// target.h -- target support for gold   -*- C++ -*-

// Copyright (C) 2006-2024 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <[email protected]>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

// The abstract class Target is the interface for target specific
// support.  It defines abstract methods which each target must
// implement.  Typically there will be one target per processor, but
// in some cases it may be necessary to have subclasses.

// For speed and consistency we want to use inline functions to handle
// relocation processing.  So besides implementations of the abstract
// methods, each target is expected to define a template
// specialization of the relocation functions.

#ifndef GOLD_TARGET_H
#define GOLD_TARGET_H

#include "elfcpp.h"
#include "options.h"
#include "parameters.h"
#include "stringpool.h"
#include "debug.h"

namespace gold
{

class Object;
class Relobj;
template<int size, bool big_endian>
class Sized_relobj;
template<int size, bool big_endian>
class Sized_relobj_file;
class Relocatable_relocs;
template<int size, bool big_endian>
struct Relocate_info;
class Reloc_symbol_changes;
class Symbol;
template<int size>
class Sized_symbol;
class Symbol_table;
class Output_data;
class Output_data_got_base;
class Output_section;
class Input_objects;
class Task;
struct Symbol_location;
class Versions;

// The abstract class for target specific handling.

class Target
{
public:
 virtual ~Target()
 { }

 // Return the bit size that this target implements.  This should
 // return 32 or 64.
 int
 get_size() const
 { return this->pti_->size; }

 // Return whether this target is big-endian.
 bool
 is_big_endian() const
 { return this->pti_->is_big_endian; }

 // Machine code to store in e_machine field of ELF header.
 elfcpp::EM
 machine_code() const
 { return this->pti_->machine_code; }

 // Processor specific flags to store in e_flags field of ELF header.
 elfcpp::Elf_Word
 processor_specific_flags() const
 { return this->processor_specific_flags_; }

 // Whether processor specific flags are set at least once.
 bool
 are_processor_specific_flags_set() const
 { return this->are_processor_specific_flags_set_; }

 // Whether this target has a specific make_symbol function.
 bool
 has_make_symbol() const
 { return this->pti_->has_make_symbol; }

 // Whether this target has a specific resolve function.
 bool
 has_resolve() const
 { return this->pti_->has_resolve; }

 // Whether this target has a specific code fill function.
 bool
 has_code_fill() const
 { return this->pti_->has_code_fill; }

 // Return the default name of the dynamic linker.
 const char*
 dynamic_linker() const
 { return this->pti_->dynamic_linker; }

 // Return the default address to use for the text segment.
 // If a -z max-page-size argument has set the ABI page size
 // to a value larger than the default starting address,
 // bump the starting address up to the page size, to avoid
 // misaligning the text segment in the file.
 uint64_t
 default_text_segment_address() const
 {
   uint64_t addr = this->pti_->default_text_segment_address;
   uint64_t pagesize = this->abi_pagesize();
   if (addr < pagesize)
     addr = pagesize;
   return addr;
 }

 // Return the ABI specified page size.
 uint64_t
 abi_pagesize() const
 {
   if (parameters->options().max_page_size() > 0)
     return parameters->options().max_page_size();
   else
     return this->pti_->abi_pagesize;
 }

 // Return the common page size used on actual systems.
 uint64_t
 common_pagesize() const
 {
   if (parameters->options().common_page_size() > 0)
     return std::min(parameters->options().common_page_size(),
                     this->abi_pagesize());
   else
     return std::min(this->pti_->common_pagesize,
                     this->abi_pagesize());
 }

 // Return whether PF_X segments must contain nothing but the contents of
 // SHF_EXECINSTR sections (no non-executable data, no headers).
 bool
 isolate_execinstr() const
 { return this->pti_->isolate_execinstr; }

 uint64_t
 rosegment_gap() const
 { return this->pti_->rosegment_gap; }

 // If we see some object files with .note.GNU-stack sections, and
 // some objects files without them, this returns whether we should
 // consider the object files without them to imply that the stack
 // should be executable.
 bool
 is_default_stack_executable() const
 { return this->pti_->is_default_stack_executable; }

 // Return a character which may appear as a prefix for a wrap
 // symbol.  If this character appears, we strip it when checking for
 // wrapping and add it back when forming the final symbol name.
 // This should be '\0' if not special prefix is required, which is
 // the normal case.
 char
 wrap_char() const
 { return this->pti_->wrap_char; }

 // Return the special section index which indicates a small common
 // symbol.  This will return SHN_UNDEF if there are no small common
 // symbols.
 elfcpp::Elf_Half
 small_common_shndx() const
 { return this->pti_->small_common_shndx; }

 // Return values to add to the section flags for the section holding
 // small common symbols.
 elfcpp::Elf_Xword
 small_common_section_flags() const
 {
   gold_assert(this->pti_->small_common_shndx != elfcpp::SHN_UNDEF);
   return this->pti_->small_common_section_flags;
 }

