/*      $NetBSD: z8530tty.c,v 1.135 2022/10/26 23:45:25 riastradh Exp $ */

/*-
* Copyright (c) 1993, 1994, 1995, 1996, 1997, 1998, 1999
*      Charles M. Hannum.  All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*      This product includes software developed by Charles M. Hannum.
* 4. The name of the author may not be used to endorse or promote products
*    derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Copyright (c) 1992, 1993
*      The Regents of the University of California.  All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
*      This product includes software developed by the University of
*      California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*      @(#)zs.c        8.1 (Berkeley) 7/19/93
*/

/*
* Copyright (c) 1994 Gordon W. Ross
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
*      This product includes software developed by the University of
*      California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*      This product includes software developed by the University of
*      California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*      @(#)zs.c        8.1 (Berkeley) 7/19/93
*/

/*
* Zilog Z8530 Dual UART driver (tty interface)
*
* This is the "slave" driver that will be attached to
* the "zsc" driver for plain "tty" async. serial lines.
*
* Credits, history:
*
* The original version of this code was the sparc/dev/zs.c driver
* as distributed with the Berkeley 4.4 Lite release.  Since then,
* Gordon Ross reorganized the code into the current parent/child
* driver scheme, separating the Sun keyboard and mouse support
* into independent child drivers.
*
* RTS/CTS flow-control support was a collaboration of:
*      Gordon Ross <[email protected]>,
*      Bill Studenmund <[email protected]>
*      Ian Dall <[email protected]>
*
* The driver was massively overhauled in November 1997 by Charles Hannum,
* fixing *many* bugs, and substantially improving performance.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: z8530tty.c,v 1.135 2022/10/26 23:45:25 riastradh Exp $");

#include "opt_kgdb.h"
#include "opt_ntp.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/device.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/malloc.h>
#include <sys/timepps.h>
#include <sys/tty.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/syslog.h>
#include <sys/kauth.h>

#include <dev/ic/z8530reg.h>
#include <machine/z8530var.h>

#include <dev/cons.h>

#include "ioconf.h"
#include "locators.h"

/*
* How many input characters we can buffer.
* The port-specific var.h may override this.
* Note: must be a power of two!
*/
#ifndef ZSTTY_RING_SIZE
#define ZSTTY_RING_SIZE 2048
#endif

static struct cnm_state zstty_cnm_state;
/*
* Make this an option variable one can patch.
* But be warned:  this must be a power of 2!
*/
u_int zstty_rbuf_size = ZSTTY_RING_SIZE;

/* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
u_int zstty_rbuf_hiwat = (ZSTTY_RING_SIZE * 1) / 4;
u_int zstty_rbuf_lowat = (ZSTTY_RING_SIZE * 3) / 4;

struct zstty_softc {
       device_t zst_dev;               /* required first: base device */
       struct  tty *zst_tty;
       struct  zs_chanstate *zst_cs;

       struct callout zst_diag_ch;

       u_int zst_overflows,
             zst_floods,
             zst_errors;

       int zst_hwflags,        /* see z8530var.h */
           zst_swflags;        /* TIOCFLAG_SOFTCAR, ... <ttycom.h> */

       u_int zst_r_hiwat,
             zst_r_lowat;
       uint8_t *volatile zst_rbget,
               *volatile zst_rbput;
       volatile u_int zst_rbavail;
       uint8_t *zst_rbuf,
               *zst_ebuf;

       /*
        * The transmit byte count and address are used for pseudo-DMA
        * output in the hardware interrupt code.  PDMA can be suspended
        * to get pending changes done; heldtbc is used for this.  It can
        * also be stopped for ^S; this sets TS_TTSTOP in tp->t_state.
        */
       uint8_t *zst_tba;               /* transmit buffer address */
       u_int zst_tbc,                  /* transmit byte count */
             zst_heldtbc;              /* held tbc while xmission stopped */

       /* Flags to communicate with zstty_softint() */
       volatile uint8_t zst_rx_flags,  /* receiver blocked */
#define RX_TTY_BLOCKED          0x01
#define RX_TTY_OVERFLOWED       0x02
#define RX_IBUF_BLOCKED         0x04
#define RX_IBUF_OVERFLOWED      0x08
#define RX_ANY_BLOCK            0x0f
                       zst_tx_busy,    /* working on an output chunk */
                       zst_tx_done,    /* done with one output chunk */
                       zst_tx_stopped, /* H/W level stop (lost CTS) */
                       zst_st_check,   /* got a status interrupt */
                       zst_rx_ready;

       /* PPS signal on DCD, with or without inkernel clock disciplining */
       uint8_t  zst_ppsmask;                   /* pps signal mask */
       struct pps_state zst_pps_state;
};

/* Definition of the driver for autoconfig. */
static int      zstty_match(device_t, cfdata_t, void *);
static void     zstty_attach(device_t, device_t, void *);

CFATTACH_DECL_NEW(zstty, sizeof(struct zstty_softc),
   zstty_match, zstty_attach, NULL, NULL);

dev_type_open(zsopen);
dev_type_close(zsclose);
dev_type_read(zsread);
dev_type_write(zswrite);
dev_type_ioctl(zsioctl);
dev_type_stop(zsstop);
dev_type_tty(zstty);
dev_type_poll(zspoll);

const struct cdevsw zstty_cdevsw = {
       .d_open = zsopen,
       .d_close = zsclose,
       .d_read = zsread,
       .d_write = zswrite,
       .d_ioctl = zsioctl,
       .d_stop = zsstop,
       .d_tty = zstty,
       .d_poll = zspoll,
       .d_mmap = nommap,
       .d_kqfilter = ttykqfilter,
       .d_discard = nodiscard,
       .d_flag = D_TTY
};

struct zsops zsops_tty;

static void zs_shutdown(struct zstty_softc *);
static void     zsstart(struct tty *);
static int      zsparam(struct tty *, struct termios *);
static void zs_modem(struct zstty_softc *, int);
static void tiocm_to_zs(struct zstty_softc *, u_long, int);
static int  zs_to_tiocm(struct zstty_softc *);
static int    zshwiflow(struct tty *, int);
static void  zs_hwiflow(struct zstty_softc *);
static void zs_maskintr(struct zstty_softc *);

