey under NSF Cooperative Agreement EAR-1724794. The authors thank
the INGV group for providing the RING data. We thank the national
institutes that support INTERMAGNET for promoting high standards of the
magnetic observatory practice ([298]www.intermagnet.org) used in this
paper.
Author information
Author notes
1. These authors contributed equally: Mirko Piersanti, Pietro
Ubertini, Roberto Battiston, Angela Bazzano, Giulia D’Angelo, James
G. Rodi, Piero Diego.
Authors and Affiliations
1. Department of Physical and Chemical Sciences, University of
L’Aquila, 67100, L’Aquila, Italy
Mirko Piersanti
2. National Institute of Astrophysics, IAPS, Rome, 00133, Italy
Mirko Piersanti, Pietro Ubertini, Angela Bazzano, Giulia D’Angelo,
James G. Rodi, Piero Diego, Igor Bertello, Antonio Cicone, Fabrizio
De Angelis, Emiliano Fiorenza, Bruno Martino, Alfredo Morbidini,
Fabrizio Nuccilli, Emanuele Papini, Alexandra Parmentier, Dario
Recchiuti, Andrea Russi, Silvia Tofani, Nello Vertolli & Ugo
Zannoni
3. Department of Physics, University of Trento, Povo, Italy
Roberto Battiston, Andrea Di Luca, Francesco Maria Follega,
Giuseppe Gebbia, Roberto Iuppa, Alessandro Lega, Alessio Perinelli,
Dario Recchiuti, Ester Ricci, Veronica Vilona & Paolo Zuccon
4. TIFPA-INFN, Povo, 38123, Trento, Italy
Roberto Battiston, William J. Burger, Marco Cristoforetti, Andrea
Di Luca, Francesco Maria Follega, Giuseppe Gebbia, Roberto Iuppa,
Alessandro Lega, Coralie Neubüser, Francesco Nozzoli, Alessio
Perinelli, Ester Ricci & Paolo Zuccon
5. National Institute of Natural Hazards, Ministry of Emergency
Management of China, Beijing, 100085, People’s Republic of China
Zhima Zeren
6. INFN, University of Rome Tor Vergata, Rome, 00133, Italy
Roberto Ammendola, Davide Badoni, Simona Bartocci, Piero Cipollone,
Livio Conti, Cinzia De Donato, Cristian De Santis, Matteo Martucci,
Giuseppe Masciantonio, Matteo Mergè, Francesco Palma, Alexandra
Parmentier, Piergiorgio Picozza, Gianmaria Rebustini, Alessandro
Sotgiu, Roberta Sparvoli & Vincenzo Vitale
7. INFN - Sezione di Torino, 10125, Torino, Italy
Stefania Beolè, Silvia Coli, Stefania Perciballi & Umberto Savino
8. INFN-Sezione di Napoli, Naples, 80126, Italy
Donatella Campana, Marco Mese, Giuseppe Osteria, Beatrice Panico,
Francesco Perfetto & Valentina Scotti
9. Dipartimento di Ingegneria e Scienze dell’Informazione e
Matematica, University of L’Aquila, 67100, L’Aquila, Italy
Antonio Cicone
10. Uninettuno University, 00186, Rome, Italy
Livio Conti
11. University of Bologna, Bologna, 40127, Italy
Andrea Contin, Alberto Oliva & Federico Palmonari
12. INFN - Sezione di Bologna, 40127, Bologna, Italy
Andrea Contin, Marco Lolli, Alberto Oliva, Federico Palmonari,
Michele Pozzato & Zuleika Sahnoun
13. Fondazione Bruno Kessler, 38123, Povo, TN, Italy
Marco Cristoforetti
14. CNR, V. Fosso del Cavaliere 100, 00133, Rome, Italy
Bruno Martino
15. Agenzia Spaziale Italia, Rome, 00133, Italy
Matteo Mergè & Simona Zoffoli
16. Università degli Studi di Napoli Federico II, 80126, Naples, Italy
Marco Mese, Beatrice Panico & Valentina Scotti
17. Department of Physics, University of Rome Tor Vergata, Rome, 00133,
Italy
Piergiorgio Picozza & Roberta Sparvoli
18. INFN-LNF, Frascati, Rome, 00100, Italy
Marco Ricci
19. IFAC-CNR, Sesto Fiorentino, Florence, 50019, Italy
Sergio B. Ricciarini
20. National Space Science Center, Chinese Academy of Sciences,
Beijing, 100190, People’s Republic of China
Xuhui Shen
Contributions
M.P. writing–original draft, formal analysis, methodology and
supervision; P.U. writing–revision, editing and methodology; R.B.
