// symtab.h -- the gold symbol table   -*- C++ -*-

// Copyright (C) 2006-2024 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <[email protected]>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

// Symbol_table
//   The symbol table.

#ifndef GOLD_SYMTAB_H
#define GOLD_SYMTAB_H

#include <string>
#include <utility>
#include <vector>

#include "elfcpp.h"
#include "parameters.h"
#include "stringpool.h"
#include "object.h"

namespace gold
{

class Mapfile;
class Object;
class Relobj;
template<int size, bool big_endian>
class Sized_relobj_file;
template<int size, bool big_endian>
class Sized_pluginobj;
class Dynobj;
template<int size, bool big_endian>
class Sized_dynobj;
template<int size, bool big_endian>
class Sized_incrobj;
class Versions;
class Version_script_info;
class Input_objects;
class Output_data;
class Output_section;
class Output_segment;
class Output_file;
class Output_symtab_xindex;
class Garbage_collection;
class Icf;

// The base class of an entry in the symbol table.  The symbol table
// can have a lot of entries, so we don't want this class too big.
// Size dependent fields can be found in the template class
// Sized_symbol.  Targets may support their own derived classes.

class Symbol
{
public:
 // Because we want the class to be small, we don't use any virtual
 // functions.  But because symbols can be defined in different
 // places, we need to classify them.  This enum is the different
 // sources of symbols we support.
 enum Source
 {
   // Symbol defined in a relocatable or dynamic input file--this is
   // the most common case.
   FROM_OBJECT,
   // Symbol defined in an Output_data, a special section created by
   // the target.
   IN_OUTPUT_DATA,
   // Symbol defined in an Output_segment, with no associated
   // section.
   IN_OUTPUT_SEGMENT,
   // Symbol value is constant.
   IS_CONSTANT,
   // Symbol is undefined.
   IS_UNDEFINED
 };

 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
 // the offset means.
 enum Segment_offset_base
 {
   // From the start of the segment.
   SEGMENT_START,
   // From the end of the segment.
   SEGMENT_END,
   // From the filesz of the segment--i.e., after the loaded bytes
   // but before the bytes which are allocated but zeroed.
   SEGMENT_BSS
 };

 // Return the symbol name.
 const char*
 name() const
 { return this->name_; }

 // Return the (ANSI) demangled version of the name, if
 // parameters.demangle() is true.  Otherwise, return the name.  This
 // is intended to be used only for logging errors, so it's not
 // super-efficient.
 std::string
 demangled_name() const;

 // Return the symbol version.  This will return NULL for an
 // unversioned symbol.
 const char*
 version() const
 { return this->version_; }

 void
 clear_version()
 { this->version_ = NULL; }

 // Return whether this version is the default for this symbol name
 // (eg, "foo@@V2" is a default version; "foo@V1" is not).  Only
 // meaningful for versioned symbols.
 bool
 is_default() const
 {
   gold_assert(this->version_ != NULL);
   return this->is_def_;
 }

 // Set that this version is the default for this symbol name.
 void
 set_is_default()
 { this->is_def_ = true; }

 // Set that this version is not the default for this symbol name.
 void
 set_is_not_default()
 { this->is_def_ = false; }

 // Return the symbol's name as name@version (or name@@version).
 std::string
 versioned_name() const;

 // Return the symbol source.
 Source
 source() const
 { return this->source_; }

 // Return the object with which this symbol is associated.
 Object*
 object() const
 {
   gold_assert(this->source_ == FROM_OBJECT);
   return this->u1_.object;
 }

 // Return the index of the section in the input relocatable or
 // dynamic object file.
 unsigned int
 shndx(bool* is_ordinary) const
 {
   gold_assert(this->source_ == FROM_OBJECT);
   *is_ordinary = this->is_ordinary_shndx_;
   return this->u2_.shndx;
 }

 // Return the output data section with which this symbol is
 // associated, if the symbol was specially defined with respect to
 // an output data section.
 Output_data*
 output_data() const
 {
   gold_assert(this->source_ == IN_OUTPUT_DATA);
   return this->u1_.output_data;
 }

 // If this symbol was defined with respect to an output data
 // section, return whether the value is an offset from end.
 bool
 offset_is_from_end() const
 {
   gold_assert(this->source_ == IN_OUTPUT_DATA);
   return this->u2_.offset_is_from_end;
 }

 // Return the output segment with which this symbol is associated,
 // if the symbol was specially defined with respect to an output
 // segment.
 Output_segment*
 output_segment() const
 {
   gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
   return this->u1_.output_segment;
 }

 // If this symbol was defined with respect to an output segment,
 // return the offset base.
 Segment_offset_base
 offset_base() const
 {
   gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
   return this->u2_.offset_base;
 }

 // Return the symbol binding.
 elfcpp::STB
 binding() const
 { return this->binding_; }

 // Return the symbol type.
 elfcpp::STT
 type() const
 { return this->type_; }

 // Set the symbol type.
 void
 set_type(elfcpp::STT type)
 { this->type_ = type; }

 // Return true for function symbol.
 bool
 is_func() const
 {
   return (this->type_ == elfcpp::STT_FUNC
           || this->type_ == elfcpp::STT_GNU_IFUNC);
 }

 // Return the symbol visibility.
 elfcpp::STV
 visibility() const
 { return this->visibility_; }

 // Set the visibility.
 void
 set_visibility(elfcpp::STV visibility)
 { this->visibility_ = visibility; }

 // Override symbol visibility.
 void
 override_visibility(elfcpp::STV);

 // Set whether the symbol was originally a weak undef or a regular undef
 // when resolved by a dynamic def or by a special symbol.
 inline void
 set_undef_binding(elfcpp::STB bind)
 {
   if (!this->undef_binding_set_ || this->undef_binding_weak_)
     {
       this->undef_binding_weak_ = bind == elfcpp::STB_WEAK;
       this->undef_binding_set_ = true;
     }
 }

 // Return TRUE if a weak undef was resolved by a dynamic def or
 // by a special symbol.
 inline bool
 is_undef_binding_weak() const
 { return this->undef_binding_weak_; }

 // Return the non-visibility part of the st_other field.
 unsigned char
 nonvis() const
 { return this->nonvis_; }

 // Set the non-visibility part of the st_other field.
 void
 set_nonvis(unsigned int nonvis)
 { this->nonvis_ = nonvis; }

 // Return whether this symbol is a forwarder.  This will never be
 // true of a symbol found in the hash table, but may be true of
 // symbol pointers attached to object files.
 bool
 is_forwarder() const
 { return this->is_forwarder_; }

 // Mark this symbol as a forwarder.
 void
 set_forwarder()
 { this->is_forwarder_ = true; }