/* Low-level routines. */
static void zstty_rxint  (struct zs_chanstate *);
static void zstty_stint  (struct zs_chanstate *, int);
static void zstty_txint  (struct zs_chanstate *);
static void zstty_softint(struct zs_chanstate *);
static void zstty_softint1(struct zs_chanstate *);

#define ZSUNIT(x)       TTUNIT(x)
#define ZSDIALOUT(x)    TTDIALOUT(x)

struct tty *zstty_get_tty_from_dev(device_t);

/*
* XXX get the (struct tty *) out of a (device_t) we trust to be a
* (struct zstty_softc *) - needed by sparc/dev/zs.c, sparc64/dev/zs.c,
* sun3/dev/zs.c and sun2/dev/zs.c will probably need it at some point
*/

struct tty *
zstty_get_tty_from_dev(device_t dev)
{
       struct zstty_softc *sc = device_private(dev);

       return sc->zst_tty;
}

/*
* zstty_match: how is this zs channel configured?
*/
int
zstty_match(device_t parent, cfdata_t cf, void *aux)
{
       struct zsc_attach_args *args = aux;

       /* Exact match is better than wildcard. */
       if (cf->zsccf_channel == args->channel)
               return 2;

       /* This driver accepts wildcard. */
       if (cf->zsccf_channel == ZSCCF_CHANNEL_DEFAULT)
               return 1;

       return 0;
}

void
zstty_attach(device_t parent, device_t self, void *aux)
{
       struct zstty_softc *zst = device_private(self);
       struct zsc_softc *zsc = device_private(parent);
       cfdata_t cf = device_cfdata(self);
       struct zsc_attach_args *args = aux;
       struct zs_chanstate *cs;
       struct tty *tp;
       int channel, tty_unit;
       dev_t dev;
       const char *i, *o;
       int dtr_on;
       int resetbit;

       zst->zst_dev = self;

       callout_init(&zst->zst_diag_ch, 0);
       cn_init_magic(&zstty_cnm_state);

       tty_unit = device_unit(self);
       channel = args->channel;
       cs = zsc->zsc_cs[channel];
       cs->cs_private = zst;
       cs->cs_ops = &zsops_tty;

       zst->zst_cs = cs;
       zst->zst_swflags = cf->cf_flags;        /* softcar, etc. */
       zst->zst_hwflags = args->hwflags;
       dev = makedev(cdevsw_lookup_major(&zstty_cdevsw), tty_unit);

       if (zst->zst_swflags)
               aprint_normal(" flags 0x%x", zst->zst_swflags);

       /*
        * Check whether we serve as a console device.
        * XXX - split console input/output channels aren't
        *       supported yet on /dev/console
        */
       i = o = NULL;
       if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
               i = "input";
               if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) {
                       args->consdev->cn_dev = dev;
                       cn_tab->cn_pollc = args->consdev->cn_pollc;
                       cn_tab->cn_getc = args->consdev->cn_getc;
               }
               cn_tab->cn_dev = dev;
               /* Set console magic to BREAK */
               cn_set_magic("\047\001");
       }
       if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
               o = "output";
               if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) {
                       cn_tab->cn_putc = args->consdev->cn_putc;
               }
               cn_tab->cn_dev = dev;
       }
       if (i != NULL || o != NULL)
               aprint_normal(" (console %s)", i ? (o ? "i/o" : i) : o);

#ifdef KGDB
       if (zs_check_kgdb(cs, dev)) {
               /*
                * Allow kgdb to "take over" this port.  Returns true
                * if this serial port is in-use by kgdb.
                */
               aprint_normal(" (kgdb)\n");
               /*
                * This is the kgdb port (exclusive use)
                * so skip the normal attach code.
                */
               return;
       }
#endif
       aprint_normal("\n");

       tp = tty_alloc();
       tp->t_dev = dev;
       tp->t_oproc = zsstart;
       tp->t_param = zsparam;
       tp->t_hwiflow = zshwiflow;
       tty_attach(tp);

       zst->zst_tty = tp;
       zst->zst_rbuf = malloc(zstty_rbuf_size << 1, M_DEVBUF, M_WAITOK);
       zst->zst_ebuf = zst->zst_rbuf + (zstty_rbuf_size << 1);
       /* Disable the high water mark. */
       zst->zst_r_hiwat = 0;
       zst->zst_r_lowat = 0;
       zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
       zst->zst_rbavail = zstty_rbuf_size;

       /* if there are no enable/disable functions, assume the device
          is always enabled */
       if (!cs->enable)
               cs->enabled = 1;

       /*
        * Hardware init
        */
       dtr_on = 0;
       resetbit = 0;
       if (ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
               /* Call zsparam similar to open. */
               struct termios t;

               /* Wait a while for previous console output to complete */
               DELAY(10000);

               /* Setup the "new" parameters in t. */
               t.c_ispeed = 0;
               t.c_ospeed = cs->cs_defspeed;
               t.c_cflag = cs->cs_defcflag;

               /*
                * Turn on receiver and status interrupts.
                * We defer the actual write of the register to zsparam(),
                * but we must make sure status interrupts are turned on by
                * the time zsparam() reads the initial rr0 state.
                */
               SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE);

               /* Make sure zsparam will see changes. */
               tp->t_ospeed = 0;
               (void) zsparam(tp, &t);

               /* Make sure DTR is on now. */
               dtr_on = 1;

       } else if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_NORESET)) {
               /* Not the console; may need reset. */
               resetbit = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET;
       }

       mutex_spin_enter(&cs->cs_lock);
       if (resetbit)
               zs_write_reg(cs, 9, resetbit);
       zs_modem(zst, dtr_on);
       mutex_spin_exit(&cs->cs_lock);
}


/*
* Return pointer to our tty.
*/
struct tty *
zstty(dev_t dev)
{
       struct zstty_softc *zst;

       zst = device_lookup_private(&zstty_cd, ZSUNIT(dev));

       return (zst->zst_tty);
}


void
zs_shutdown(struct zstty_softc *zst)
{
       struct zs_chanstate *cs = zst->zst_cs;
       struct tty *tp = zst->zst_tty;

       mutex_spin_enter(&cs->cs_lock);

       /* If we were asserting flow control, then deassert it. */
       SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
       zs_hwiflow(zst);

       /* Clear any break condition set with TIOCSBRK. */
       zs_break(cs, 0);