writing–revision, formal analysis and validation; A.B.
writing–revision; G.d.A. writing–revision, formal analysis; J.C.R.
writing–revision, formal analysis; P.D. data validation, funding, Z.Z
data validation. R.A., D.B., S.B., S.Be., I.B., W.J.B., D.C., A.C.,
P.C., S.C., L.C., A.Co., M.C., F.d.A., C.d.D., C.d.S., A.d.L., E.F.,
F.M.F., G.G., R.I., A.L., M.L., B.M., G.M., M.M., M.Me., M.Mes, A.M.,
C.N, F.N., F.Nu, A.O., G.O., F.P., F.Pa., B.P., E.P., A.P., S.P., F.P.,
A.Pe., P.P., M.Po., G.R., D.R., E.R., M.R., S.B.R., A.R., X.S., Z.S.,
U.S., V.S., A.S., R.S., S.T., N.V., V.V., V.Vi, U.Z., S.Z., P.Z., are
part of the CSES-Limadou Collaboration whose significant contribution
made satellite observations possible.
Corresponding author
Correspondence to [299]Mirko Piersanti.
Ethics declarations
Competing interests
This research received no external funding. The authors declare no
competing interests.
Peer review
Peer review information
Nature Communications thanks the anonymous reviewers for their
contribution to the peer review of this work. A peer review file is
available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit
[300]
http://creativecommons.org/licenses/by/4.0/.
[301]Reprints and Permissions
About this article
[302]Check for updates. Verify currency and authenticity via CrossMark
Cite this article
Piersanti, M., Ubertini, P., Battiston, R. et al. Evidence of an upper
ionospheric electric field perturbation correlated with a gamma ray
burst. Nat Commun 14, 7013 (2023).
https://doi.org/10.1038/s41467-023-42551-5
[303]Download citation
* Received: 04 February 2023
* Accepted: 13 October 2023
* Published: 14 November 2023
* DOI:
https://doi.org/10.1038/s41467-023-42551-5
Comments
By submitting a comment you agree to abide by our [304]Terms and
[305]Community Guidelines. If you find something abusive or that does
not comply with our terms or guidelines please flag it as
inappropriate.
References
1.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR1
2.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR2
3.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR3
4.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR4
5. file:///tmp/lynxXXXXkN46iZ/L48891-2514TMP.html#ref-CR3
6. file:///tmp/lynxXXXXkN46iZ/L48891-2514TMP.html#ref-CR4
7. file:///tmp/lynxXXXXkN46iZ/L48891-2514TMP.html#ref-CR5
8. file:///tmp/lynxXXXXkN46iZ/L48891-2514TMP.html#ref-CR6
9. file:///tmp/lynxXXXXkN46iZ/L48891-2514TMP.html#ref-CR7
10.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR8
11.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR9
12.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR10
13.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR11
14.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR12
15.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR13
16.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR14
17.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR15
18.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR16
19.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR17
20.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR18
21.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR19
22.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR20
23.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR21
24.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR22
25.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR23
26.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR24
27.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR25
28.
https://www.nature.com/articles/s41467-023-42551-5#Fig1
29.
https://www.nature.com/articles/s41467-023-42551-5/figures/1
30.
https://www.nature.com/articles/s41467-023-42551-5#Fig2
31.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR26
32.
https://www.nature.com/articles/s41467-023-42551-5/figures/2
33.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR23
34.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR27
35.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR25
36.
https://www.nature.com/articles/s41467-023-42551-5#Fig2
37.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR13
38.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR28
39.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR29
40.
https://www.nature.com/articles/s41467-023-42551-5#Fig1
41.
https://www.nature.com/articles/s41467-023-42551-5#Fig3
42. file:///tmp/lynxXXXXkN46iZ/L48891-2514TMP.html#ref-CR30
43. file:///tmp/lynxXXXXkN46iZ/L48891-2514TMP.html#ref-CR31
44.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR32
45.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR33
46.
https://www.nature.com/articles/s41467-023-42551-5/figures/3
47.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR34
48.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR35
49.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR34
50.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR36
51.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR37
52.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR35
53.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR37
54.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR38
55.