 // Return whether this symbol has an alias in the weak aliases table
 // in Symbol_table.
 bool
 has_alias() const
 { return this->has_alias_; }

 // Mark this symbol as having an alias.
 void
 set_has_alias()
 { this->has_alias_ = true; }

 // Return whether this symbol needs an entry in the dynamic symbol
 // table.
 bool
 needs_dynsym_entry() const
 {
   return (this->needs_dynsym_entry_
           || (this->in_reg()
               && this->in_dyn()
               && this->is_externally_visible()));
 }

 // Mark this symbol as needing an entry in the dynamic symbol table.
 void
 set_needs_dynsym_entry()
 { this->needs_dynsym_entry_ = true; }

 // Return whether this symbol should be added to the dynamic symbol
 // table.
 bool
 should_add_dynsym_entry(Symbol_table*) const;

 // Return whether this symbol has been seen in a regular object.
 bool
 in_reg() const
 { return this->in_reg_; }

 // Mark this symbol as having been seen in a regular object.
 void
 set_in_reg()
 { this->in_reg_ = true; }

 // Forget this symbol was seen in a regular object.
 void
 clear_in_reg()
 { this->in_reg_ = false; }

 // Return whether this symbol has been seen in a dynamic object.
 bool
 in_dyn() const
 { return this->in_dyn_; }

 // Mark this symbol as having been seen in a dynamic object.
 void
 set_in_dyn()
 { this->in_dyn_ = true; }

 // Return whether this symbol is defined in a dynamic object.
 bool
 from_dyn() const
 { return this->source_ == FROM_OBJECT && this->object()->is_dynamic(); }

 // Return whether this symbol has been seen in a real ELF object.
 // (IN_REG will return TRUE if the symbol has been seen in either
 // a real ELF object or an object claimed by a plugin.)
 bool
 in_real_elf() const
 { return this->in_real_elf_; }

 // Mark this symbol as having been seen in a real ELF object.
 void
 set_in_real_elf()
 { this->in_real_elf_ = true; }

 // Return whether this symbol was defined in a section that was
 // discarded from the link.  This is used to control some error
 // reporting.
 bool
 is_defined_in_discarded_section() const
 { return this->is_defined_in_discarded_section_; }

 // Mark this symbol as having been defined in a discarded section.
 void
 set_is_defined_in_discarded_section()
 { this->is_defined_in_discarded_section_ = true; }

 // Return the index of this symbol in the output file symbol table.
 // A value of -1U means that this symbol is not going into the
 // output file.  This starts out as zero, and is set to a non-zero
 // value by Symbol_table::finalize.  It is an error to ask for the
 // symbol table index before it has been set.
 unsigned int
 symtab_index() const
 {
   gold_assert(this->symtab_index_ != 0);
   return this->symtab_index_;
 }

 // Set the index of the symbol in the output file symbol table.
 void
 set_symtab_index(unsigned int index)
 {
   gold_assert(index != 0);
   this->symtab_index_ = index;
 }

 // Return whether this symbol already has an index in the output
 // file symbol table.
 bool
 has_symtab_index() const
 { return this->symtab_index_ != 0; }

 // Return the index of this symbol in the dynamic symbol table.  A
 // value of -1U means that this symbol is not going into the dynamic
 // symbol table.  This starts out as zero, and is set to a non-zero
 // during Layout::finalize.  It is an error to ask for the dynamic
 // symbol table index before it has been set.
 unsigned int
 dynsym_index() const
 {
   gold_assert(this->dynsym_index_ != 0);
   return this->dynsym_index_;
 }

 // Set the index of the symbol in the dynamic symbol table.
 void
 set_dynsym_index(unsigned int index)
 {
   gold_assert(index != 0);
   this->dynsym_index_ = index;
 }

 // Return whether this symbol already has an index in the dynamic
 // symbol table.
 bool
 has_dynsym_index() const
 { return this->dynsym_index_ != 0; }

 // Return whether this symbol has an entry in the GOT section.
 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
 bool
 has_got_offset(unsigned int got_type, uint64_t addend = 0) const
 { return this->got_offsets_.get_offset(got_type, addend) != -1U; }

 // Return the offset into the GOT section of this symbol.
 unsigned int
 got_offset(unsigned int got_type, uint64_t addend = 0) const
 {
   unsigned int got_offset = this->got_offsets_.get_offset(got_type, addend);
   gold_assert(got_offset != -1U);
   return got_offset;
 }

 // Set the GOT offset of this symbol.
 void
 set_got_offset(unsigned int got_type, unsigned int got_offset,
                uint64_t addend = 0)
 { this->got_offsets_.set_offset(got_type, got_offset, addend); }

 // Return the GOT offset list.
 const Got_offset_list*
 got_offset_list() const
 { return this->got_offsets_.get_list(); }

 // Return whether this symbol has an entry in the PLT section.
 bool
 has_plt_offset() const
 { return this->plt_offset_ != -1U; }

 // Return the offset into the PLT section of this symbol.
 unsigned int
 plt_offset() const
 {
   gold_assert(this->has_plt_offset());
   return this->plt_offset_;
 }

 // Set the PLT offset of this symbol.
 void
 set_plt_offset(unsigned int plt_offset)
 {
   gold_assert(plt_offset != -1U);
   this->plt_offset_ = plt_offset;
 }

 // Return whether this dynamic symbol needs a special value in the
 // dynamic symbol table.
 bool
 needs_dynsym_value() const
 { return this->needs_dynsym_value_; }

 // Set that this dynamic symbol needs a special value in the dynamic
 // symbol table.
 void
 set_needs_dynsym_value()
 {
   gold_assert(this->object()->is_dynamic());
   this->needs_dynsym_value_ = true;
 }

 // Return true if the final value of this symbol is known at link
 // time.
 bool
 final_value_is_known() const;

 // Return true if SHNDX represents a common symbol.  This depends on
 // the target.
 static bool
 is_common_shndx(unsigned int shndx);

 // Return whether this is a defined symbol (not undefined or
 // common).
 bool
 is_defined() const
 {
   bool is_ordinary;
   if (this->source_ != FROM_OBJECT)
     return this->source_ != IS_UNDEFINED;
   unsigned int shndx = this->shndx(&is_ordinary);
   return (is_ordinary
           ? shndx != elfcpp::SHN_UNDEF
           : !Symbol::is_common_shndx(shndx));
 }

 // Return true if this symbol is from a dynamic object.
 bool
 is_from_dynobj() const
 {
   return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
 }

 // Return whether this is a placeholder symbol from a plugin object.
 bool
 is_placeholder() const
 {
   return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
 }