 // Return the special section index which indicates a large common
 // symbol.  This will return SHN_UNDEF if there are no large common
 // symbols.
 elfcpp::Elf_Half
 large_common_shndx() const
 { return this->pti_->large_common_shndx; }

 // Return values to add to the section flags for the section holding
 // large common symbols.
 elfcpp::Elf_Xword
 large_common_section_flags() const
 {
   gold_assert(this->pti_->large_common_shndx != elfcpp::SHN_UNDEF);
   return this->pti_->large_common_section_flags;
 }

 // This hook is called when an output section is created.
 void
 new_output_section(Output_section* os) const
 { this->do_new_output_section(os); }

 // This is called to tell the target to complete any sections it is
 // handling.  After this all sections must have their final size.
 void
 finalize_sections(Layout* layout, const Input_objects* input_objects,
                   Symbol_table* symtab)
 { return this->do_finalize_sections(layout, input_objects, symtab); }

 // Return the value to use for a global symbol which needs a special
 // value in the dynamic symbol table.  This will only be called if
 // the backend first calls symbol->set_needs_dynsym_value().
 uint64_t
 dynsym_value(const Symbol* sym) const
 { return this->do_dynsym_value(sym); }

 // Return a string to use to fill out a code section.  This is
 // basically one or more NOPS which must fill out the specified
 // length in bytes.
 std::string
 code_fill(section_size_type length) const
 { return this->do_code_fill(length); }

 // Return whether SYM is known to be defined by the ABI.  This is
 // used to avoid inappropriate warnings about undefined symbols.
 bool
 is_defined_by_abi(const Symbol* sym) const
 { return this->do_is_defined_by_abi(sym); }

 // Adjust the output file header before it is written out.  VIEW
 // points to the header in external form.  LEN is the length.
 void
 adjust_elf_header(unsigned char* view, int len)
 { return this->do_adjust_elf_header(view, len); }

 // Return address and size to plug into eh_frame FDEs associated with a PLT.
 void
 plt_fde_location(const Output_data* plt, unsigned char* oview,
                  uint64_t* address, off_t* len) const
 { return this->do_plt_fde_location(plt, oview, address, len); }

 // Return whether NAME is a local label name.  This is used to implement the
 // --discard-locals options.
 bool
 is_local_label_name(const char* name) const
 { return this->do_is_local_label_name(name); }

 // Get the symbol index to use for a target specific reloc.
 unsigned int
 reloc_symbol_index(void* arg, unsigned int type) const
 { return this->do_reloc_symbol_index(arg, type); }

 // Get the addend to use for a target specific reloc.
 uint64_t
 reloc_addend(void* arg, unsigned int type, uint64_t addend) const
 { return this->do_reloc_addend(arg, type, addend); }

 // Return the PLT address to use for a global symbol.
 uint64_t
 plt_address_for_global(const Symbol* sym) const
 { return this->do_plt_address_for_global(sym); }

 // Return the PLT address to use for a local symbol.
 uint64_t
 plt_address_for_local(const Relobj* object, unsigned int symndx) const
 { return this->do_plt_address_for_local(object, symndx); }

 // Return the offset to use for the GOT_INDX'th got entry which is
 // for a local tls symbol specified by OBJECT, SYMNDX.
 int64_t
 tls_offset_for_local(const Relobj* object,
                      unsigned int symndx,
                      Output_data_got_base* got,
                      unsigned int got_indx,
                      uint64_t addend) const
 { return do_tls_offset_for_local(object, symndx, got, got_indx, addend); }

 // Return the offset to use for the GOT_INDX'th got entry which is
 // for global tls symbol GSYM.
 int64_t
 tls_offset_for_global(Symbol* gsym,
                       Output_data_got_base* got,
                       unsigned int got_indx,
                       uint64_t addend) const
 { return do_tls_offset_for_global(gsym, got, got_indx, addend); }

 // For targets that use function descriptors, if LOC is the location
 // of a function, modify it to point at the function entry location.
 void
 function_location(Symbol_location* loc) const
 { return do_function_location(loc); }

 // Return whether this target can use relocation types to determine
 // if a function's address is taken.
 bool
 can_check_for_function_pointers() const
 { return this->do_can_check_for_function_pointers(); }

 // Return whether a relocation to a merged section can be processed
 // to retrieve the contents.
 bool
 can_icf_inline_merge_sections () const
 { return this->pti_->can_icf_inline_merge_sections; }

 // Whether a section called SECTION_NAME may have function pointers to
 // sections not eligible for safe ICF folding.
 virtual bool
 section_may_have_icf_unsafe_pointers(const char* section_name) const
 { return this->do_section_may_have_icf_unsafe_pointers(section_name); }

 // Return the base to use for the PC value in an FDE when it is
 // encoded using DW_EH_PE_datarel.  This does not appear to be
 // documented anywhere, but it is target specific.  Any use of
 // DW_EH_PE_datarel in gcc requires defining a special macro
 // (ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX) to output the value.
 uint64_t
 ehframe_datarel_base() const
 { return this->do_ehframe_datarel_base(); }