https://www.nature.com/articles/s41467-023-42551-5#Fig4
56.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR28
57.
https://www.nature.com/articles/s41467-023-42551-5/figures/4
58.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR39
59.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR40
60.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR41
61.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR42
62.
https://www.nature.com/articles/s41467-023-42551-5#Equ5
63.
https://www.nature.com/articles/s41467-023-42551-5#Fig5
64.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR1
65.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR13
66.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR43
67.
https://www.nature.com/articles/s41467-023-42551-5/figures/5
68.
https://www.nature.com/articles/s41467-023-42551-5#Fig6
69.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR1
70.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR4
71.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR43
72.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR44
73.
https://www.nature.com/articles/s41467-023-42551-5/figures/6
74.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR45
75.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR46
76.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR47
77.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR48
78.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR49
79.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR50
80.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR51
81.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR52
82.
https://www.nature.com/articles/s41467-023-42551-5#Fig7
83.
https://www.nature.com/articles/s41467-023-42551-5#Fig7
84.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR49
85.
https://www.nature.com/articles/s41467-023-42551-5#Fig2
86.
https://www.nature.com/articles/s41467-023-42551-5/figures/7
87.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR13
88.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR14
89.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR53
90.
https://www.nature.com/articles/s41467-023-42551-5#Fig5
91.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR1
92.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR4
93.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR44
94.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR13
95.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR6
96.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR43
97.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR1
98.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR4
99.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR14
100.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR54
101.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR55
102.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR56
103.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR57
104.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR29
105.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR58
106.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR59
107.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR28
108.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR28
109.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR60
110.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR61
111.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR62
112.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR63
113.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR64
114.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR49
115.
https://www.nature.com/articles/s41467-023-42551-5#Tab1
116.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR65
117.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR41
118.
https://www.nature.com/articles/s41467-023-42551-5#Equ1
119.
https://www.nature.com/articles/s41467-023-42551-5#Equ2
120.
https://www.nature.com/articles/s41467-023-42551-5#Fig7
121.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR66
122.
https://www.nature.com/articles/s41467-023-42551-5#Equ3
123.
https://www.nature.com/articles/s41467-023-42551-5#Equ4
124.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR42
125.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR67
126.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR68
127.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR68
128.
https://www.nature.com/articles/s41467-023-42551-5#Equ7
129.
https://www.nature.com/articles/s41467-023-42551-5#Equ8
130.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR68
131.
https://www.nature.com/articles/s41467-023-42551-5#Equ8
132.
https://www.nature.com/articles/s41467-023-42551-5#Equ4
133.
https://www.nature.com/articles/s41467-023-42551-5#Equ5
134.
https://www.nature.com/articles/s41467-023-42551-5#Equ9
135.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR69
136. file:///tmp/lynxXXXXkN46iZ/L48891-2514TMP.html#ref-CR70
137. file:///tmp/lynxXXXXkN46iZ/L48891-2514TMP.html#ref-CR71
138.
https://www.nature.com/articles/s41467-023-42551-5#ref-CR72
139.
https://www.nature.com/articles/s41467-023-42551-5#Fig6
140.
http://www.leos.ac.cn/#/home
141.
https://www.unavco.org/accessedon08/09/2023
142.
https://www.isdc.unige.ch/integral/
143.
https://imag-data.bgs.ac.uk/GIN_V1/GINForms2
144.
https://doi.org/10.1038/331418a0
145.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1988Natur.331..418F
146.
http://scholar.google.com/scholar_lookup?&title=Observation of an ionospheric disturbance caused by a gamma-ray burst&journal=Nature&doi=10.1038/331418a0&volume=331&pages=418-420&publication_year=1988&author=Fishman,G&author=Inan,U
147.
https://doi.org/10.1088/2041-8205/721/1/L24
148.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2010ApJ...721L..24T
149.
http://scholar.google.com/scholar_lookup?&title=First very low frequency detection of short repeated bursts from magnetar sgr j1550- 5418&journal=Astrophys. J. Lett.&doi=10.1088/2041-8205/721/1/L24&volume=721&publication_year=2010&author=Tanaka,Y
150.
https://doi.org/10.1029/2005GL023525
151.
https://doi.org/10.1016/j.chinastron.2008.01.005
152.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2008ChA&A..32...65H
153.