 // Return whether this is an undefined symbol.
 bool
 is_undefined() const
 {
   bool is_ordinary;
   return ((this->source_ == FROM_OBJECT
            && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
            && is_ordinary)
           || this->source_ == IS_UNDEFINED);
 }

 // Return whether this is a weak undefined symbol.
 bool
 is_weak_undefined() const
 {
   return (this->is_undefined()
           && (this->binding() == elfcpp::STB_WEAK
               || this->is_undef_binding_weak()
               || parameters->options().weak_unresolved_symbols()));
 }

 // Return whether this is a strong undefined symbol.
 bool
 is_strong_undefined() const
 {
   return (this->is_undefined()
           && this->binding() != elfcpp::STB_WEAK
           && !this->is_undef_binding_weak()
           && !parameters->options().weak_unresolved_symbols());
 }

 // Return whether this is an absolute symbol.
 bool
 is_absolute() const
 {
   bool is_ordinary;
   return ((this->source_ == FROM_OBJECT
            && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
            && !is_ordinary)
           || this->source_ == IS_CONSTANT);
 }

 // Return whether this is a common symbol.
 bool
 is_common() const
 {
   if (this->source_ != FROM_OBJECT)
     return false;
   bool is_ordinary;
   unsigned int shndx = this->shndx(&is_ordinary);
   return !is_ordinary && Symbol::is_common_shndx(shndx);
 }

 // Return whether this symbol can be seen outside this object.
 bool
 is_externally_visible() const
 {
   return ((this->visibility_ == elfcpp::STV_DEFAULT
            || this->visibility_ == elfcpp::STV_PROTECTED)
           && !this->is_forced_local_);
 }

 // Return true if this symbol can be preempted by a definition in
 // another link unit.
 bool
 is_preemptible() const
 {
   // It doesn't make sense to ask whether a symbol defined in
   // another object is preemptible.
   gold_assert(!this->is_from_dynobj());

   // It doesn't make sense to ask whether an undefined symbol
   // is preemptible.
   gold_assert(!this->is_undefined());

   // If a symbol does not have default visibility, it can not be
   // seen outside this link unit and therefore is not preemptible.
   if (this->visibility_ != elfcpp::STV_DEFAULT)
     return false;

   // If this symbol has been forced to be a local symbol by a
   // version script, then it is not visible outside this link unit
   // and is not preemptible.
   if (this->is_forced_local_)
     return false;

   // If we are not producing a shared library, then nothing is
   // preemptible.
   if (!parameters->options().shared())
     return false;

   // If the symbol was named in a --dynamic-list script, it is preemptible.
   if (parameters->options().in_dynamic_list(this->name()))
     return true;

   // If the user used -Bsymbolic, then nothing (else) is preemptible.
   if (parameters->options().Bsymbolic())
     return false;

   // If the user used -Bsymbolic-functions, then functions are not
   // preemptible.  We explicitly check for not being STT_OBJECT,
   // rather than for being STT_FUNC, because that is what the GNU
   // linker does.
   if (this->type() != elfcpp::STT_OBJECT
       && parameters->options().Bsymbolic_functions())
     return false;

   // Otherwise the symbol is preemptible.
   return true;
 }

 // Return true if this symbol is a function that needs a PLT entry.
 bool
 needs_plt_entry() const
 {
   // An undefined symbol from an executable does not need a PLT entry.
   if (this->is_undefined() && !parameters->options().shared())
     return false;

   // An STT_GNU_IFUNC symbol always needs a PLT entry, even when
   // doing a static link.
   if (this->type() == elfcpp::STT_GNU_IFUNC)
     return true;

   // We only need a PLT entry for a function.
   if (!this->is_func())
     return false;

   // If we're doing a static link or a -pie link, we don't create
   // PLT entries.
   if (parameters->doing_static_link()
       || parameters->options().pie())
     return false;

   // We need a PLT entry if the function is defined in a dynamic
   // object, or is undefined when building a shared object, or if it
   // is subject to pre-emption.
   return (this->is_from_dynobj()
           || this->is_undefined()
           || this->is_preemptible());
 }

 // When determining whether a reference to a symbol needs a dynamic
 // relocation, we need to know several things about the reference.
 // These flags may be or'ed together.  0 means that the symbol
 // isn't referenced at all.
 enum Reference_flags
 {
   // A reference to the symbol's absolute address.  This includes
   // references that cause an absolute address to be stored in the GOT.
   ABSOLUTE_REF = 1,
   // A reference that calculates the offset of the symbol from some
   // anchor point, such as the PC or GOT.
   RELATIVE_REF = 2,
   // A TLS-related reference.
   TLS_REF = 4,
   // A reference that can always be treated as a function call.
   FUNCTION_CALL = 8,
   // When set, says that dynamic relocations are needed even if a
   // symbol has a plt entry.
   FUNC_DESC_ABI = 16,
 };

 // Given a direct absolute or pc-relative static relocation against
 // the global symbol, this function returns whether a dynamic relocation
 // is needed.

 bool
 needs_dynamic_reloc(int flags) const
 {
   // No dynamic relocations in a static link!
   if (parameters->doing_static_link())
     return false;

   // A reference to an undefined symbol from an executable should be
   // statically resolved to 0, and does not need a dynamic relocation.
   // This matches gnu ld behavior.
   if (this->is_undefined() && !parameters->options().shared())
     return false;

   // A reference to an absolute symbol does not need a dynamic relocation.
   if (this->is_absolute())
     return false;

   // An absolute reference within a position-independent output file
   // will need a dynamic relocation.
   if ((flags & ABSOLUTE_REF)
       && parameters->options().output_is_position_independent())
     return true;

   // A function call that can branch to a local PLT entry does not need
   // a dynamic relocation.
   if ((flags & FUNCTION_CALL) && this->has_plt_offset())
     return false;

   // A reference to any PLT entry in a non-position-independent executable
   // does not need a dynamic relocation.
   if (!(flags & FUNC_DESC_ABI)
       && !parameters->options().output_is_position_independent()
       && this->has_plt_offset())
     return false;

   // A reference to a symbol defined in a dynamic object or to a
   // symbol that is preemptible will need a dynamic relocation.
   if (this->is_from_dynobj()
       || this->is_undefined()
       || this->is_preemptible())
     return true;

   // For all other cases, return FALSE.
   return false;
 }

 // Whether we should use the PLT offset associated with a symbol for
 // a relocation.  FLAGS is a set of Reference_flags.

 bool
 use_plt_offset(int flags) const
 {
   // If the symbol doesn't have a PLT offset, then naturally we
   // don't want to use it.
   if (!this->has_plt_offset())
     return false;

   // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
   if (this->type() == elfcpp::STT_GNU_IFUNC)
     return true;

   // If we are going to generate a dynamic relocation, then we will
   // wind up using that, so no need to use the PLT entry.
   if (this->needs_dynamic_reloc(flags))
     return false;

   // If the symbol is from a dynamic object, we need to use the PLT
   // entry.
   if (this->is_from_dynobj())
     return true;

   // If we are generating a shared object, and this symbol is
   // undefined or preemptible, we need to use the PLT entry.
   if (parameters->options().shared()
       && (this->is_undefined() || this->is_preemptible()))
     return true;

   // If this is a call to a weak undefined symbol, we need to use
   // the PLT entry; the symbol may be defined by a library loaded
   // at runtime.
   if ((flags & FUNCTION_CALL) && this->is_weak_undefined())
     return true;

   // Otherwise we can use the regular definition.
   return false;
 }

 // Given a direct absolute static relocation against
 // the global symbol, where a dynamic relocation is needed, this
 // function returns whether a relative dynamic relocation can be used.
 // The caller must determine separately whether the static relocation
 // is compatible with a relative relocation.

 bool
 can_use_relative_reloc(bool is_function_call) const
 {
   // A function call that can branch to a local PLT entry can
   // use a RELATIVE relocation.
   if (is_function_call && this->has_plt_offset())
     return true;

   // A reference to a symbol defined in a dynamic object or to a
   // symbol that is preemptible can not use a RELATIVE relocation.
   if (this->is_from_dynobj()
       || this->is_undefined()
       || this->is_preemptible())
     return false;

   // For all other cases, return TRUE.
   return true;
 }

 // Return the output section where this symbol is defined.  Return
 // NULL if the symbol has an absolute value.
 Output_section*
 output_section() const;

 // Set the symbol's output section.  This is used for symbols
 // defined in scripts.  This should only be called after the symbol
 // table has been finalized.
 void
 set_output_section(Output_section*);

 // Set the symbol's output segment.  This is used for pre-defined
 // symbols whose segments aren't known until after layout is done
 // (e.g., __ehdr_start).
 void
 set_output_segment(Output_segment*, Segment_offset_base);

 // Set the symbol to undefined.  This is used for pre-defined
 // symbols whose segments aren't known until after layout is done
 // (e.g., __ehdr_start).
 void
 set_undefined();

 // Return whether there should be a warning for references to this
 // symbol.
 bool
 has_warning() const
 { return this->has_warning_; }

 // Mark this symbol as having a warning.
 void
 set_has_warning()
 { this->has_warning_ = true; }

 // Return whether this symbol is defined by a COPY reloc from a
 // dynamic object.
 bool
 is_copied_from_dynobj() const
 { return this->is_copied_from_dynobj_; }

 // Mark this symbol as defined by a COPY reloc.
 void
 set_is_copied_from_dynobj()
 { this->is_copied_from_dynobj_ = true; }

 // Return whether this symbol is forced to visibility STB_LOCAL
 // by a "local:" entry in a version script.
 bool
 is_forced_local() const
 { return this->is_forced_local_; }

 // Mark this symbol as forced to STB_LOCAL visibility.
 void
 set_is_forced_local()
 { this->is_forced_local_ = true; }

 // Return true if this may need a COPY relocation.
 // References from an executable object to non-function symbols
 // defined in a dynamic object may need a COPY relocation.
 bool
 may_need_copy_reloc() const
 {
   return (parameters->options().copyreloc()
           && this->is_from_dynobj()
           && !this->is_func());
 }

 // Return true if this symbol was predefined by the linker.
 bool
 is_predefined() const
 { return this->is_predefined_; }

 // Return true if this is a C++ vtable symbol.
 bool
 is_cxx_vtable() const
 { return is_prefix_of("_ZTV", this->name_); }

 // Return true if this symbol is protected in a shared object.
 // This is not the same as checking if visibility() == elfcpp::STV_PROTECTED,
 // because the visibility_ field reflects the symbol's visibility from
 // outside the shared object.
 bool
 is_protected() const
 { return this->is_protected_; }

 // Mark this symbol as protected in a shared object.
 void
 set_is_protected()
 { this->is_protected_ = true; }

 // Return state of PowerPC64 ELFv2 specific flag.
 bool
 non_zero_localentry() const
 { return this->non_zero_localentry_; }

 // Set PowerPC64 ELFv2 specific flag.
 void
 set_non_zero_localentry()
 { this->non_zero_localentry_ = true; }

 // Completely override existing symbol.  Everything bar name_,
 // version_, and is_forced_local_ flag are copied.  version_ is
 // cleared if from->version_ is clear.  Returns true if this symbol
 // should be forced local.
 bool
 clone(const Symbol* from);

protected:
 // Instances of this class should always be created at a specific
 // size.
 Symbol()
 { memset(static_cast<void*>(this), 0, sizeof *this); }

 // Initialize the general fields.
 void
 init_fields(const char* name, const char* version,
             elfcpp::STT type, elfcpp::STB binding,
             elfcpp::STV visibility, unsigned char nonvis);

 // Initialize fields from an ELF symbol in OBJECT.  ST_SHNDX is the
 // section index, IS_ORDINARY is whether it is a normal section
 // index rather than a special code.
 template<int size, bool big_endian>
 void
 init_base_object(const char* name, const char* version, Object* object,
                  const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
                  bool is_ordinary);

 // Initialize fields for an Output_data.
 void
 init_base_output_data(const char* name, const char* version, Output_data*,
                       elfcpp::STT, elfcpp::STB, elfcpp::STV,
                       unsigned char nonvis, bool offset_is_from_end,
                       bool is_predefined);

 // Initialize fields for an Output_segment.
 void
 init_base_output_segment(const char* name, const char* version,
                          Output_segment* os, elfcpp::STT type,
                          elfcpp::STB binding, elfcpp::STV visibility,
                          unsigned char nonvis,
                          Segment_offset_base offset_base,
                          bool is_predefined);

 // Initialize fields for a constant.
 void
 init_base_constant(const char* name, const char* version, elfcpp::STT type,
                    elfcpp::STB binding, elfcpp::STV visibility,
                    unsigned char nonvis, bool is_predefined);

 // Initialize fields for an undefined symbol.
 void
 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
                     elfcpp::STB binding, elfcpp::STV visibility,
                     unsigned char nonvis);

 // Override existing symbol.
 template<int size, bool big_endian>
 void
 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
               bool is_ordinary, Object* object, const char* version);

 // Override existing symbol with a special symbol.
 void
 override_base_with_special(const Symbol* from);

 // Override symbol version.
 void
 override_version(const char* version);