       /*
        * Hang up if necessary.  Wait a bit, so the other side has time to
        * notice even if we immediately open the port again.
        */
       if (ISSET(tp->t_cflag, HUPCL)) {
               zs_modem(zst, 0);
               mutex_spin_exit(&cs->cs_lock);
               /*
                * XXX -    another process is not prevented from opening
                *          the device during our sleep.
                */
               (void) tsleep(cs, TTIPRI, ttclos, hz);
               /* Re-check state in case we were opened during our sleep */
               if (ISSET(tp->t_state, TS_ISOPEN) || tp->t_wopen != 0)
                       return;

               mutex_spin_enter(&cs->cs_lock);
       }

       /* Turn off interrupts if not the console. */
       if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
               CLR(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE);
               cs->cs_creg[1] = cs->cs_preg[1];
               zs_write_reg(cs, 1, cs->cs_creg[1]);
       }

       /* Call the power management hook. */
       if (cs->disable) {
#ifdef DIAGNOSTIC
               if (!cs->enabled)
                       panic("%s: not enabled?", __func__);
#endif
               (*cs->disable)(zst->zst_cs);
       }

       mutex_spin_exit(&cs->cs_lock);
}

/*
* Open a zs serial (tty) port.
*/
int
zsopen(dev_t dev, int flags, int mode, struct lwp *l)
{
       struct zstty_softc *zst;
       struct zs_chanstate *cs;
       struct tty *tp;
       int error;

       zst = device_lookup_private(&zstty_cd, ZSUNIT(dev));
       if (zst == NULL)
               return (ENXIO);

       tp = zst->zst_tty;
       cs = zst->zst_cs;

       /* If KGDB took the line, then tp==NULL */
       if (tp == NULL)
               return (EBUSY);

       /*
        * If the device is exclusively for kernel use, deny userland
        * open.
        */
       if (ISSET(tp->t_state, TS_KERN_ONLY))
               return (EBUSY);

       if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
               return (EBUSY);

       ttylock(tp);

       /*
        * Do the following iff this is a first open.
        */
       if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
               struct termios t;

               tp->t_dev = dev;

               /* Call the power management hook. */
               if (cs->enable) {
                       if ((*cs->enable)(cs)) {
                               ttyunlock(tp);
                               printf("%s: device enable failed\n",
                                   device_xname(zst->zst_dev));
                               return (EIO);
                       }
               }

               /*
                * Initialize the termios status to the defaults.  Add in the
                * sticky bits from TIOCSFLAGS.
                */
               t.c_ispeed = 0;
               t.c_ospeed = cs->cs_defspeed;
               t.c_cflag = cs->cs_defcflag;
               if (ISSET(zst->zst_swflags, TIOCFLAG_CLOCAL))
                       SET(t.c_cflag, CLOCAL);
               if (ISSET(zst->zst_swflags, TIOCFLAG_CRTSCTS))
                       SET(t.c_cflag, CRTSCTS);
               if (ISSET(zst->zst_swflags, TIOCFLAG_CDTRCTS))
                       SET(t.c_cflag, CDTRCTS);
               if (ISSET(zst->zst_swflags, TIOCFLAG_MDMBUF))
                       SET(t.c_cflag, MDMBUF);

               mutex_spin_enter(&cs->cs_lock);

               /*
                * Turn on receiver and status interrupts.
                * We defer the actual write of the register to zsparam(),
                * but we must make sure status interrupts are turned on by
                * the time zsparam() reads the initial rr0 state.
                */
               SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE);

               /* Clear PPS capture state on first open. */
               mutex_spin_enter(&timecounter_lock);
               zst->zst_ppsmask = 0;
               memset(&zst->zst_pps_state, 0, sizeof(zst->zst_pps_state));
               zst->zst_pps_state.ppscap =
                   PPS_CAPTUREASSERT | PPS_CAPTURECLEAR;
               pps_init(&zst->zst_pps_state);
               mutex_spin_exit(&timecounter_lock);

               mutex_spin_exit(&cs->cs_lock);

               /* Make sure zsparam will see changes. */
               tp->t_ospeed = 0;
               ttyunlock(tp);
               (void) zsparam(tp, &t);
               ttylock(tp);

               /*
                * Note: zsparam has done: cflag, ispeed, ospeed
                * so we just need to do: iflag, oflag, lflag, cc
                * For "raw" mode, just leave all zeros.
                */
               if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_RAW)) {
                       tp->t_iflag = TTYDEF_IFLAG;
                       tp->t_oflag = TTYDEF_OFLAG;
                       tp->t_lflag = TTYDEF_LFLAG;
               } else {
                       tp->t_iflag = 0;
                       tp->t_oflag = 0;
                       tp->t_lflag = 0;
               }
               ttychars(tp);
               ttsetwater(tp);

               mutex_spin_enter(&cs->cs_lock);

               /*
                * Turn on DTR.  We must always do this, even if carrier is not
                * present, because otherwise we'd have to use TIOCSDTR
                * immediately after setting CLOCAL, which applications do not
                * expect.  We always assert DTR while the device is open
                * unless explicitly requested to deassert it.
                */
               zs_modem(zst, 1);

               /* Clear the input ring, and unblock. */
               zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
               zst->zst_rbavail = zstty_rbuf_size;
               zs_iflush(cs);
               CLR(zst->zst_rx_flags, RX_ANY_BLOCK);
               zs_hwiflow(zst);

               mutex_spin_exit(&cs->cs_lock);
       }

       ttyunlock(tp);

       error = ttyopen(tp, ZSDIALOUT(dev), ISSET(flags, O_NONBLOCK));
       if (error)
               goto bad;

       error = (*tp->t_linesw->l_open)(dev, tp);
       if (error)
               goto bad;

       return (0);

bad:
       if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
               /*
                * We failed to open the device, and nobody else had it opened.
                * Clean up the state as appropriate.
                */
               zs_shutdown(zst);
       }

       return (error);
}

/*
* Close a zs serial port.
*/
int
zsclose(dev_t dev, int flags, int mode, struct lwp *l)
{
       struct zstty_softc *zst;
       struct tty *tp;

       zst = device_lookup_private(&zstty_cd, ZSUNIT(dev));
       tp = zst->zst_tty;