 // Return true if a reference to SYM from a reloc at *PRELOC
 // means that the current function may call an object compiled
 // without -fsplit-stack.  SYM is known to be defined in an object
 // compiled without -fsplit-stack.
 bool
 is_call_to_non_split(const Symbol* sym, const unsigned char* preloc,
                      const unsigned char* view,
                      section_size_type view_size) const
 { return this->do_is_call_to_non_split(sym, preloc, view, view_size); }

 // A function starts at OFFSET in section SHNDX in OBJECT.  That
 // function was compiled with -fsplit-stack, but it refers to a
 // function which was compiled without -fsplit-stack.  VIEW is a
 // modifiable view of the section; VIEW_SIZE is the size of the
 // view.  The target has to adjust the function so that it allocates
 // enough stack.
 void
 calls_non_split(Relobj* object, unsigned int shndx,
                 section_offset_type fnoffset, section_size_type fnsize,
                 const unsigned char* prelocs, size_t reloc_count,
                 unsigned char* view, section_size_type view_size,
                 std::string* from, std::string* to) const
 {
   this->do_calls_non_split(object, shndx, fnoffset, fnsize,
                            prelocs, reloc_count, view, view_size,
                            from, to);
 }

 // Make an ELF object.
 template<int size, bool big_endian>
 Object*
 make_elf_object(const std::string& name, Input_file* input_file,
                 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
 { return this->do_make_elf_object(name, input_file, offset, ehdr); }

 // Make an output section.
 Output_section*
 make_output_section(const char* name, elfcpp::Elf_Word type,
                     elfcpp::Elf_Xword flags)
 { return this->do_make_output_section(name, type, flags); }

 // Return true if target wants to perform relaxation.
 bool
 may_relax() const
 {
   // Run the dummy relaxation pass twice if relaxation debugging is enabled.
   if (is_debugging_enabled(DEBUG_RELAXATION))
     return true;

    return this->do_may_relax();
 }

 // Perform a relaxation pass.  Return true if layout may be changed.
 bool
 relax(int pass, const Input_objects* input_objects, Symbol_table* symtab,
       Layout* layout, const Task* task)
 {
   // Run the dummy relaxation pass twice if relaxation debugging is enabled.
   if (is_debugging_enabled(DEBUG_RELAXATION))
     return pass < 2;

   return this->do_relax(pass, input_objects, symtab, layout, task);
 }

 // Return the target-specific name of attributes section.  This is
 // NULL if a target does not use attributes section or if it uses
 // the default section name ".gnu.attributes".
 const char*
 attributes_section() const
 { return this->pti_->attributes_section; }

 // Return the vendor name of vendor attributes.
 const char*
 attributes_vendor() const
 { return this->pti_->attributes_vendor; }

 // Whether a section called NAME is an attribute section.
 bool
 is_attributes_section(const char* name) const
 {
   return ((this->pti_->attributes_section != NULL
            && strcmp(name, this->pti_->attributes_section) == 0)
           || strcmp(name, ".gnu.attributes") == 0);
 }

 // Return a bit mask of argument types for attribute with TAG.
 int
 attribute_arg_type(int tag) const
 { return this->do_attribute_arg_type(tag); }

 // Return the attribute tag of the position NUM in the list of fixed
 // attributes.  Normally there is no reordering and
 // attributes_order(NUM) == NUM.
 int
 attributes_order(int num) const
 { return this->do_attributes_order(num); }

 // When a target is selected as the default target, we call this method,
 // which may be used for expensive, target-specific initialization.
 void
 select_as_default_target()
 { this->do_select_as_default_target(); }

 // Return the value to store in the EI_OSABI field in the ELF
 // header.
 elfcpp::ELFOSABI
 osabi() const
 { return this->osabi_; }

 // Set the value to store in the EI_OSABI field in the ELF header.
 void
 set_osabi(elfcpp::ELFOSABI osabi)
 { this->osabi_ = osabi; }

 // Define target-specific standard symbols.
 void
 define_standard_symbols(Symbol_table* symtab, Layout* layout)
 { this->do_define_standard_symbols(symtab, layout); }

 // Return the output section name to use given an input section
 // name, or NULL if no target specific name mapping is required.
 // Set *PLEN to the length of the name if returning non-NULL.
 const char*
 output_section_name(const Relobj* relobj,
                     const char* name,
                     size_t* plen) const
 { return this->do_output_section_name(relobj, name, plen); }

 // Add any special sections for this symbol to the gc work list.
 void
 gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const
 { this->do_gc_mark_symbol(symtab, sym); }

 // Return the name of the entry point symbol.
 const char*
 entry_symbol_name() const
 { return this->pti_->entry_symbol_name; }

 // Return the size in bits of SHT_HASH entry.
 int
 hash_entry_size() const
 { return this->pti_->hash_entry_size; }

 // Return the section type to use for unwind sections.
 unsigned int
 unwind_section_type() const
 { return this->pti_->unwind_section_type; }