 // Allocate a common symbol by giving it a location in the output
 // file.
 void
 allocate_base_common(Output_data*);

private:
 Symbol(const Symbol&);
 Symbol& operator=(const Symbol&);

 // Symbol name (expected to point into a Stringpool).
 const char* name_;
 // Symbol version (expected to point into a Stringpool).  This may
 // be NULL.
 const char* version_;

 union
 {
   // This is used if SOURCE_ == FROM_OBJECT.
   // Object in which symbol is defined, or in which it was first
   // seen.
   Object* object;

   // This is used if SOURCE_ == IN_OUTPUT_DATA.
   // Output_data in which symbol is defined.  Before
   // Layout::finalize the symbol's value is an offset within the
   // Output_data.
   Output_data* output_data;

   // This is used if SOURCE_ == IN_OUTPUT_SEGMENT.
   // Output_segment in which the symbol is defined.  Before
   // Layout::finalize the symbol's value is an offset.
   Output_segment* output_segment;
 } u1_;

 union
 {
   // This is used if SOURCE_ == FROM_OBJECT.
   // Section number in object in which symbol is defined.
   unsigned int shndx;

   // This is used if SOURCE_ == IN_OUTPUT_DATA.
   // True if the offset is from the end, false if the offset is
   // from the beginning.
   bool offset_is_from_end;

   // This is used if SOURCE_ == IN_OUTPUT_SEGMENT.
   // The base to use for the offset before Layout::finalize.
   Segment_offset_base offset_base;
 } u2_;

 // The index of this symbol in the output file.  If the symbol is
 // not going into the output file, this value is -1U.  This field
 // starts as always holding zero.  It is set to a non-zero value by
 // Symbol_table::finalize.
 unsigned int symtab_index_;

 // The index of this symbol in the dynamic symbol table.  If the
 // symbol is not going into the dynamic symbol table, this value is
 // -1U.  This field starts as always holding zero.  It is set to a
 // non-zero value during Layout::finalize.
 unsigned int dynsym_index_;

 // If this symbol has an entry in the PLT section, then this is the
 // offset from the start of the PLT section.  This is -1U if there
 // is no PLT entry.
 unsigned int plt_offset_;

 // The GOT section entries for this symbol.  A symbol may have more
 // than one GOT offset (e.g., when mixing modules compiled with two
 // different TLS models), but will usually have at most one.
 Got_offset_list got_offsets_;

 // Symbol type (bits 0 to 3).
 elfcpp::STT type_ : 4;
 // Symbol binding (bits 4 to 7).
 elfcpp::STB binding_ : 4;
 // Symbol visibility (bits 8 to 9).
 elfcpp::STV visibility_ : 2;
 // Rest of symbol st_other field (bits 10 to 15).
 unsigned int nonvis_ : 6;
 // The type of symbol (bits 16 to 18).
 Source source_ : 3;
 // True if this is the default version of the symbol (bit 19).
 bool is_def_ : 1;
 // True if this symbol really forwards to another symbol.  This is
 // used when we discover after the fact that two different entries
 // in the hash table really refer to the same symbol.  This will
 // never be set for a symbol found in the hash table, but may be set
 // for a symbol found in the list of symbols attached to an Object.
 // It forwards to the symbol found in the forwarders_ map of
 // Symbol_table (bit 20).
 bool is_forwarder_ : 1;
 // True if the symbol has an alias in the weak_aliases table in
 // Symbol_table (bit 21).
 bool has_alias_ : 1;
 // True if this symbol needs to be in the dynamic symbol table (bit
 // 22).
 bool needs_dynsym_entry_ : 1;
 // True if we've seen this symbol in a regular object (bit 23).
 bool in_reg_ : 1;
 // True if we've seen this symbol in a dynamic object (bit 24).
 bool in_dyn_ : 1;
 // True if this is a dynamic symbol which needs a special value in
 // the dynamic symbol table (bit 25).
 bool needs_dynsym_value_ : 1;
 // True if there is a warning for this symbol (bit 26).
 bool has_warning_ : 1;
 // True if we are using a COPY reloc for this symbol, so that the
 // real definition lives in a dynamic object (bit 27).
 bool is_copied_from_dynobj_ : 1;
 // True if this symbol was forced to local visibility by a version
 // script (bit 28).
 bool is_forced_local_ : 1;
 // True if the field u2_.shndx is an ordinary section
 // index, not one of the special codes from SHN_LORESERVE to
 // SHN_HIRESERVE (bit 29).
 bool is_ordinary_shndx_ : 1;
 // True if we've seen this symbol in a "real" ELF object (bit 30).
 // If the symbol has been seen in a relocatable, non-IR, object file,
 // it's known to be referenced from outside the IR.  A reference from
 // a dynamic object doesn't count as a "real" ELF, and we'll simply
 // mark the symbol as "visible" from outside the IR.  The compiler
 // can use this distinction to guide its handling of COMDAT symbols.
 bool in_real_elf_ : 1;
 // True if this symbol is defined in a section which was discarded
 // (bit 31).
 bool is_defined_in_discarded_section_ : 1;
 // True if UNDEF_BINDING_WEAK_ has been set (bit 32).
 bool undef_binding_set_ : 1;
 // True if this symbol was a weak undef resolved by a dynamic def
 // or by a special symbol (bit 33).
 bool undef_binding_weak_ : 1;
 // True if this symbol is a predefined linker symbol (bit 34).
 bool is_predefined_ : 1;
 // True if this symbol has protected visibility in a shared object (bit 35).
 // The visibility_ field will be STV_DEFAULT in this case because we
 // must treat it as such from outside the shared object.
 bool is_protected_  : 1;
 // Used by PowerPC64 ELFv2 to track st_other localentry (bit 36).
 bool non_zero_localentry_ : 1;
};

// The parts of a symbol which are size specific.  Using a template
// derived class like this helps us use less space on a 32-bit system.

template<int size>
class Sized_symbol : public Symbol
{
public:
 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;

 Sized_symbol()
 { }

 // Initialize fields from an ELF symbol in OBJECT.  ST_SHNDX is the
 // section index, IS_ORDINARY is whether it is a normal section
 // index rather than a special code.
 template<bool big_endian>
 void
 init_object(const char* name, const char* version, Object* object,
             const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
             bool is_ordinary);

 // Initialize fields for an Output_data.
 void
 init_output_data(const char* name, const char* version, Output_data*,
                  Value_type value, Size_type symsize, elfcpp::STT,
                  elfcpp::STB, elfcpp::STV, unsigned char nonvis,
                  bool offset_is_from_end, bool is_predefined);