       /* XXX This is for cons.c. */
       if (!ISSET(tp->t_state, TS_ISOPEN))
               return 0;

       (*tp->t_linesw->l_close)(tp, flags);
       ttyclose(tp);

       if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
               /*
                * Although we got a last close, the device may still be in
                * use; e.g. if this was the dialout node, and there are still
                * processes waiting for carrier on the non-dialout node.
                */
               zs_shutdown(zst);
       }

       return (0);
}

/*
* Read/write zs serial port.
*/
int
zsread(dev_t dev, struct uio *uio, int flags)
{
       struct zstty_softc *zst;
       struct tty *tp;

       zst = device_lookup_private(&zstty_cd, ZSUNIT(dev));
       tp = zst->zst_tty;

       return ((*tp->t_linesw->l_read)(tp, uio, flags));
}

int
zswrite(dev_t dev, struct uio *uio, int flags)
{
       struct zstty_softc *zst;
       struct tty *tp;

       zst = device_lookup_private(&zstty_cd, ZSUNIT(dev));
       tp = zst->zst_tty;

       return ((*tp->t_linesw->l_write)(tp, uio, flags));
}

int
zspoll(dev_t dev, int events, struct lwp *l)
{
       struct zstty_softc *zst;
       struct tty *tp;

       zst = device_lookup_private(&zstty_cd, ZSUNIT(dev));
       tp = zst->zst_tty;

       return ((*tp->t_linesw->l_poll)(tp, events, l));
}

int
zsioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
{
       struct zstty_softc *zst;
       struct zs_chanstate *cs;
       struct tty *tp;
       int error;

       zst = device_lookup_private(&zstty_cd, ZSUNIT(dev));
       cs = zst->zst_cs;
       tp = zst->zst_tty;
       error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
       if (error != EPASSTHROUGH)
               return (error);

       error = ttioctl(tp, cmd, data, flag, l);
       if (error != EPASSTHROUGH)
               return (error);

#ifdef  ZS_MD_IOCTL
       error = ZS_MD_IOCTL(cs, cmd, data);
       if (error != EPASSTHROUGH)
               return (error);
#endif  /* ZS_MD_IOCTL */

       error = 0;

       mutex_spin_enter(&cs->cs_lock);

       switch (cmd) {
       case TIOCSBRK:
               zs_break(cs, 1);
               break;

       case TIOCCBRK:
               zs_break(cs, 0);
               break;

       case TIOCGFLAGS:
               *(int *)data = zst->zst_swflags;
               break;

       case TIOCSFLAGS:
               error = kauth_authorize_device_tty(l->l_cred,
                       KAUTH_DEVICE_TTY_PRIVSET, tp);
               if (error)
                       break;
               zst->zst_swflags = *(int *)data;
               break;

       case TIOCSDTR:
               zs_modem(zst, 1);
               break;

       case TIOCCDTR:
               zs_modem(zst, 0);
               break;

       case TIOCMSET:
       case TIOCMBIS:
       case TIOCMBIC:
               tiocm_to_zs(zst, cmd, *(int *)data);
               break;

       case TIOCMGET:
               *(int *)data = zs_to_tiocm(zst);
               break;

       case PPS_IOC_CREATE:
       case PPS_IOC_DESTROY:
       case PPS_IOC_GETPARAMS:
       case PPS_IOC_SETPARAMS:
       case PPS_IOC_GETCAP:
       case PPS_IOC_FETCH:
#ifdef PPS_SYNC
       case PPS_IOC_KCBIND:
#endif
               mutex_spin_enter(&timecounter_lock);
               error = pps_ioctl(cmd, data, &zst->zst_pps_state);
               if (zst->zst_pps_state.ppsparam.mode & PPS_CAPTUREBOTH)
                       zst->zst_ppsmask = ZSRR0_DCD;
               else
                       zst->zst_ppsmask = 0;
               mutex_spin_exit(&timecounter_lock);
               break;

       case TIOCDCDTIMESTAMP:  /* XXX old, overloaded  API used by xntpd v3 */
               if (cs->cs_rr0_pps == 0) {
                       error = EINVAL;
                       break;
               }
               mutex_spin_enter(&timecounter_lock);
#ifndef PPS_TRAILING_EDGE
               TIMESPEC_TO_TIMEVAL((struct timeval *)data,
                   &zst->zst_pps_state.ppsinfo.assert_timestamp);
#else
               TIMESPEC_TO_TIMEVAL((struct timeval *)data,
                   &zst->zst_pps_state.ppsinfo.clear_timestamp);
#endif
               mutex_spin_exit(&timecounter_lock);
               /*
                * Now update interrupts.
                */
               zs_maskintr(zst);
               /*
                * If nothing is being transmitted, set up new current values,
                * else mark them as pending.
                */
               if (!cs->cs_heldchange) {
                       if (zst->zst_tx_busy) {
                               zst->zst_heldtbc = zst->zst_tbc;
                               zst->zst_tbc = 0;
                               cs->cs_heldchange = 1;
                       } else
                               zs_loadchannelregs(cs);
               }

               break;

       default:
               error = EPASSTHROUGH;
               break;
       }

       mutex_spin_exit(&cs->cs_lock);

       return (error);
}

/*
* Start or restart transmission.
*/
static void
zsstart(struct tty *tp)
{
       struct zstty_softc *zst;
       struct zs_chanstate *cs;
       u_char *tba;
       int tbc;

       zst = device_lookup_private(&zstty_cd, ZSUNIT(tp->t_dev));
       cs = zst->zst_cs;

       if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
               return;
       if (zst->zst_tx_stopped)
               return;
       if (!ttypull(tp))
               return;

       /* Grab the first contiguous region of buffer space. */
       tba = tp->t_outq.c_cf;
       tbc = ndqb(&tp->t_outq, 0);

       mutex_spin_enter(&cs->cs_lock);

       zst->zst_tba = tba;
       zst->zst_tbc = tbc;
       SET(tp->t_state, TS_BUSY);
       zst->zst_tx_busy = 1;

#ifdef ZS_TXDMA
       if (zst->zst_tbc > 1) {
               zs_dma_setup(cs, zst->zst_tba, zst->zst_tbc);
               mutex_spin_exit(&cs->cs_lock);
               return;
       }
#endif