http://scholar.google.com/scholar_lookup?&title=Response of the total electron content of terrestrial ionosphere to grb041227&journal=Chin. Astron. Astrophys.&doi=10.1016/j.chinastron.2008.01.005&volume=32&pages=65-72&publication_year=2008&author=Huang,W-G&author=Gu,S-F&author=Shen,H
154.
https://doi.org/10.1016/S1364-6826(01)00014-1
155.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2001JASTP..63.1043P
156.
http://scholar.google.com/scholar_lookup?&title=The impact of the august 27, 1998, γ-ray burst on the schumann resonances&journal=J. Atmos. Sol.-Terrest. Phys.&doi=10.1016/S1364-6826(01)00014-1&volume=63&pages=1043-1047&publication_year=2001&author=Price,C&author=Mushtak,V
157.
https://doi.org/10.1029/2011GL047008
158.
https://doi.org/10.1515/zna-1952-0202
159.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1952ZNatA...7..149S
160.
http://www.emis.de/MATH-item?0047.20209
161.
http://scholar.google.com/scholar_lookup?&title=Über die strahlungslosen eigenschwingungen einer leitenden kugel, die von einer luftschicht und einer ionosphärenhülle umgeben ist&journal=Z. f.ür. Naturforsch. A&doi=10.1515/zna-1952-0202&volume=7&pages=149-154&publication_year=1952&author=Schumann,WO
162.
https://doi.org/10.3847/2515-5172/ac9d2f
163.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2022RNAAS...6..222H
164.
http://scholar.google.com/scholar_lookup?&title=A significant sudden ionospheric disturbance associated with gamma-ray burst grb 221009a&journal=Res. Notes AAS&doi=10.3847/2515-5172/ac9d2f&volume=6&publication_year=2022&author=Hayes,LA&author=Gallagher,PT
165.
https://doi.org/10.3390/atmos14020217
166.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2023Atmos..14..217P
167.
http://scholar.google.com/scholar_lookup?&title=First detection of global ionospheric disturbances associated with the most powerful gamma ray burst grb221009a&journal=Atmosphere&doi=10.3390/atmos14020217&volume=14&publication_year=2023&author=Pal,S
168.
http://scholar.google.com/scholar_lookup?&title=Swift j1913.1+1946 a new bright hard x-ray and optical transient&journal=GRB Coord. Netw.&volume=32632&publication_year=2022&author=Dichiara,S
169.
http://scholar.google.com/scholar_lookup?&title=Grb 221009a: Swift detected transient may be grb&journal=GRB Coord. Netw.&volume=32635&publication_year=2022&author=Kennea,JA&author=Williams,M
170.
http://scholar.google.com/scholar_lookup?&title=Grb 221009a: Fermi gbm detection of an extraordinarily bright grb&journal=GRB Coord. Netw.&volume=32636&publication_year=2022&author=Veres,P&author=Burns,E&author=Bissaldi,E&author=Lesage,S&author=Roberts,O
171.
http://scholar.google.com/scholar_lookup?&title=Grb 221009a or swift j1913.1+1946: Fermi-lat detection&journal=GRB Coord. Netw.&volume=32637&publication_year=2022&author=Bissaldi,E&author=Omodei,N&author=Kerr,M
172.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2022ATel15651....1N
173.
http://scholar.google.com/scholar_lookup?&title=MAXI/GSC detection of the new X-ray transient Swift J1913.1+1946&journal=Astron. Telegr.&volume=15651&publication_year=2022&author=Negoro,H
174.
http://scholar.google.com/scholar_lookup?&title=Grb221009a/swift j1913.1+1946: Integral spi/acs observations&journal=GRB Coord. Netw.&volume=32691&publication_year=2022&author=Gotz,D&author=Mereghetti,S&author=Savchenko,V&author=Ferrigno,C&author=Bozzo,E
175.
https://doi.org/10.1051/0004-6361:20031288
176.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2003A&A...411L...1W
177.
https://www.nature.com/articles/cas-redirect/1:CAS:528:DC+D2cXhtFyhsQ==
178.
http://scholar.google.com/scholar_lookup?&title=The integral mission&journal=Astron. Astrophys.&doi=10.1051/0004-6361:20031288&volume=411&pages=L1-L6&publication_year=2003&author=Winkler,C
179.
http://scholar.google.com/scholar_lookup?&title=Grb221009a: Integral detection of hard x-ray emission up to 38 hours after trigger&journal=GRB Coord. Netw.&volume=32691&publication_year=2022&author=Savchenko,V
180.