 // Initialize fields for an Output_segment.
 void
 init_output_segment(const char* name, const char* version, Output_segment*,
                     Value_type value, Size_type symsize, elfcpp::STT,
                     elfcpp::STB, elfcpp::STV, unsigned char nonvis,
                     Segment_offset_base offset_base, bool is_predefined);

 // Initialize fields for a constant.
 void
 init_constant(const char* name, const char* version, Value_type value,
               Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
               unsigned char nonvis, bool is_predefined);

 // Initialize fields for an undefined symbol.
 void
 init_undefined(const char* name, const char* version, Value_type value,
                elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis);

 // Override existing symbol.
 template<bool big_endian>
 void
 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
          bool is_ordinary, Object* object, const char* version);

 // Override existing symbol with a special symbol.
 void
 override_with_special(const Sized_symbol<size>*);

 // Return the symbol's value.
 Value_type
 value() const
 { return this->value_; }

 // Return the symbol's size (we can't call this 'size' because that
 // is a template parameter).
 Size_type
 symsize() const
 { return this->symsize_; }

 // Set the symbol size.  This is used when resolving common symbols.
 void
 set_symsize(Size_type symsize)
 { this->symsize_ = symsize; }

 // Set the symbol value.  This is called when we store the final
 // values of the symbols into the symbol table.
 void
 set_value(Value_type value)
 { this->value_ = value; }

 // Allocate a common symbol by giving it a location in the output
 // file.
 void
 allocate_common(Output_data*, Value_type value);

 // Completely override existing symbol.  Everything bar name_,
 // version_, and is_forced_local_ flag are copied.  version_ is
 // cleared if from->version_ is clear.  Returns true if this symbol
 // should be forced local.
 bool
 clone(const Sized_symbol<size>* from);

private:
 Sized_symbol(const Sized_symbol&);
 Sized_symbol& operator=(const Sized_symbol&);

 // Symbol value.  Before Layout::finalize this is the offset in the
 // input section.  This is set to the final value during
 // Layout::finalize.
 Value_type value_;
 // Symbol size.
 Size_type symsize_;
};

// A struct describing a symbol defined by the linker, where the value
// of the symbol is defined based on an output section.  This is used
// for symbols defined by the linker, like "_init_array_start".

struct Define_symbol_in_section
{
 // The symbol name.
 const char* name;
 // The name of the output section with which this symbol should be
 // associated.  If there is no output section with that name, the
 // symbol will be defined as zero.
 const char* output_section;
 // The offset of the symbol within the output section.  This is an
 // offset from the start of the output section, unless start_at_end
 // is true, in which case this is an offset from the end of the
 // output section.
 uint64_t value;
 // The size of the symbol.
 uint64_t size;
 // The symbol type.
 elfcpp::STT type;
 // The symbol binding.
 elfcpp::STB binding;
 // The symbol visibility.
 elfcpp::STV visibility;
 // The rest of the st_other field.
 unsigned char nonvis;
 // If true, the value field is an offset from the end of the output
 // section.
 bool offset_is_from_end;
 // If true, this symbol is defined only if we see a reference to it.
 bool only_if_ref;
};

// A struct describing a symbol defined by the linker, where the value
// of the symbol is defined based on a segment.  This is used for
// symbols defined by the linker, like "_end".  We describe the
// segment with which the symbol should be associated by its
// characteristics.  If no segment meets these characteristics, the
// symbol will be defined as zero.  If there is more than one segment
// which meets these characteristics, we will use the first one.

struct Define_symbol_in_segment
{
 // The symbol name.
 const char* name;
 // The segment type where the symbol should be defined, typically
 // PT_LOAD.
 elfcpp::PT segment_type;
 // Bitmask of segment flags which must be set.
 elfcpp::PF segment_flags_set;
 // Bitmask of segment flags which must be clear.
 elfcpp::PF segment_flags_clear;
 // The offset of the symbol within the segment.  The offset is
 // calculated from the position set by offset_base.
 uint64_t value;
 // The size of the symbol.
 uint64_t size;
 // The symbol type.
 elfcpp::STT type;
 // The symbol binding.
 elfcpp::STB binding;
 // The symbol visibility.
 elfcpp::STV visibility;
 // The rest of the st_other field.
 unsigned char nonvis;
 // The base from which we compute the offset.
 Symbol::Segment_offset_base offset_base;
 // If true, this symbol is defined only if we see a reference to it.
 bool only_if_ref;
};

// Specify an object/section/offset location.  Used by ODR code.

struct Symbol_location
{
 // Object where the symbol is defined.
 Object* object;
 // Section-in-object where the symbol is defined.
 unsigned int shndx;
 // For relocatable objects, offset-in-section where the symbol is defined.
 // For dynamic objects, address where the symbol is defined.
 off_t offset;
 bool operator==(const Symbol_location& that) const
 {
   return (this->object == that.object
           && this->shndx == that.shndx
           && this->offset == that.offset);
 }
};

// A map from symbol name (as a pointer into the namepool) to all
// the locations the symbols is (weakly) defined (and certain other
// conditions are met).  This map will be used later to detect
// possible One Definition Rule (ODR) violations.
struct Symbol_location_hash
{
 size_t operator()(const Symbol_location& loc) const
 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
};

// This class manages warnings.  Warnings are a GNU extension.  When
// we see a section named .gnu.warning.SYM in an object file, and if
// we wind using the definition of SYM from that object file, then we
// will issue a warning for any relocation against SYM from a
// different object file.  The text of the warning is the contents of
// the section.  This is not precisely the definition used by the old
// GNU linker; the old GNU linker treated an occurrence of
// .gnu.warning.SYM as defining a warning symbol.  A warning symbol
// would trigger a warning on any reference.  However, it was
// inconsistent in that a warning in a dynamic object only triggered
// if there was no definition in a regular object.  This linker is
// different in that we only issue a warning if we use the symbol
// definition from the same object file as the warning section.

class Warnings
{
public:
 Warnings()
   : warnings_()
 { }

 // Add a warning for symbol NAME in object OBJ.  WARNING is the text
 // of the warning.
 void
 add_warning(Symbol_table* symtab, const char* name, Object* obj,
             const std::string& warning);

 // For each symbol for which we should give a warning, make a note
 // on the symbol.
 void
 note_warnings(Symbol_table* symtab);

 // Issue a warning for a reference to SYM at RELINFO's location.
 template<int size, bool big_endian>
 void
 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
               size_t relnum, off_t reloffset) const;

private:
 Warnings(const Warnings&);
 Warnings& operator=(const Warnings&);

 // What we need to know to get the warning text.
 struct Warning_location
 {
   // The object the warning is in.
   Object* object;
   // The warning text.
   std::string text;