       /* Output the first character of the contiguous buffer. */
       zs_write_data(cs, *zst->zst_tba);
       zst->zst_tbc--;
       zst->zst_tba++;

       mutex_spin_exit(&cs->cs_lock);
}

/*
* Stop output, e.g., for ^S or output flush.
*/
void
zsstop(struct tty *tp, int flag)
{
       struct zstty_softc *zst;

       zst = device_lookup_private(&zstty_cd, ZSUNIT(tp->t_dev));

       mutex_spin_enter(&zst->zst_cs->cs_lock);
       if (ISSET(tp->t_state, TS_BUSY)) {
               /* Stop transmitting at the next chunk. */
               zst->zst_tbc = 0;
               zst->zst_heldtbc = 0;
               if (!ISSET(tp->t_state, TS_TTSTOP))
                       SET(tp->t_state, TS_FLUSH);
       }
       mutex_spin_exit(&zst->zst_cs->cs_lock);
}

/*
* Set ZS tty parameters from termios.
* XXX - Should just copy the whole termios after
* making sure all the changes could be done.
*/
static int
zsparam(struct tty *tp, struct termios *t)
{
       struct zstty_softc *zst;
       struct zs_chanstate *cs;
       int ospeed;
       tcflag_t cflag;
       uint8_t tmp3, tmp4, tmp5;
       int error;

       zst = device_lookup_private(&zstty_cd, ZSUNIT(tp->t_dev));
       cs = zst->zst_cs;
       ospeed = t->c_ospeed;
       cflag = t->c_cflag;

       /* Check requested parameters. */
       if (ospeed < 0)
               return (EINVAL);
       if (t->c_ispeed && t->c_ispeed != ospeed)
               return (EINVAL);

       /*
        * For the console, always force CLOCAL and !HUPCL, so that the port
        * is always active.
        */
       if (ISSET(zst->zst_swflags, TIOCFLAG_SOFTCAR) ||
           ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
               SET(cflag, CLOCAL);
               CLR(cflag, HUPCL);
       }

       /*
        * Only whack the UART when params change.
        * Some callers need to clear tp->t_ospeed
        * to make sure initialization gets done.
        */
       if (tp->t_ospeed == ospeed &&
           tp->t_cflag == cflag)
               return (0);

       /*
        * Call MD functions to deal with changed
        * clock modes or H/W flow control modes.
        * The BRG divisor is set now. (reg 12,13)
        */
       error = zs_set_speed(cs, ospeed);
       if (error)
               return (error);
       error = zs_set_modes(cs, cflag);
       if (error)
               return (error);

       /*
        * Block interrupts so that state will not
        * be altered until we are done setting it up.
        *
        * Initial values in cs_preg are set before
        * our attach routine is called.  The master
        * interrupt enable is handled by zsc.c
        *
        */
       mutex_spin_enter(&cs->cs_lock);

       /*
        * Recalculate which status ints to enable.
        */
       zs_maskintr(zst);

       /* Recompute character size bits. */
       tmp3 = cs->cs_preg[3];
       tmp5 = cs->cs_preg[5];
       CLR(tmp3, ZSWR3_RXSIZE);
       CLR(tmp5, ZSWR5_TXSIZE);
       switch (ISSET(cflag, CSIZE)) {
       case CS5:
               SET(tmp3, ZSWR3_RX_5);
               SET(tmp5, ZSWR5_TX_5);
               break;
       case CS6:
               SET(tmp3, ZSWR3_RX_6);
               SET(tmp5, ZSWR5_TX_6);
               break;
       case CS7:
               SET(tmp3, ZSWR3_RX_7);
               SET(tmp5, ZSWR5_TX_7);
               break;
       case CS8:
               SET(tmp3, ZSWR3_RX_8);
               SET(tmp5, ZSWR5_TX_8);
               break;
       }
       cs->cs_preg[3] = tmp3;
       cs->cs_preg[5] = tmp5;

       /*
        * Recompute the stop bits and parity bits.  Note that
        * zs_set_speed() may have set clock selection bits etc.
        * in wr4, so those must preserved.
        */
       tmp4 = cs->cs_preg[4];
       CLR(tmp4, ZSWR4_SBMASK | ZSWR4_PARMASK);
       if (ISSET(cflag, CSTOPB))
               SET(tmp4, ZSWR4_TWOSB);
       else
               SET(tmp4, ZSWR4_ONESB);
       if (!ISSET(cflag, PARODD))
               SET(tmp4, ZSWR4_EVENP);
       if (ISSET(cflag, PARENB))
               SET(tmp4, ZSWR4_PARENB);
       cs->cs_preg[4] = tmp4;

       /* And copy to tty. */
       tp->t_ispeed = 0;
       tp->t_ospeed = ospeed;
       tp->t_cflag = cflag;

       /*
        * If nothing is being transmitted, set up new current values,
        * else mark them as pending.
        */
       if (!cs->cs_heldchange) {
               if (zst->zst_tx_busy) {
                       zst->zst_heldtbc = zst->zst_tbc;
                       zst->zst_tbc = 0;
                       cs->cs_heldchange = 1;
               } else
                       zs_loadchannelregs(cs);
       }

       /*
        * If hardware flow control is disabled, turn off the buffer water
        * marks and unblock any soft flow control state.  Otherwise, enable
        * the water marks.
        */
       if (!ISSET(cflag, CHWFLOW)) {
               zst->zst_r_hiwat = 0;
               zst->zst_r_lowat = 0;
               if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
                       CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
                       zst->zst_rx_ready = 1;
                       cs->cs_softreq = 1;
               }
               if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
                       CLR(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
                       zs_hwiflow(zst);
               }
       } else {
               zst->zst_r_hiwat = zstty_rbuf_hiwat;
               zst->zst_r_lowat = zstty_rbuf_lowat;
       }

       /*
        * Force a recheck of the hardware carrier and flow control status,
        * since we may have changed which bits we're looking at.
        */
       zstty_stint(cs, 1);

       mutex_spin_exit(&cs->cs_lock);