 // Whether the target has a custom set_dynsym_indexes method.
 bool
 has_custom_set_dynsym_indexes() const
 { return this->do_has_custom_set_dynsym_indexes(); }

 // Custom set_dynsym_indexes method for a target.
 unsigned int
 set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
                    std::vector<Symbol*>* syms, Stringpool* dynpool,
                    Versions* versions, Symbol_table* symtab) const
 {
   return this->do_set_dynsym_indexes(dyn_symbols, index, syms, dynpool,
                                      versions, symtab);
 }

 // Get the custom dynamic tag value.
 unsigned int
 dynamic_tag_custom_value(elfcpp::DT tag) const
 { return this->do_dynamic_tag_custom_value(tag); }

 // Adjust the value written to the dynamic symbol table.
 void
 adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
 { this->do_adjust_dyn_symbol(sym, view); }

 // Return whether to include the section in the link.
 bool
 should_include_section(elfcpp::Elf_Word sh_type) const
 { return this->do_should_include_section(sh_type); }

 // Finalize the target-specific properties in the .note.gnu.property section.
 void
 finalize_gnu_properties(Layout* layout) const
 { this->do_finalize_gnu_properties(layout); }

protected:
 // This struct holds the constant information for a child class.  We
 // use a struct to avoid the overhead of virtual function calls for
 // simple information.
 struct Target_info
 {
   // Address size (32 or 64).
   int size;
   // Whether the target is big endian.
   bool is_big_endian;
   // The code to store in the e_machine field of the ELF header.
   elfcpp::EM machine_code;
   // Whether this target has a specific make_symbol function.
   bool has_make_symbol;
   // Whether this target has a specific resolve function.
   bool has_resolve;
   // Whether this target has a specific code fill function.
   bool has_code_fill;
   // Whether an object file with no .note.GNU-stack sections implies
   // that the stack should be executable.
   bool is_default_stack_executable;
   // Whether a relocation to a merged section can be processed to
   // retrieve the contents.
   bool can_icf_inline_merge_sections;
   // Prefix character to strip when checking for wrapping.
   char wrap_char;
   // The default dynamic linker name.
   const char* dynamic_linker;
   // The default text segment address.
   uint64_t default_text_segment_address;
   // The ABI specified page size.
   uint64_t abi_pagesize;
   // The common page size used by actual implementations.
   uint64_t common_pagesize;
   // Whether PF_X segments must contain nothing but the contents of
   // SHF_EXECINSTR sections (no non-executable data, no headers).
   bool isolate_execinstr;
   // If nonzero, distance from the text segment to the read-only segment.
   uint64_t rosegment_gap;
   // The special section index for small common symbols; SHN_UNDEF
   // if none.
   elfcpp::Elf_Half small_common_shndx;
   // The special section index for large common symbols; SHN_UNDEF
   // if none.
   elfcpp::Elf_Half large_common_shndx;
   // Section flags for small common section.
   elfcpp::Elf_Xword small_common_section_flags;
   // Section flags for large common section.
   elfcpp::Elf_Xword large_common_section_flags;
   // Name of attributes section if it is not ".gnu.attributes".
   const char* attributes_section;
   // Vendor name of vendor attributes.
   const char* attributes_vendor;
   // Name of the main entry point to the program.
   const char* entry_symbol_name;
   // Size (in bits) of SHT_HASH entry. Always equal to 32, except for
   // 64-bit S/390.
   const int hash_entry_size;
   // Processor-specific section type for ".eh_frame" (unwind) sections.
   // SHT_PROGBITS if there is no special section type.
   const unsigned int unwind_section_type;
 };

 Target(const Target_info* pti)
   : pti_(pti), processor_specific_flags_(0),
     are_processor_specific_flags_set_(false), osabi_(elfcpp::ELFOSABI_NONE)
 { }

 // Virtual function which may be implemented by the child class.
 virtual void
 do_new_output_section(Output_section*) const
 { }

 // Virtual function which may be implemented by the child class.
 virtual void
 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*)
 { }

 // Virtual function which may be implemented by the child class.
 virtual uint64_t
 do_dynsym_value(const Symbol*) const
 { gold_unreachable(); }

 // Virtual function which must be implemented by the child class if
 // needed.
 virtual std::string
 do_code_fill(section_size_type) const
 { gold_unreachable(); }

 // Virtual function which may be implemented by the child class.
 virtual bool
 do_is_defined_by_abi(const Symbol*) const
 { return false; }

 // Adjust the output file header before it is written out.  VIEW
 // points to the header in external form.  LEN is the length, and
 // will be one of the values of elfcpp::Elf_sizes<size>::ehdr_size.
 // By default, we set the EI_OSABI field if requested (in
 // Sized_target).
 virtual void
 do_adjust_elf_header(unsigned char*, int) = 0;

 // Return address and size to plug into eh_frame FDEs associated with a PLT.
 virtual void
 do_plt_fde_location(const Output_data* plt, unsigned char* oview,
                     uint64_t* address, off_t* len) const;