   Warning_location()
     : object(NULL), text()
   { }

   void
   set(Object* o, const std::string& t)
   {
     this->object = o;
     this->text = t;
   }
 };

 // A mapping from warning symbol names (canonicalized in
 // Symbol_table's namepool_ field) to warning information.
 typedef Unordered_map<const char*, Warning_location> Warning_table;

 Warning_table warnings_;
};

// The main linker symbol table.

class Symbol_table
{
public:
 // The different places where a symbol definition can come from.
 enum Defined
 {
   // Defined in an object file--the normal case.
   OBJECT,
   // Defined for a COPY reloc.
   COPY,
   // Defined on the command line using --defsym.
   DEFSYM,
   // Defined (so to speak) on the command line using -u.
   UNDEFINED,
   // Defined in a linker script.
   SCRIPT,
   // Predefined by the linker.
   PREDEFINED,
   // Defined by the linker during an incremental base link, but not
   // a predefined symbol (e.g., common, defined in script).
   INCREMENTAL_BASE,
 };

 // The order in which we sort common symbols.
 enum Sort_commons_order
 {
   SORT_COMMONS_BY_SIZE_DESCENDING,
   SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
   SORT_COMMONS_BY_ALIGNMENT_ASCENDING
 };

 // COUNT is an estimate of how many symbols will be inserted in the
 // symbol table.  It's ok to put 0 if you don't know; a correct
 // guess will just save some CPU by reducing hashtable resizes.
 Symbol_table(unsigned int count, const Version_script_info& version_script);

 ~Symbol_table();

 void
 set_icf(Icf* icf)
 { this->icf_ = icf;}

 Icf*
 icf() const
 { return this->icf_; }

 // Returns true if ICF determined that this is a duplicate section.
 bool
 is_section_folded(Relobj* obj, unsigned int shndx) const;

 void
 set_gc(Garbage_collection* gc)
 { this->gc_ = gc; }

 Garbage_collection*
 gc() const
 { return this->gc_; }

 // During garbage collection, this keeps undefined symbols.
 void
 gc_mark_undef_symbols(Layout*);

 // This tells garbage collection that this symbol is referenced.
 void
 gc_mark_symbol(Symbol* sym);

 // During garbage collection, this keeps sections that correspond to
 // symbols seen in dynamic objects.
 inline void
 gc_mark_dyn_syms(Symbol* sym);

 // Add COUNT external symbols from the relocatable object RELOBJ to
 // the symbol table.  SYMS is the symbols, SYMNDX_OFFSET is the
 // offset in the symbol table of the first symbol, SYM_NAMES is
 // their names, SYM_NAME_SIZE is the size of SYM_NAMES.  This sets
 // SYMPOINTERS to point to the symbols in the symbol table.  It sets
 // *DEFINED to the number of defined symbols.
 template<int size, bool big_endian>
 void
 add_from_relobj(Sized_relobj_file<size, big_endian>* relobj,
                 const unsigned char* syms, size_t count,
                 size_t symndx_offset, const char* sym_names,
                 size_t sym_name_size,
                 typename Sized_relobj_file<size, big_endian>::Symbols*,
                 size_t* defined);

 // Add one external symbol from the plugin object OBJ to the symbol table.
 // Returns a pointer to the resolved symbol in the symbol table.
 template<int size, bool big_endian>
 Symbol*
 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
                    const char* name, const char* ver,
                    elfcpp::Sym<size, big_endian>* sym);

 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
 // symbol table.  SYMS is the symbols.  SYM_NAMES is their names.
 // SYM_NAME_SIZE is the size of SYM_NAMES.  The other parameters are
 // symbol version data.
 template<int size, bool big_endian>
 void
 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
                 const unsigned char* syms, size_t count,
                 const char* sym_names, size_t sym_name_size,
                 const unsigned char* versym, size_t versym_size,
                 const std::vector<const char*>*,
                 typename Sized_relobj_file<size, big_endian>::Symbols*,
                 size_t* defined);

 // Add one external symbol from the incremental object OBJ to the symbol
 // table.  Returns a pointer to the resolved symbol in the symbol table.
 template<int size, bool big_endian>
 Sized_symbol<size>*
 add_from_incrobj(Object* obj, const char* name,
                  const char* ver, elfcpp::Sym<size, big_endian>* sym);

 // Define a special symbol based on an Output_data.  It is a
 // multiple definition error if this symbol is already defined.
 Symbol*
 define_in_output_data(const char* name, const char* version, Defined,
                       Output_data*, uint64_t value, uint64_t symsize,
                       elfcpp::STT type, elfcpp::STB binding,
                       elfcpp::STV visibility, unsigned char nonvis,
                       bool offset_is_from_end, bool only_if_ref);

 // Define a special symbol based on an Output_segment.  It is a
 // multiple definition error if this symbol is already defined.
 Symbol*
 define_in_output_segment(const char* name, const char* version, Defined,
                          Output_segment*, uint64_t value, uint64_t symsize,
                          elfcpp::STT type, elfcpp::STB binding,
                          elfcpp::STV visibility, unsigned char nonvis,
                          Symbol::Segment_offset_base, bool only_if_ref);

 // Define a special symbol with a constant value.  It is a multiple
 // definition error if this symbol is already defined.
 Symbol*
 define_as_constant(const char* name, const char* version, Defined,
                    uint64_t value, uint64_t symsize, elfcpp::STT type,
                    elfcpp::STB binding, elfcpp::STV visibility,
                    unsigned char nonvis, bool only_if_ref,
                    bool force_override);

 // Define a set of symbols in output sections.  If ONLY_IF_REF is
 // true, only define them if they are referenced.
 void
 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
                bool only_if_ref);

 // Define a set of symbols in output segments.  If ONLY_IF_REF is
 // true, only defined them if they are referenced.
 void
 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
                bool only_if_ref);

 // Add a target-specific global symbol.
 // (Used by SPARC backend to add STT_SPARC_REGISTER symbols.)
 void
 add_target_global_symbol(Symbol* sym)
 { this->target_symbols_.push_back(sym); }

 // Define SYM using a COPY reloc.  POSD is the Output_data where the
 // symbol should be defined--typically a .dyn.bss section.  VALUE is
 // the offset within POSD.
 template<int size>
 void
 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
                        typename elfcpp::Elf_types<size>::Elf_Addr);

 // Look up a symbol.
 Symbol*
 lookup(const char*, const char* version = NULL) const;

 // Return the real symbol associated with the forwarder symbol FROM.
 Symbol*
 resolve_forwards(const Symbol* from) const;