       /*
        * If hardware flow control is disabled, unblock any hard flow control
        * state.
        */
       if (!ISSET(cflag, CHWFLOW)) {
               if (zst->zst_tx_stopped) {
                       zst->zst_tx_stopped = 0;
                       zsstart(tp);
               }
       }

       zstty_softint1(cs);

       return (0);
}

/*
* Compute interrupt enable bits and set in the pending bits. Called both
* in zsparam() and when PPS (pulse per second timing) state changes.
* Must be called at splzs().
*/
static void
zs_maskintr(struct zstty_softc *zst)
{
       struct zs_chanstate *cs = zst->zst_cs;
       uint8_t tmp15;

       cs->cs_rr0_mask = cs->cs_rr0_cts | cs->cs_rr0_dcd;
       if (zst->zst_ppsmask != 0)
               cs->cs_rr0_mask |= cs->cs_rr0_pps;
       tmp15 = cs->cs_preg[15];
       if (ISSET(cs->cs_rr0_mask, ZSRR0_DCD))
               SET(tmp15, ZSWR15_DCD_IE);
       else
               CLR(tmp15, ZSWR15_DCD_IE);
       if (ISSET(cs->cs_rr0_mask, ZSRR0_CTS))
               SET(tmp15, ZSWR15_CTS_IE);
       else
               CLR(tmp15, ZSWR15_CTS_IE);
       cs->cs_preg[15] = tmp15;
}


/*
* Raise or lower modem control (DTR/RTS) signals.  If a character is
* in transmission, the change is deferred.
* Called at splzs() and with the channel lock held.
*/
static void
zs_modem(struct zstty_softc *zst, int onoff)
{
       struct zs_chanstate *cs = zst->zst_cs, *ccs;

       if (cs->cs_wr5_dtr == 0)
               return;

       ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);

       if (onoff)
               SET(ccs->cs_preg[5], cs->cs_wr5_dtr);
       else
               CLR(ccs->cs_preg[5], cs->cs_wr5_dtr);

       if (!cs->cs_heldchange) {
               if (zst->zst_tx_busy) {
                       zst->zst_heldtbc = zst->zst_tbc;
                       zst->zst_tbc = 0;
                       cs->cs_heldchange = 1;
               } else
                       zs_loadchannelregs(cs);
       }
}

/*
* Set modem bits.
* Called at splzs() and with the channel lock held.
*/
static void
tiocm_to_zs(struct zstty_softc *zst, u_long how, int ttybits)
{
       struct zs_chanstate *cs = zst->zst_cs, *ccs;
       uint8_t zsbits;

       ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);

       zsbits = 0;
       if (ISSET(ttybits, TIOCM_DTR))
               SET(zsbits, ZSWR5_DTR);
       if (ISSET(ttybits, TIOCM_RTS))
               SET(zsbits, ZSWR5_RTS);

       switch (how) {
       case TIOCMBIC:
               CLR(ccs->cs_preg[5], zsbits);
               break;

       case TIOCMBIS:
               SET(ccs->cs_preg[5], zsbits);
               break;

       case TIOCMSET:
               CLR(ccs->cs_preg[5], ZSWR5_RTS | ZSWR5_DTR);
               SET(ccs->cs_preg[5], zsbits);
               break;
       }

       if (!cs->cs_heldchange) {
               if (zst->zst_tx_busy) {
                       zst->zst_heldtbc = zst->zst_tbc;
                       zst->zst_tbc = 0;
                       cs->cs_heldchange = 1;
               } else
                       zs_loadchannelregs(cs);
       }
}

/*
* Get modem bits.
* Called at splzs() and with the channel lock held.
*/
static int
zs_to_tiocm(struct zstty_softc *zst)
{
       struct zs_chanstate *cs = zst->zst_cs, *ccs;
       uint8_t zsbits;
       int ttybits = 0;

       ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);

       zsbits = ccs->cs_preg[5];
       if (ISSET(zsbits, ZSWR5_DTR))
               SET(ttybits, TIOCM_DTR);
       if (ISSET(zsbits, ZSWR5_RTS))
               SET(ttybits, TIOCM_RTS);

       zsbits = cs->cs_rr0;
       if (ISSET(zsbits, ZSRR0_DCD))
               SET(ttybits, TIOCM_CD);
       if (ISSET(zsbits, ZSRR0_CTS))
               SET(ttybits, TIOCM_CTS);

       return (ttybits);
}

/*
* Try to block or unblock input using hardware flow-control.
* This is called by kern/tty.c if MDMBUF|CRTSCTS is set, and
* if this function returns non-zero, the TS_TBLOCK flag will
* be set or cleared according to the "block" arg passed.
*/
int
zshwiflow(struct tty *tp, int block)
{
       struct zstty_softc *zst;
       struct zs_chanstate *cs;

       zst = device_lookup_private(&zstty_cd, ZSUNIT(tp->t_dev));
       cs = zst->zst_cs;

       if (cs->cs_wr5_rts == 0)
               return (0);

       mutex_spin_enter(&cs->cs_lock);
       if (block) {
               if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
                       SET(zst->zst_rx_flags, RX_TTY_BLOCKED);
                       zs_hwiflow(zst);
               }
       } else {
               if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
                       CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
                       zst->zst_rx_ready = 1;
                       cs->cs_softreq = 1;
               }
               if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
                       CLR(zst->zst_rx_flags, RX_TTY_BLOCKED);
                       zs_hwiflow(zst);
               }
       }
       mutex_spin_exit(&cs->cs_lock);
       return (1);
}

/*
* Internal version of zshwiflow
* Called at splzs() and with the channel lock held.
*/
static void
zs_hwiflow(struct zstty_softc *zst)
{
       struct zs_chanstate *cs = zst->zst_cs, *ccs;

       if (cs->cs_wr5_rts == 0)
               return;

       ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);

       if (ISSET(zst->zst_rx_flags, RX_ANY_BLOCK)) {
               CLR(ccs->cs_preg[5], cs->cs_wr5_rts);
               CLR(ccs->cs_creg[5], cs->cs_wr5_rts);
       } else {
               SET(ccs->cs_preg[5], cs->cs_wr5_rts);
               SET(ccs->cs_creg[5], cs->cs_wr5_rts);
       }
       zs_write_reg(ccs, 5, ccs->cs_creg[5]);
}


/****************************************************************
* Interface to the lower layer (zscc)
****************************************************************/

#define integrate       static inline
integrate void zstty_rxsoft(struct zstty_softc *, struct tty *);
integrate void zstty_txsoft(struct zstty_softc *, struct tty *);
integrate void zstty_stsoft(struct zstty_softc *, struct tty *);
static void zstty_diag(void *);