http://scholar.google.com/scholar_lookup?&title=Grb 221009a: Spectroscopic detection of emerging sn features&journal=GRB Coord. Netw.&volume=32800&publication_year=2022&author=Ugarte Postigo,A
181.
http://scholar.google.com/scholar_lookup?&title=Grb 221009a: Redshift from x-shooter/vlt&journal=GRB Coord. Netw.&volume=32648&publication_year=2022&author=Ugarte Postigo,A
182.
https://doi.org/10.3390/instruments5010001
183.
https://doi.org/10.26464/epp2018041
184.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2018E&PP....2..439S
185.
http://scholar.google.com/scholar_lookup?&title=Introduction to special section on the china seismo-electromagnetic satellite and initial results&journal=Earth Planet. Phys.&doi=10.26464/epp2018041&volume=2&publication_year=2018&author=Shen,X&author=Zong,Q-G&author=Zhang,X
186.
https://doi.org/10.1002/2017SW001675
187.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2017SpWea..15.1257S
188.
http://scholar.google.com/scholar_lookup?&title=Climatology of the auroral electrojets derived from the along-track gradient of magnetic field intensity measured by pogo, magsat, champ, and swarm&journal=Space Weather.&doi=10.1002/2017SW001675&volume=15&pages=1257-1269&publication_year=2017&author=Smith,ARA&author=Beggan,CD&author=Macmillan,S&author=Whaler,KA
189.
http://scholar.google.com/scholar_lookup?&title=Stepping into the equatorward boundary of the auroral oval: preliminary results of multi scale statistical analysis&journal=Ann. Geophys.&volume=62&pages=GM455-GM455&publication_year=2019&author=Materassi,M
190.
https://doi.org/10.3390/rs14081936
191.
https://doi.org/10.1002/2016JA023295
192.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2017JGRA..122.2162D
193.
http://scholar.google.com/scholar_lookup?&title=A new auroral boundary determination algorithm based on observations from timed/guvi and dmsp/ssusi&journal=J. Geophys. Res. Space Phys.&doi=10.1002/2016JA023295&volume=122&pages=2162-2173&publication_year=2017&author=Ding,G-X&author=He,F&author=Zhang,X-X&author=Chen,B
194.
https://doi.org/10.1016/0021-9169(53)90129-9
195.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1953JATP....3..282A
196.
http://scholar.google.com/scholar_lookup?&title=A note on the “sluggishness" of the ionosphere&journal=J. Atmos. Terr. Phys.&doi=10.1016/0021-9169(53)90129-9&volume=3&pages=282-284&publication_year=1953&author=Appleton,EV
197.
https://doi.org/10.1016/j.nimb.2011.10.019
198.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2012NIMPB.279..110N
199.
https://www.nature.com/articles/cas-redirect/1:CAS:528:DC+C38XlsFOjt7Y=
200.
http://scholar.google.com/scholar_lookup?&title=Altitude distribution of electron concentration in ionospheric d-region in presence of time-varying solar radiation flux&journal=Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At.&doi=10.1016/j.nimb.2011.10.019&volume=279&pages=110-113&publication_year=2012&author=Nina,A&author=Cadež,V&author=Sreckovic,V&author=Šulic,D
201.
https://doi.org/10.1016/j.jastp.2007.01.012
202.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2007JASTP..69..775Z
203.
http://scholar.google.com/scholar_lookup?&title=D-region electron density evaluated from vlf amplitude time delay during x-ray solar flares&journal=J. Atmos. Sol.-terrest. Phys.&doi=10.1016/j.jastp.2007.01.012&volume=69&pages=775-792&publication_year=2007&author=Žigman,V&author=Grubor,D&author=Šulic,D
204.
https://doi.org/10.1007/s10509-013-1597-9
205.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2013Ap&SS.348..315B
206.
https://www.nature.com/articles/cas-redirect/1:CAS:528:DC+C3sXhsVKnsrfJ
207.
http://scholar.google.com/scholar_lookup?&title=Effective recombination coefficient and solar zenith angle effects on low-latitude d-region ionosphere evaluated from vlf signal amplitude and its time delay during x-ray solar flares&journal=Astrophys. Space Sci.&doi=10.1007/s10509-013-1597-9&volume=348&pages=315-326&publication_year=2013&author=Basak,T&author=Chakrabarti,SK
208.