 // Virtual function which may be overridden by the child class.
 virtual bool
 do_is_local_label_name(const char*) const;

 // Virtual function that must be overridden by a target which uses
 // target specific relocations.
 virtual unsigned int
 do_reloc_symbol_index(void*, unsigned int) const
 { gold_unreachable(); }

 // Virtual function that must be overridden by a target which uses
 // target specific relocations.
 virtual uint64_t
 do_reloc_addend(void*, unsigned int, uint64_t) const
 { gold_unreachable(); }

 // Virtual functions that must be overridden by a target that uses
 // STT_GNU_IFUNC symbols.
 virtual uint64_t
 do_plt_address_for_global(const Symbol*) const
 { gold_unreachable(); }

 virtual uint64_t
 do_plt_address_for_local(const Relobj*, unsigned int) const
 { gold_unreachable(); }

 virtual int64_t
 do_tls_offset_for_local(const Relobj*, unsigned int,
                         Output_data_got_base*, unsigned int,
                         uint64_t) const
 { gold_unreachable(); }

 virtual int64_t
 do_tls_offset_for_global(Symbol*, Output_data_got_base*, unsigned int,
                          uint64_t) const
 { gold_unreachable(); }

 virtual void
 do_function_location(Symbol_location*) const = 0;

 // Virtual function which may be overriden by the child class.
 virtual bool
 do_can_check_for_function_pointers() const
 { return false; }

 // Virtual function which may be overridden by the child class.  We
 // recognize some default sections for which we don't care whether
 // they have function pointers.
 virtual bool
 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
 {
   // We recognize sections for normal vtables, construction vtables and
   // EH frames.
   return (!is_prefix_of(".rodata._ZTV", section_name)
           && !is_prefix_of(".data.rel.ro._ZTV", section_name)
           && !is_prefix_of(".rodata._ZTC", section_name)
           && !is_prefix_of(".data.rel.ro._ZTC", section_name)
           && !is_prefix_of(".eh_frame", section_name));
 }

 virtual uint64_t
 do_ehframe_datarel_base() const
 { gold_unreachable(); }

 // Virtual function which may be overridden by the child class.  The
 // default implementation is that any function not defined by the
 // ABI is a call to a non-split function.
 virtual bool
 do_is_call_to_non_split(const Symbol* sym, const unsigned char*,
                         const unsigned char*, section_size_type) const;

 // Virtual function which may be overridden by the child class.
 virtual void
 do_calls_non_split(Relobj* object, unsigned int, section_offset_type,
                    section_size_type, const unsigned char*, size_t,
                    unsigned char*, section_size_type,
                    std::string*, std::string*) const;

 // make_elf_object hooks.  There are four versions of these for
 // different address sizes and endianness.

 // Set processor specific flags.
 void
 set_processor_specific_flags(elfcpp::Elf_Word flags)
 {
   this->processor_specific_flags_ = flags;
   this->are_processor_specific_flags_set_ = true;
 }

#ifdef HAVE_TARGET_32_LITTLE
 // Virtual functions which may be overridden by the child class.
 virtual Object*
 do_make_elf_object(const std::string&, Input_file*, off_t,
                    const elfcpp::Ehdr<32, false>&);
#endif

#ifdef HAVE_TARGET_32_BIG
 // Virtual functions which may be overridden by the child class.
 virtual Object*
 do_make_elf_object(const std::string&, Input_file*, off_t,
                    const elfcpp::Ehdr<32, true>&);
#endif

#ifdef HAVE_TARGET_64_LITTLE
 // Virtual functions which may be overridden by the child class.
 virtual Object*
 do_make_elf_object(const std::string&, Input_file*, off_t,
                    const elfcpp::Ehdr<64, false>& ehdr);
#endif

#ifdef HAVE_TARGET_64_BIG
 // Virtual functions which may be overridden by the child class.
 virtual Object*
 do_make_elf_object(const std::string& name, Input_file* input_file,
                    off_t offset, const elfcpp::Ehdr<64, true>& ehdr);
#endif

 // Virtual functions which may be overridden by the child class.
 virtual Output_section*
 do_make_output_section(const char* name, elfcpp::Elf_Word type,
                        elfcpp::Elf_Xword flags);

 // Virtual function which may be overridden by the child class.
 virtual bool
 do_may_relax() const
 { return parameters->options().relax(); }

 // Virtual function which may be overridden by the child class.
 virtual bool
 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*)
 { return false; }

 // A function for targets to call.  Return whether BYTES/LEN matches
 // VIEW/VIEW_SIZE at OFFSET.
 bool
 match_view(const unsigned char* view, section_size_type view_size,
            section_offset_type offset, const char* bytes, size_t len) const;

 // Set the contents of a VIEW/VIEW_SIZE to nops starting at OFFSET
 // for LEN bytes.
 void
 set_view_to_nop(unsigned char* view, section_size_type view_size,
                 section_offset_type offset, size_t len) const;