/*
* Receiver Ready interrupt.
* Called at splzs() and with the channel lock held.
*/
static void
zstty_rxint(struct zs_chanstate *cs)
{
       struct zstty_softc *zst = cs->cs_private;
       uint8_t *put, *end;
       u_int cc;
       uint8_t rr0, rr1, c;

       end = zst->zst_ebuf;
       put = zst->zst_rbput;
       cc = zst->zst_rbavail;

       while (cc > 0) {
               /*
                * First read the status, because reading the received char
                * destroys the status of this char.
                */
               rr1 = zs_read_reg(cs, 1);
               c = zs_read_data(cs);

               if (ISSET(rr1, ZSRR1_FE | ZSRR1_DO | ZSRR1_PE)) {
                       /* Clear the receive error. */
                       zs_write_csr(cs, ZSWR0_RESET_ERRORS);
               }

               cn_check_magic(zst->zst_tty->t_dev, c, zstty_cnm_state);
               put[0] = c;
               put[1] = rr1;
               put += 2;
               if (put >= end)
                       put = zst->zst_rbuf;
               cc--;

               rr0 = zs_read_csr(cs);
               if (!ISSET(rr0, ZSRR0_RX_READY))
                       break;
       }

       /*
        * Current string of incoming characters ended because
        * no more data was available or we ran out of space.
        * Schedule a receive event if any data was received.
        * If we're out of space, turn off receive interrupts.
        */
       zst->zst_rbput = put;
       zst->zst_rbavail = cc;
       if (!ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
               zst->zst_rx_ready = 1;
               cs->cs_softreq = 1;
       }

       /*
        * See if we are in danger of overflowing a buffer. If
        * so, use hardware flow control to ease the pressure.
        */
       if (!ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED) &&
           cc < zst->zst_r_hiwat) {
               SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
               zs_hwiflow(zst);
       }

       /*
        * If we're out of space, disable receive interrupts
        * until the queue has drained a bit.
        */
       if (!cc) {
               SET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
               CLR(cs->cs_preg[1], ZSWR1_RIE);
               cs->cs_creg[1] = cs->cs_preg[1];
               zs_write_reg(cs, 1, cs->cs_creg[1]);
       }

#if 0
       printf("%xH%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
#endif
}

/*
* Transmitter Ready interrupt.
* Called at splzs() and with the channel lock held.
*/
static void
zstty_txint(struct zs_chanstate *cs)
{
       struct zstty_softc *zst = cs->cs_private;

       zs_write_csr(cs, ZSWR0_RESET_TXINT);

       /*
        * If we've delayed a parameter change, do it now, and restart
        * output.
        */
       if (cs->cs_heldchange) {
               zs_loadchannelregs(cs);
               cs->cs_heldchange = 0;
               zst->zst_tbc = zst->zst_heldtbc;
               zst->zst_heldtbc = 0;
       }

       /* Output the next character in the buffer, if any. */
       if (zst->zst_tbc > 0) {
               zs_write_data(cs, *zst->zst_tba);
               zst->zst_tbc--;
               zst->zst_tba++;
       } else {
               if (zst->zst_tx_busy) {
                       zst->zst_tx_busy = 0;
                       zst->zst_tx_done = 1;
                       cs->cs_softreq = 1;
               }
       }
}

/*
* Status Change interrupt.
* Called at splzs() and with the channel lock held.
*/
static void
zstty_stint(struct zs_chanstate *cs, int force)
{
       struct zstty_softc *zst = cs->cs_private;
       uint8_t rr0, delta;

       rr0 = zs_read_csr(cs);
       zs_write_csr(cs, ZSWR0_RESET_STATUS);

       /*
        * Check here for console break, so that we can abort
        * even when interrupts are locking up the machine.
        */
       if (ISSET(rr0, ZSRR0_BREAK))
               cn_check_magic(zst->zst_tty->t_dev, CNC_BREAK, zstty_cnm_state);

       if (!force)
               delta = rr0 ^ cs->cs_rr0;
       else
               delta = cs->cs_rr0_mask;
       cs->cs_rr0 = rr0;

       if (ISSET(delta, cs->cs_rr0_mask)) {
               SET(cs->cs_rr0_delta, delta);

               /*
                * Pulse-per-second clock signal on edge of DCD?
                */
               if (ISSET(delta, zst->zst_ppsmask)) {
                       if (zst->zst_pps_state.ppsparam.mode &
                           PPS_CAPTUREBOTH) {
                               mutex_spin_enter(&timecounter_lock);
                               pps_capture(&zst->zst_pps_state);
                               pps_event(&zst->zst_pps_state,
                                   (ISSET(cs->cs_rr0, zst->zst_ppsmask))
                                   ? PPS_CAPTUREASSERT
                                   : PPS_CAPTURECLEAR);
                               mutex_spin_exit(&timecounter_lock);
                       }
               }

               /*
                * Stop output immediately if we lose the output
                * flow control signal or carrier detect.
                */
               if (ISSET(~rr0, cs->cs_rr0_mask)) {
                       zst->zst_tbc = 0;
                       zst->zst_heldtbc = 0;
               }

               zst->zst_st_check = 1;
               cs->cs_softreq = 1;
       }
}

void
zstty_diag(void *arg)
{
       struct zstty_softc *zst = arg;
       int overflows, floods;

       mutex_spin_enter(&zst->zst_cs->cs_lock);
       overflows = zst->zst_overflows;
       zst->zst_overflows = 0;
       floods = zst->zst_floods;
       zst->zst_floods = 0;
       zst->zst_errors = 0;
       mutex_spin_exit(&zst->zst_cs->cs_lock);

       log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
           device_xname(zst->zst_dev),
           overflows, overflows == 1 ? "" : "s",
           floods, floods == 1 ? "" : "s");
}

integrate void
zstty_rxsoft(struct zstty_softc *zst, struct tty *tp)
{
       struct zs_chanstate *cs = zst->zst_cs;
       int (*rint)(int, struct tty *) = tp->t_linesw->l_rint;
       uint8_t *get, *end;
       u_int cc, scc;
       uint8_t rr1;
       int code;

       end = zst->zst_ebuf;
       get = zst->zst_rbget;
       scc = cc = zstty_rbuf_size - zst->zst_rbavail;

       if (cc == zstty_rbuf_size) {
               zst->zst_floods++;
               if (zst->zst_errors++ == 0)
                       callout_reset(&zst->zst_diag_ch, 60 * hz,
                           zstty_diag, zst);
       }