https://doi.org/10.3847/2515-5172/aade47
209.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2018RNAAS...2..162H
210.
http://scholar.google.com/scholar_lookup?&title=Classifying signatures of sudden ionospheric disturbances&journal=Res. Notes AAS&doi=10.3847/2515-5172/aade47&volume=2&publication_year=2018&author=Hegde,S&author=Bobra,MG&author=Scherrer,PH
211.
https://doi.org/10.1029/TE042i001p00049
212.
http://scholar.google.com/scholar_lookup?&title=Sudden ionospheric disturbances&journal=Terr. Magn. Atmos. Electr.&doi=10.1029/TE042i001p00049&volume=42&pages=49-53&publication_year=1937&author=Dellinger,JH
213.
https://doi.org/10.1016/0021-9169(77)90013-7
214.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1977JATP...39.1041M
215.
http://scholar.google.com/scholar_lookup?&title=Conductivity and drifts in the ionosphere&journal=J. Atmos. Terr. Phys.&doi=10.1016/0021-9169(77)90013-7&volume=39&pages=1041-1053&publication_year=1977&author=Maeda,K-I
216.
https://doi.org/10.5194/angeo-35-345-2017
217.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2017AnGeo..35..345M
218.
http://scholar.google.com/scholar_lookup?&title=Ionospheric response to magnetar flare: signature of sgr j1550-5418 on coherent ionospheric doppler radar&journal=Ann. Geophys.&doi=10.5194/angeo-35-345-2017&volume=35&pages=345-351&publication_year=2017&author=Mahrous,A
219.
https://doi.org/10.1063/1.3512889
220.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2010AIPC.1286..311M
221.
http://scholar.google.com/scholar_lookup?&title=Earth’s Ionosphere as a Gigantic Detector of Extra-terrestrial Energetic Phenomena: A eview&journal=AIP Conf. Proc.&doi=10.1063/1.3512889&volume=1286&pages=311-330&publication_year=2010&author=Mondal,SK&author=Chakrabarti,SK
222.
https://doi.org/10.1016/S1364-6826(00)00253-4
223.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2001JASTP..63..599R
224.
http://scholar.google.com/scholar_lookup?&title=Electromagnetic induction due to solar flares at equatorial stations&journal=J. Atmos. Sol.-Terrest. Phys.&doi=10.1016/S1364-6826(00)00253-4&volume=63&pages=599-604&publication_year=2001&author=Rastogi,R
225.
http://scholar.google.com/scholar_lookup?&title=Effect of solar disturbances on the geomagnetic h, y, and z fields in american equatorial electrojet stations. solar flare effects&journal=J. Indian Geophys. Union&volume=7&pages=43-51&publication_year=2003&author=Rastogi,R
226.
https://doi.org/10.1029/JA087iA10p08241
227.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1982JGR....87.8241M
228.
http://scholar.google.com/scholar_lookup?&title=Equivalent ionospheric current systems representing solar daily variations of the polar geomagnetic field&journal=J. Geophys. Res. Space Phys.&doi=10.1029/JA087iA10p08241&volume=87&pages=8241-8254&publication_year=1982&author=Matsushita,S&author=Xu,W-Y
229.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1989Geoma...3..385C
230.
http://scholar.google.com/scholar_lookup?&title=The regular geomagnetic-field variations during quiet solar conditions&journal=Geomatik&volume=3&pages=385-460&publication_year=1989&author=Campbell,W
231.
https://doi.org/10.1016/0021-9169(65)90020-6
232.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1965JATP...27..559C
233.
http://scholar.google.com/scholar_lookup?&title=The h and z variations along and near the equatorial electrojet in india, africa and the pacific&journal=J. Atmos. Terrest. Phys.&doi=10.1016/0021-9169(65)90020-6&volume=27&pages=559-581&publication_year=1965&author=Chapman,S&author=Rao,KR
234.
https://doi.org/10.5194/angeo-31-1315-2013
235.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2013AnGeo..31.1315L
236.
http://scholar.google.com/scholar_lookup?&title=The complete spectrum of the equatorial electrojet related to solar tides: Champ observations&journal=Ann. Geophys.&doi=10.5194/angeo-31-1315-2013&volume=31&pages=1315-1331&publication_year=2013&author=Lühr,H&author=Manoj,C
237.
