// token.h -- lock tokens for gold   -*- C++ -*-

// Copyright (C) 2006-2024 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <[email protected]>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#ifndef GOLD_TOKEN_H
#define GOLD_TOKEN_H

namespace gold
{

class Condvar;
class Task;

// A list of Tasks, managed through the next_locked_ field in the
// class Task.  We define this class here because we need it in
// Task_token.

class Task_list
{
public:
 Task_list()
   : head_(NULL), tail_(NULL)
 { }

 ~Task_list()
 { gold_assert(this->head_ == NULL && this->tail_ == NULL); }

 // Return whether the list is empty.
 bool
 empty() const
 { return this->head_ == NULL; }

 // Add T to the head of the list.
 void
 push_front(Task* t);

 // Add T to the end of the list.
 void
 push_back(Task* t);

 // Remove the first Task on the list and return it.  Return NULL if
 // the list is empty.
 Task*
 pop_front();

private:
 // The start of the list.  NULL if the list is empty.
 Task* head_;
 // The end of the list.  NULL if the list is empty.
 Task* tail_;
};

// We support two basic types of locks, which are both implemented
// using the single class Task_token.

// A write lock may be held by a single Task at a time.  This is used
// to control access to a single shared resource such as an Object.

// A blocker is used to indicate that a Task A must be run after some
// set of Tasks B.  For each of the Tasks B, we increment the blocker
// when the Task is created, and decrement it when the Task is
// completed.  When the count goes to 0, the task A is ready to run.

// There are no shared read locks.  We always read and write objects
// in predictable patterns.  The purpose of the locks is to permit
// some flexibility for the threading system, for cases where the
// execution order does not matter.

// These tokens are only manipulated when the workqueue lock is held
// or when they are first created.  They do not require any locking
// themselves.

class Task_token
{
public:
 Task_token(bool is_blocker)
   : is_blocker_(is_blocker), blockers_(0), writer_(NULL), waiting_()
 { }

 ~Task_token()
 {
   gold_assert(this->blockers_ == 0);
   gold_assert(this->writer_ == NULL);
 }

 // Return whether this is a blocker.
 bool
 is_blocker() const
 { return this->is_blocker_; }

 // A write lock token uses these methods.

 // Is the token writable?
 bool
 is_writable() const
 {
   gold_assert(!this->is_blocker_);
   return this->writer_ == NULL;
 }

 // Add the task as the token's writer (there may only be one
 // writer).
 void
 add_writer(const Task* t)
 {
   gold_assert(!this->is_blocker_ && this->writer_ == NULL);
   this->writer_ = t;
 }

 // Remove the task as the token's writer.
 void
 remove_writer(const Task* t)
 {
   gold_assert(!this->is_blocker_ && this->writer_ == t);
   this->writer_ = NULL;
 }

 // A blocker token uses these methods.

 // Add a blocker to the token.
 void
 add_blocker()
 {
   gold_assert(this->is_blocker_);
   ++this->blockers_;
   this->writer_ = NULL;
 }

 // Add some number of blockers to the token.
 void
 add_blockers(int c)
 {
   gold_assert(this->is_blocker_);
   this->blockers_ += c;
   this->writer_ = NULL;
 }

 // Remove a blocker from the token.  Returns true if block count
 // drops to zero.
 bool
 remove_blocker()
 {
   gold_assert(this->is_blocker_ && this->blockers_ > 0);
   --this->blockers_;
   this->writer_ = NULL;
   return this->blockers_ == 0;
 }

 // Is the token currently blocked?
 bool
 is_blocked() const
 {
   gold_assert(this->is_blocker_);
   return this->blockers_ > 0;
 }

 // Both blocker and write lock tokens use these methods.

 // Add T to the list of tasks waiting for this token to be released.
 void
 add_waiting(Task* t)
 { this->waiting_.push_back(t); }

 // Add T to the front of the list of tasks waiting for this token to
 // be released.
 void
 add_waiting_front(Task* t)
 { this->waiting_.push_front(t); }

 // Remove the first Task waiting for this token to be released, and
 // return it.  Return NULL if no Tasks are waiting.
 Task*
 remove_first_waiting()
 { return this->waiting_.pop_front(); }

private:
 // It makes no sense to copy these.
 Task_token(const Task_token&);
 Task_token& operator=(const Task_token&);

 // Whether this is a blocker token.
 bool is_blocker_;
 // The number of blockers.
 int blockers_;
 // The single writer.
 const Task* writer_;
 // The list of Tasks waiting for this token to be released.
 Task_list waiting_;
};

// In order to support tokens more reliably, we provide objects which
// handle them using RAII.

// RAII class to get a write lock on a token.  This requires
// specifying the task which is doing the lock.

class Task_write_token
{
public:
 Task_write_token(Task_token* token, const Task* task)
   : token_(token), task_(task)
 { this->token_->add_writer(this->task_); }

 ~Task_write_token()
 { this->token_->remove_writer(this->task_); }

private:
 Task_write_token(const Task_write_token&);
 Task_write_token& operator=(const Task_write_token&);

 Task_token* token_;
 const Task* task_;
};

// RAII class for a blocker.

class Task_block_token
{
public:
 // The blocker count must be incremented when the task is created.
 // This object is created when the task is run, so we don't do
 // anything in the constructor.
 Task_block_token(Task_token* token)
   : token_(token)
 { gold_assert(this->token_->is_blocked()); }

 ~Task_block_token()
 { this->token_->remove_blocker(); }

private:
 Task_block_token(const Task_block_token&);
 Task_block_token& operator=(const Task_block_token&);

 Task_token* token_;
};

// An object which implements an RAII lock for any object which
// supports lock and unlock methods.

template<typename Obj>
class Task_lock_obj
{
public:
 Task_lock_obj(const Task* task, Obj* obj)
   : task_(task), obj_(obj)
 { this->obj_->lock(task); }

 ~Task_lock_obj()
 { this->obj_->unlock(this->task_); }

private:
 Task_lock_obj(const Task_lock_obj&);
 Task_lock_obj& operator=(const Task_lock_obj&);

 const Task* task_;
 Obj* obj_;
};

// A class which holds the set of Task_tokens which must be locked for
// a Task.  No Task requires more than four Task_tokens, so we set
// that as a limit.

class Task_locker
{
public:
 static const int max_task_count = 4;

 Task_locker()
   : count_(0)
 { }

 ~Task_locker()
 { }

 // Clear the locker.
 void
 clear()
 { this->count_ = 0; }

 // Add a token to the locker.
 void
 add(Task* t, Task_token* token)
 {
   gold_assert(this->count_ < max_task_count);
   this->tokens_[this->count_] = token;
   ++this->count_;
   // A blocker will have been incremented when the task is created.
   // A writer we need to lock now.
   if (!token->is_blocker())
     token->add_writer(t);
 }

 // Iterate over the tokens.

 typedef Task_token** iterator;

 iterator
 begin()
 { return &this->tokens_[0]; }

 iterator
 end()
 { return &this->tokens_[this->count_]; }

private:
 Task_locker(const Task_locker&);
 Task_locker& operator=(const Task_locker&);

 // The number of tokens.
 int count_;
 // The tokens.
 Task_token* tokens_[max_task_count];
};

} // End namespace gold.

#endif // !defined(GOLD_TOKEN_H)