       /* If not yet open, drop the entire buffer content here */
       if (!ISSET(tp->t_state, TS_ISOPEN)) {
               get += cc << 1;
               if (get >= end)
                       get -= zstty_rbuf_size << 1;
               cc = 0;
       }
       while (cc) {
               code = get[0];
               rr1 = get[1];
               if (ISSET(rr1, ZSRR1_DO | ZSRR1_FE | ZSRR1_PE)) {
                       if (ISSET(rr1, ZSRR1_DO)) {
                               zst->zst_overflows++;
                               if (zst->zst_errors++ == 0)
                                       callout_reset(&zst->zst_diag_ch,
                                           60 * hz, zstty_diag, zst);
                       }
                       if (ISSET(rr1, ZSRR1_FE))
                               SET(code, TTY_FE);
                       if (ISSET(rr1, ZSRR1_PE))
                               SET(code, TTY_PE);
               }
               if ((*rint)(code, tp) == -1) {
                       /*
                        * The line discipline's buffer is out of space.
                        */
                       if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
                               /*
                                * We're either not using flow control, or the
                                * line discipline didn't tell us to block for
                                * some reason.  Either way, we have no way to
                                * know when there's more space available, so
                                * just drop the rest of the data.
                                */
                               get += cc << 1;
                               if (get >= end)
                                       get -= zstty_rbuf_size << 1;
                               cc = 0;
                       } else {
                               /*
                                * Don't schedule any more receive processing
                                * until the line discipline tells us there's
                                * space available (through comhwiflow()).
                                * Leave the rest of the data in the input
                                * buffer.
                                */
                               SET(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
                       }
                       break;
               }
               get += 2;
               if (get >= end)
                       get = zst->zst_rbuf;
               cc--;
       }

       if (cc != scc) {
               zst->zst_rbget = get;
               mutex_spin_enter(&cs->cs_lock);
               cc = zst->zst_rbavail += scc - cc;
               /* Buffers should be ok again, release possible block. */
               if (cc >= zst->zst_r_lowat) {
                       if (ISSET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED)) {
                               CLR(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
                               SET(cs->cs_preg[1], ZSWR1_RIE);
                               cs->cs_creg[1] = cs->cs_preg[1];
                               zs_write_reg(cs, 1, cs->cs_creg[1]);
                       }
                       if (ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED)) {
                               CLR(zst->zst_rx_flags, RX_IBUF_BLOCKED);
                               zs_hwiflow(zst);
                       }
               }
               mutex_spin_exit(&cs->cs_lock);
       }

#if 0
       printf("%xS%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
#endif
}

integrate void
zstty_txsoft(struct zstty_softc *zst, struct tty *tp)
{
       struct zs_chanstate *cs = zst->zst_cs;

       mutex_spin_enter(&cs->cs_lock);
       CLR(tp->t_state, TS_BUSY);
       if (ISSET(tp->t_state, TS_FLUSH))
               CLR(tp->t_state, TS_FLUSH);
       else
               ndflush(&tp->t_outq, (int)(zst->zst_tba - tp->t_outq.c_cf));
       mutex_spin_exit(&cs->cs_lock);
       (*tp->t_linesw->l_start)(tp);
}

integrate void
zstty_stsoft(struct zstty_softc *zst, struct tty *tp)
{
       struct zs_chanstate *cs = zst->zst_cs;
       uint8_t rr0, delta;

       mutex_spin_enter(&cs->cs_lock);
       rr0 = cs->cs_rr0;
       delta = cs->cs_rr0_delta;
       cs->cs_rr0_delta = 0;
       mutex_spin_exit(&cs->cs_lock);

       if (ISSET(delta, cs->cs_rr0_dcd)) {
               /*
                * Inform the tty layer that carrier detect changed.
                */
               (void) (*tp->t_linesw->l_modem)(tp, ISSET(rr0, ZSRR0_DCD));
       }

       if (ISSET(delta, cs->cs_rr0_cts)) {
               /* Block or unblock output according to flow control. */
               if (ISSET(rr0, cs->cs_rr0_cts)) {
                       zst->zst_tx_stopped = 0;
                       (*tp->t_linesw->l_start)(tp);
               } else {
                       zst->zst_tx_stopped = 1;
               }
       }
}

/*
* Software interrupt.  Called at zssoft
*
* The main job to be done here is to empty the input ring
* by passing its contents up to the tty layer.  The ring is
* always emptied during this operation, therefore the ring
* must not be larger than the space after "high water" in
* the tty layer, or the tty layer might drop our input.
*
* Note: an "input blockage" condition is assumed to exist if
* EITHER the TS_TBLOCK flag or zst_rx_blocked flag is set.
*/
static void
zstty_softint(struct zs_chanstate *cs)
{

       zstty_softint1(cs);
}

static void
zstty_softint1(struct zs_chanstate *cs)
{
       struct zstty_softc *zst = cs->cs_private;
       struct tty *tp = zst->zst_tty;


       if (zst->zst_rx_ready) {
               zst->zst_rx_ready = 0;
               zstty_rxsoft(zst, tp);
       }

       if (zst->zst_st_check) {
               zst->zst_st_check = 0;
               zstty_stsoft(zst, tp);
       }

       if (zst->zst_tx_done) {
               zst->zst_tx_done = 0;
               zstty_txsoft(zst, tp);
       }
}

struct zsops zsops_tty = {
       zstty_rxint,    /* receive char available */
       zstty_stint,    /* external/status */
       zstty_txint,    /* xmit buffer empty */
       zstty_softint,  /* process software interrupt */
};

#ifdef ZS_TXDMA
void
zstty_txdma_int(void *arg)
{
       struct zs_chanstate *cs = arg;
       struct zstty_softc *zst = cs->cs_private;

       zst->zst_tba += zst->zst_tbc;
       zst->zst_tbc = 0;

       if (zst->zst_tx_busy) {
               zst->zst_tx_busy = 0;
               zst->zst_tx_done = 1;
               cs->cs_softreq = 1;
       }
}
#endif