https://doi.org/10.1002/2014JA020823
238.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2015JGRA..120.3021N
239.
http://scholar.google.com/scholar_lookup?&title=Modeling the equatorial and low-latitude ionospheric response to an intense x-class solar flare&journal=J. Geophys. Res. Space Phys.&doi=10.1002/2014JA020823&volume=120&pages=3021-3032&publication_year=2015&author=Nogueira,PAB
240.
https://doi.org/10.1016/j.asr.2007.12.013
241.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2008AdSpR..42.1777S
242.
http://scholar.google.com/scholar_lookup?&title=Distributing space weather monitoring instruments and educational materials worldwide for ihy 2007: The awesome and sid project&journal=Adv. Space Res.&doi=10.1016/j.asr.2007.12.013&volume=42&pages=1777-1785&publication_year=2008&author=Scherrer,D
243.
https://doi.org/10.1051/0004-6361:20031224
244.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2003A&A...411L.131U
245.
https://www.nature.com/articles/cas-redirect/1:CAS:528:DC+D2cXhtFynsg==
246.
http://scholar.google.com/scholar_lookup?&title=Ibis: The imager on-board integral&journal=Astron. Astrophys.&doi=10.1051/0004-6361:20031224&volume=411&pages=L131-L139&publication_year=2003&author=Ubertini,P
247.
https://doi.org/10.1051/0004-6361:20031482
248.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2003A&A...411L..63V
249.
https://www.nature.com/articles/cas-redirect/1:CAS:528:DC+D2cXhtFygsw==
250.
http://scholar.google.com/scholar_lookup?&title=Spi: The spectrometer aboard integral&journal=Astron. Astrophys.&doi=10.1051/0004-6361:20031482&volume=411&pages=L63-L70&publication_year=2003&author=Vedrenne,G
251.
https://doi.org/10.1016/j.newar.2021.101629
252.
http://scholar.google.com/scholar_lookup?&title=Integral reloaded: Spacecraft, instruments and ground system&journal=N. Astron. Rev.&doi=10.1016/j.newar.2021.101629&volume=93&publication_year=2021&author=Kuulkers,E
253.
https://doi.org/10.1051/0004-6361/201730572
254.
http://scholar.google.com/scholar_lookup?&title=Integral ibis, spi, and jem-x observations of lvt151012&journal=Astron. Astrophys.&doi=10.1051/0004-6361/201730572&volume=603&publication_year=2017&author=Savchenko,V
255.
https://doi.org/10.1007/s11431-018-9242-0
256.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2018ScChE..61..634S
257.
http://scholar.google.com/scholar_lookup?&title=The state of the art of the china seismo-electromagnetic satellite mission&journal=Sci. China Technol. Sci.&doi=10.1007/s11431-018-9242-0&volume=61&publication_year=2018&author=Shen,X
258.
https://doi.org/10.26464/epp2018045
259.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2018E&PP....2..469H
260.
http://scholar.google.com/scholar_lookup?&title=The electric field detector (efd) onboard the zh-1 satellite and first observational results&journal=Earth Planet. Phys.&doi=10.26464/epp2018045&volume=2&publication_year=2018&author=Huang,J
261.
https://doi.org/10.3390/rs13132493
262.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2021RemS...13.2493D
263.
http://scholar.google.com/scholar_lookup?&title=Investigation of the physical processes involved in gnss amplitude scintillations at high latitude: A case study&journal=Remote. Sens.&doi=10.3390/rs13132493&volume=13&publication_year=2021&author=D’Angelo,G
264.
https://doi.org/10.1007/s00190-006-0093-1
265.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2007JGeod..81..111C
266.
http://scholar.google.com/scholar_lookup?&title=Calibration errors on experimental slant total electron content (tec) determined with gps&journal=J. Geod.&doi=10.1007/s00190-006-0093-1&volume=81&pages=111-120&publication_year=2007&author=Ciraolo,L&author=Azpilicueta,F&author=Brunini,C&author=Meza,A&author=Radicella,SM
267.
https://doi.org/10.1051/swsc/2015038
268.
http://scholar.google.com/scholar_lookup?&title=L-band scintillations and calibrated total electron content gradients over brazil during the last solar maximum&journal=J. Space Weather. Space Clim.&doi=10.1051/swsc/2015038&volume=5&publication_year=2015&author=Cesaroni,C
269.
https://doi.org/10.1029/2018JA025968
270.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2018JGRA..123.9906S
271.