 // This must be overridden by the child class if it has target-specific
 // attributes subsection in the attribute section.
 virtual int
 do_attribute_arg_type(int) const
 { gold_unreachable(); }

 // This may be overridden by the child class.
 virtual int
 do_attributes_order(int num) const
 { return num; }

 // This may be overridden by the child class.
 virtual void
 do_select_as_default_target()
 { }

 // This may be overridden by the child class.
 virtual void
 do_define_standard_symbols(Symbol_table*, Layout*)
 { }

 // This may be overridden by the child class.
 virtual const char*
 do_output_section_name(const Relobj*, const char*, size_t*) const
 { return NULL; }

 // This may be overridden by the child class.
 virtual void
 do_gc_mark_symbol(Symbol_table*, Symbol*) const
 { }

 // This may be overridden by the child class.
 virtual bool
 do_has_custom_set_dynsym_indexes() const
 { return false; }

 // This may be overridden by the child class.
 virtual unsigned int
 do_set_dynsym_indexes(std::vector<Symbol*>*, unsigned int,
                       std::vector<Symbol*>*, Stringpool*, Versions*,
                       Symbol_table*) const
 { gold_unreachable(); }

 // This may be overridden by the child class.
 virtual unsigned int
 do_dynamic_tag_custom_value(elfcpp::DT) const
 { gold_unreachable(); }

 // This may be overridden by the child class.
 virtual void
 do_adjust_dyn_symbol(const Symbol*, unsigned char*) const
 { }

 // This may be overridden by the child class.
 virtual bool
 do_should_include_section(elfcpp::Elf_Word) const
 { return true; }

 // Finalize the target-specific properties in the .note.gnu.property section.
 virtual void
 do_finalize_gnu_properties(Layout*) const
 { }

private:
 // The implementations of the four do_make_elf_object virtual functions are
 // almost identical except for their sizes and endianness.  We use a template.
 // for their implementations.
 template<int size, bool big_endian>
 inline Object*
 do_make_elf_object_implementation(const std::string&, Input_file*, off_t,
                                   const elfcpp::Ehdr<size, big_endian>&);

 Target(const Target&);
 Target& operator=(const Target&);

 // The target information.
 const Target_info* pti_;
 // Processor-specific flags.
 elfcpp::Elf_Word processor_specific_flags_;
 // Whether the processor-specific flags are set at least once.
 bool are_processor_specific_flags_set_;
 // If not ELFOSABI_NONE, the value to put in the EI_OSABI field of
 // the ELF header.  This is handled at this level because it is
 // OS-specific rather than processor-specific.
 elfcpp::ELFOSABI osabi_;
};

// The abstract class for a specific size and endianness of target.
// Each actual target implementation class should derive from an
// instantiation of Sized_target.

template<int size, bool big_endian>
class Sized_target : public Target
{
public:
 // Make a new symbol table entry for the target.  This should be
 // overridden by a target which needs additional information in the
 // symbol table.  This will only be called if has_make_symbol()
 // returns true.
 virtual Sized_symbol<size>*
 make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t)
 { gold_unreachable(); }

 // Resolve a symbol for the target.  This should be overridden by a
 // target which needs to take special action.  TO is the
 // pre-existing symbol.  SYM is the new symbol, seen in OBJECT.
 // VERSION is the version of SYM.  This will only be called if
 // has_resolve() returns true.
 virtual bool
 resolve(Symbol*, const elfcpp::Sym<size, big_endian>&, Object*,
         const char*)
 { gold_unreachable(); }

 // Process the relocs for a section, and record information of the
 // mapping from source to destination sections. This mapping is later
 // used to determine unreferenced garbage sections. This procedure is
 // only called during garbage collection.
 virtual void
 gc_process_relocs(Symbol_table* symtab,
                   Layout* layout,
                   Sized_relobj_file<size, big_endian>* object,
                   unsigned int data_shndx,
                   unsigned int sh_type,
                   const unsigned char* prelocs,
                   size_t reloc_count,
                   Output_section* output_section,
                   bool needs_special_offset_handling,
                   size_t local_symbol_count,
                   const unsigned char* plocal_symbols) = 0;

 // Scan the relocs for a section, and record any information
 // required for the symbol.  SYMTAB is the symbol table.  OBJECT is
 // the object in which the section appears.  DATA_SHNDX is the
 // section index that these relocs apply to.  SH_TYPE is the type of
 // the relocation section, SHT_REL or SHT_RELA.  PRELOCS points to
 // the relocation data.  RELOC_COUNT is the number of relocs.
 // LOCAL_SYMBOL_COUNT is the number of local symbols.
 // OUTPUT_SECTION is the output section.
 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets to the output
 // sections are not mapped as usual.  PLOCAL_SYMBOLS points to the
 // local symbol data from OBJECT.  GLOBAL_SYMBOLS is the array of
 // pointers to the global symbol table from OBJECT.
 virtual void
 scan_relocs(Symbol_table* symtab,
             Layout* layout,
             Sized_relobj_file<size, big_endian>* object,
             unsigned int data_shndx,
             unsigned int sh_type,
             const unsigned char* prelocs,
             size_t reloc_count,
             Output_section* output_section,
             bool needs_special_offset_handling,
             size_t local_symbol_count,
             const unsigned char* plocal_symbols) = 0;

 // Relocate section data.  SH_TYPE is the type of the relocation
 // section, SHT_REL or SHT_RELA.  PRELOCS points to the relocation
 // information.  RELOC_COUNT is the number of relocs.
 // OUTPUT_SECTION is the output section.
 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets must be mapped
 // to correspond to the output section.  VIEW is a view into the
 // output file holding the section contents, VIEW_ADDRESS is the
 // virtual address of the view, and VIEW_SIZE is the size of the
 // view.  If NEEDS_SPECIAL_OFFSET_HANDLING is true, the VIEW_xx
 // parameters refer to the complete output section data, not just
 // the input section data.
 virtual void
 relocate_section(const Relocate_info<size, big_endian>*,
                  unsigned int sh_type,
                  const unsigned char* prelocs,
                  size_t reloc_count,
                  Output_section* output_section,
                  bool needs_special_offset_handling,
                  unsigned char* view,
                  typename elfcpp::Elf_types<size>::Elf_Addr view_address,
                  section_size_type view_size,
                  const Reloc_symbol_changes*) = 0;

 // Scan the relocs during a relocatable link.  The parameters are
 // like scan_relocs, with an additional Relocatable_relocs
 // parameter, used to record the disposition of the relocs.
 virtual void
 scan_relocatable_relocs(Symbol_table* symtab,
                         Layout* layout,
                         Sized_relobj_file<size, big_endian>* object,
                         unsigned int data_shndx,
                         unsigned int sh_type,
                         const unsigned char* prelocs,
                         size_t reloc_count,
                         Output_section* output_section,
                         bool needs_special_offset_handling,
                         size_t local_symbol_count,
                         const unsigned char* plocal_symbols,
                         Relocatable_relocs*) = 0;

 // Scan the relocs for --emit-relocs.  The parameters are
 // like scan_relocatable_relocs.
 virtual void
 emit_relocs_scan(Symbol_table* symtab,
                  Layout* layout,
                  Sized_relobj_file<size, big_endian>* object,
                  unsigned int data_shndx,
                  unsigned int sh_type,
                  const unsigned char* prelocs,
                  size_t reloc_count,
                  Output_section* output_section,
                  bool needs_special_offset_handling,
                  size_t local_symbol_count,
                  const unsigned char* plocal_syms,
                  Relocatable_relocs* rr) = 0;

 // Emit relocations for a section during a relocatable link, and for
 // --emit-relocs.  The parameters are like relocate_section, with
 // additional parameters for the view of the output reloc section.
 virtual void
 relocate_relocs(const Relocate_info<size, big_endian>*,
                 unsigned int sh_type,
                 const unsigned char* prelocs,
                 size_t reloc_count,
                 Output_section* output_section,
                 typename elfcpp::Elf_types<size>::Elf_Off
                   offset_in_output_section,
                 unsigned char* view,
                 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
                 section_size_type view_size,
                 unsigned char* reloc_view,
                 section_size_type reloc_view_size) = 0;

 // Perform target-specific processing in a relocatable link.  This is
 // only used if we use the relocation strategy RELOC_SPECIAL.
 // RELINFO points to a Relocation_info structure. SH_TYPE is the relocation
 // section type. PRELOC_IN points to the original relocation.  RELNUM is
 // the index number of the relocation in the relocation section.
 // OUTPUT_SECTION is the output section to which the relocation is applied.
 // OFFSET_IN_OUTPUT_SECTION is the offset of the relocation input section
 // within the output section.  VIEW points to the output view of the
 // output section.  VIEW_ADDRESS is output address of the view.  VIEW_SIZE
 // is the size of the output view and PRELOC_OUT points to the new
 // relocation in the output object.
 //
 // A target only needs to override this if the generic code in
 // target-reloc.h cannot handle some relocation types.

 virtual void
 relocate_special_relocatable(const Relocate_info<size, big_endian>*
                               /*relinfo */,
                              unsigned int /* sh_type */,
                              const unsigned char* /* preloc_in */,
                              size_t /* relnum */,
                              Output_section* /* output_section */,
                              typename elfcpp::Elf_types<size>::Elf_Off
                                /* offset_in_output_section */,
                              unsigned char* /* view */,
                              typename elfcpp::Elf_types<size>::Elf_Addr
                                /* view_address */,
                              section_size_type /* view_size */,
                              unsigned char* /* preloc_out*/)
 { gold_unreachable(); }

 // Return the number of entries in the GOT.  This is only used for
 // laying out the incremental link info sections.  A target needs
 // to implement this to support incremental linking.