http://scholar.google.com/scholar_lookup?&title=Equatorial counter electrojet longitudinal and seasonal variability in the american sector&journal=J. Geophys. Res. Space Phys.&doi=10.1029/2018JA025968&volume=123&pages=9906-9920&publication_year=2018&author=Soares,G
272.
https://doi.org/10.5194/angeo-30-357-2012
273.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2012AnGeo..30..357V
274.
http://scholar.google.com/scholar_lookup?&title=The physical basis of ionospheric electrodynamics&journal=Ann. Geophys.&doi=10.5194/angeo-30-357-2012&volume=30&pages=357-369&publication_year=2012&author=Vasyliunas,VM
275.
https://doi.org/10.1007/s10712-018-9499-6
276.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2019SGeo...40....1D
277.
http://scholar.google.com/scholar_lookup?&title=Mathematical simulation of the ionospheric electric field as a part of the global electric circuit&journal=Surv. Geophys.&doi=10.1007/s10712-018-9499-6&volume=40&pages=1-35&publication_year=2019&author=Denisenko,V&author=Rycroft,M&author=Harrison,R
278.
https://doi.org/10.1016/0032-0633(79)90004-7
279.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1979P&SS...27..753A
280.
https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaE1MXls1SrsLc=
281.
http://scholar.google.com/scholar_lookup?&title=Collision frequency and transport properties of electrons in the ionosphere&journal=Planet. Space Sci.&doi=10.1016/0032-0633(79)90004-7&volume=27&pages=753-768&publication_year=1979&author=Aggarwal,K&author=Nath,N&author=Setty,C
282.
https://doi.org/10.1088/0370-1328/78/3/310
283.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1961PPS....78..409B
284.
http://scholar.google.com/scholar_lookup?&title=An analogue solution of the continuity equation of the ionospheric f region&journal=Proc. Phys. Soc.&doi=10.1088/0370-1328/78/3/310&volume=78&publication_year=1961&author=Briggs,BH&author=Rishbeth,H
285.
https://doi.org/10.3390/rs14184679
286.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2022RemS...14.4679P
287.
http://scholar.google.com/scholar_lookup?&title=Inter-calibration and statistical validation of topside ionosphere electron density observations made by cses-01 mission&journal=Remote. Sens.&doi=10.3390/rs14184679&volume=14&publication_year=2022&author=Pignalberi,A
288.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1956RSPTA.248..621R
289.
http://scholar.google.com/scholar_lookup?&title=The rates of production and loss of electrons in the f region of the ionosphere&journal=Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci.&volume=248&pages=621-642&publication_year=1956&author=Ratcliffe,JA&author=Schmerling,E&author=Setty,C
290.
https://doi.org/10.1016/0032-0633(65)90164-9
291.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1965P&SS...13..507T
292.
https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaF2MXksF2nur4=
293.
http://scholar.google.com/scholar_lookup?&title=Integrated electron production and loss rates in the ionosphere&journal=Planet. Space Sci.&doi=10.1016/0032-0633(65)90164-9&volume=13&pages=507-520&publication_year=1965&author=Taylor,G
294.
https://doi.org/10.1029/JA073i023p07385
295.
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1968JGR....73.7385S
296.
http://scholar.google.com/scholar_lookup?&title=Electron production and loss rates in the f region&journal=J. Geophys. Res.&doi=10.1029/JA073i023p07385&volume=73&pages=7385-7398&publication_year=1968&author=smith III,F
297.
https://citation-needed.springer.com/v2/references/10.1038/s41467-023-42551-5?format=refman&flavour=references
298.
http://www.intermagnet.org/
299. mailto:
[email protected]
300.
http://creativecommons.org/licenses/by/4.0/
301.
https://s100.copyright.com/AppDispatchServlet?title=Evidence of an upper ionospheric electric field perturbation correlated with a gamma ray burst&author=Mirko Piersanti et al&contentID=10.1038/s41467-023-42551-5©right=The Author(s)&publication=2041-1723&publicationDate=2023-11-14&publisherName=SpringerNature&orderBeanReset=true&oa=CC BY
302.
https://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-42551-5
303.
https://citation-needed.springer.com/v2/references/10.1038/s41467-023-42551-5?format=refman&flavour=citation
304.
https://www.nature.com/info/tandc.html
305.
https://www.nature.com/info/community-guidelines.html