 virtual unsigned int
 got_entry_count() const
 { gold_unreachable(); }

 // Return the number of entries in the PLT.  This is only used for
 // laying out the incremental link info sections.  A target needs
 // to implement this to support incremental linking.

 virtual unsigned int
 plt_entry_count() const
 { gold_unreachable(); }

 // Return the offset of the first non-reserved PLT entry.  This is
 // only used for laying out the incremental link info sections.
 // A target needs to implement this to support incremental linking.

 virtual unsigned int
 first_plt_entry_offset() const
 { gold_unreachable(); }

 // Return the size of each PLT entry.  This is only used for
 // laying out the incremental link info sections.  A target needs
 // to implement this to support incremental linking.

 virtual unsigned int
 plt_entry_size() const
 { gold_unreachable(); }

 // Return the size of each GOT entry.  This is only used for
 // laying out the incremental link info sections.  A target needs
 // to implement this if its GOT size is different.

 virtual unsigned int
 got_entry_size() const
 { return size / 8; }

 // Create the GOT and PLT sections for an incremental update.
 // A target needs to implement this to support incremental linking.

 virtual Output_data_got_base*
 init_got_plt_for_update(Symbol_table*,
                         Layout*,
                         unsigned int /* got_count */,
                         unsigned int /* plt_count */)
 { gold_unreachable(); }

 // Reserve a GOT entry for a local symbol, and regenerate any
 // necessary dynamic relocations.
 virtual void
 reserve_local_got_entry(unsigned int /* got_index */,
                         Sized_relobj<size, big_endian>* /* obj */,
                         unsigned int /* r_sym */,
                         unsigned int /* got_type */)
 { gold_unreachable(); }

 // Reserve a GOT entry for a global symbol, and regenerate any
 // necessary dynamic relocations.
 virtual void
 reserve_global_got_entry(unsigned int /* got_index */, Symbol* /* gsym */,
                          unsigned int /* got_type */)
 { gold_unreachable(); }

 // Register an existing PLT entry for a global symbol.
 // A target needs to implement this to support incremental linking.

 virtual void
 register_global_plt_entry(Symbol_table*, Layout*,
                           unsigned int /* plt_index */,
                           Symbol*)
 { gold_unreachable(); }

 // Force a COPY relocation for a given symbol.
 // A target needs to implement this to support incremental linking.

 virtual void
 emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t)
 { gold_unreachable(); }

 // Apply an incremental relocation.

 virtual void
 apply_relocation(const Relocate_info<size, big_endian>* /* relinfo */,
                  typename elfcpp::Elf_types<size>::Elf_Addr /* r_offset */,
                  unsigned int /* r_type */,
                  typename elfcpp::Elf_types<size>::Elf_Swxword /* r_addend */,
                  const Symbol* /* gsym */,
                  unsigned char* /* view */,
                  typename elfcpp::Elf_types<size>::Elf_Addr /* address */,
                  section_size_type /* view_size */)
 { gold_unreachable(); }

 // Handle target specific gc actions when adding a gc reference from
 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
 // and DST_OFF.
 void
 gc_add_reference(Symbol_table* symtab,
                  Relobj* src_obj,
                  unsigned int src_shndx,
                  Relobj* dst_obj,
                  unsigned int dst_shndx,
                  typename elfcpp::Elf_types<size>::Elf_Addr dst_off) const
 {
   this->do_gc_add_reference(symtab, src_obj, src_shndx,
                             dst_obj, dst_shndx, dst_off);
 }

 // Return the r_sym field from a relocation.
 // Most targets can use the default version of this routine,
 // but some targets have a non-standard r_info field, and will
 // need to provide a target-specific version.
 virtual unsigned int
 get_r_sym(const unsigned char* preloc) const
 {
   // Since REL and RELA relocs share the same structure through
   // the r_info field, we can just use REL here.
   elfcpp::Rel<size, big_endian> rel(preloc);
   return elfcpp::elf_r_sym<size>(rel.get_r_info());
 }

 // Record a target-specific program property in the .note.gnu.property
 // section.
 virtual void
 record_gnu_property(unsigned int, unsigned int, size_t,
                     const unsigned char*, const Object*)
 { }

 // Merge the target-specific program properties from the current object.
 virtual void
 merge_gnu_properties(const Object*)
 { }

protected:
 Sized_target(const Target::Target_info* pti)
   : Target(pti)
 {
   gold_assert(pti->size == size);
   gold_assert(pti->is_big_endian ? big_endian : !big_endian);
 }

 // Set the EI_OSABI field if requested.
 virtual void
 do_adjust_elf_header(unsigned char*, int);

 // Handle target specific gc actions when adding a gc reference.
 virtual void
 do_gc_add_reference(Symbol_table*, Relobj*, unsigned int,
                     Relobj*, unsigned int,
                     typename elfcpp::Elf_types<size>::Elf_Addr) const
 { }

 virtual void
 do_function_location(Symbol_location*) const
 { }
};

} // End namespace gold.

#endif // !defined(GOLD_TARGET_H)