 // Return the sized version of a symbol in this table.
 template<int size>
 Sized_symbol<size>*
 get_sized_symbol(Symbol*) const;

 template<int size>
 const Sized_symbol<size>*
 get_sized_symbol(const Symbol*) const;

 // Return the count of undefined symbols seen.
 size_t
 saw_undefined() const
 { return this->saw_undefined_; }

 void
 set_has_gnu_output()
 { this->has_gnu_output_ = true; }

 // Allocate the common symbols
 void
 allocate_commons(Layout*, Mapfile*);

 // Add a warning for symbol NAME in object OBJ.  WARNING is the text
 // of the warning.
 void
 add_warning(const char* name, Object* obj, const std::string& warning)
 { this->warnings_.add_warning(this, name, obj, warning); }

 // Canonicalize a symbol name for use in the hash table.
 const char*
 canonicalize_name(const char* name)
 { return this->namepool_.add(name, true, NULL); }

 // Possibly issue a warning for a reference to SYM at LOCATION which
 // is in OBJ.
 template<int size, bool big_endian>
 void
 issue_warning(const Symbol* sym,
               const Relocate_info<size, big_endian>* relinfo,
               size_t relnum, off_t reloffset) const
 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }

 // Check candidate_odr_violations_ to find symbols with the same name
 // but apparently different definitions (different source-file/line-no).
 void
 detect_odr_violations(const Task*, const char* output_file_name) const;

 // Add any undefined symbols named on the command line to the symbol
 // table.
 void
 add_undefined_symbols_from_command_line(Layout*);

 // SYM is defined using a COPY reloc.  Return the dynamic object
 // where the original definition was found.
 Dynobj*
 get_copy_source(const Symbol* sym) const;

 // Set the dynamic symbol indexes.  INDEX is the index of the first
 // global dynamic symbol.  Return the count of forced-local symbols in
 // *PFORCED_LOCAL_COUNT.  Pointers to the symbols are stored into
 // the vector.  The names are stored into the Stringpool.  This
 // returns an updated dynamic symbol index.
 unsigned int
 set_dynsym_indexes(unsigned int index, unsigned int* pforced_local_count,
                    std::vector<Symbol*>*, Stringpool*, Versions*);

 // Finalize the symbol table after we have set the final addresses
 // of all the input sections.  This sets the final symbol indexes,
 // values and adds the names to *POOL.  *PLOCAL_SYMCOUNT is the
 // index of the first global symbol.  OFF is the file offset of the
 // global symbol table, DYNOFF is the offset of the globals in the
 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
 // global dynamic symbol, and DYNCOUNT is the number of global
 // dynamic symbols.  This records the parameters, and returns the
 // new file offset.  It updates *PLOCAL_SYMCOUNT if it created any
 // local symbols.
 off_t
 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
          Stringpool* pool, unsigned int* plocal_symcount);

 // Set the final file offset of the symbol table.
 void
 set_file_offset(off_t off)
 { this->offset_ = off; }

 // Status code of Symbol_table::compute_final_value.
 enum Compute_final_value_status
 {
   // No error.
   CFVS_OK,
   // Unsupported symbol section.
   CFVS_UNSUPPORTED_SYMBOL_SECTION,
   // No output section.
   CFVS_NO_OUTPUT_SECTION
 };

 // Compute the final value of SYM and store status in location PSTATUS.
 // During relaxation, this may be called multiple times for a symbol to
 // compute its would-be final value in each relaxation pass.

 template<int size>
 typename Sized_symbol<size>::Value_type
 compute_final_value(const Sized_symbol<size>* sym,
                     Compute_final_value_status* pstatus) const;

 // Return the index of the first global symbol.
 unsigned int
 first_global_index() const
 { return this->first_global_index_; }

 // Return the total number of symbols in the symbol table.
 unsigned int
 output_count() const
 { return this->output_count_; }

 // Write out the global symbols.
 void
 write_globals(const Stringpool*, const Stringpool*,
               Output_symtab_xindex*, Output_symtab_xindex*,
               Output_file*) const;

 // Write out a section symbol.  Return the updated offset.
 void
 write_section_symbol(const Output_section*, Output_symtab_xindex*,
                      Output_file*, off_t) const;

 // Loop over all symbols, applying the function F to each.
 template<int size, typename F>
 void
 for_all_symbols(F f) const
 {
   for (Symbol_table_type::const_iterator p = this->table_.begin();
        p != this->table_.end();
        ++p)
     {
       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
       f(sym);
     }
 }

 // Dump statistical information to stderr.
 void
 print_stats() const;

 // Return the version script information.
 const Version_script_info&
 version_script() const
 { return version_script_; }

 // Completely override existing symbol.
 template<int size>
 void
 clone(Sized_symbol<size>* to, const Sized_symbol<size>* from)
 {
   if (to->clone(from))
     this->force_local(to);
 }

private:
 Symbol_table(const Symbol_table&);
 Symbol_table& operator=(const Symbol_table&);

 // The type of the list of common symbols.
 typedef std::vector<Symbol*> Commons_type;

 // The type of the symbol hash table.

 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;

 // The hash function.  The key values are Stringpool keys.
 struct Symbol_table_hash
 {
   inline size_t
   operator()(const Symbol_table_key& key) const
   {
     return key.first ^ key.second;
   }
 };

 struct Symbol_table_eq
 {
   bool
   operator()(const Symbol_table_key&, const Symbol_table_key&) const;
 };

 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
                       Symbol_table_eq> Symbol_table_type;

 typedef Unordered_map<const char*,
                       Unordered_set<Symbol_location, Symbol_location_hash> >
 Odr_map;

 // Make FROM a forwarder symbol to TO.
 void
 make_forwarder(Symbol* from, Symbol* to);

 // Add a symbol.
 template<int size, bool big_endian>
 Sized_symbol<size>*
 add_from_object(Object*, const char* name, Stringpool::Key name_key,
                 const char* version, Stringpool::Key version_key,
                 bool def, const elfcpp::Sym<size, big_endian>& sym,
                 unsigned int st_shndx, bool is_ordinary,
                 unsigned int orig_st_shndx);

 // Define a default symbol.
 template<int size, bool big_endian>
 void
 define_default_version(Sized_symbol<size>*, bool,
                        Symbol_table_type::iterator);

 // Resolve symbols.
 template<int size, bool big_endian>
 void
 resolve(Sized_symbol<size>* to,
         const elfcpp::Sym<size, big_endian>& sym,
         unsigned int st_shndx, bool is_ordinary,
         unsigned int orig_st_shndx,
         Object*, const char* version,
         bool is_default_version);

 template<int size, bool big_endian>
 void
 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);

 // Record that a symbol is forced to be local by a version script or
 // by visibility.
 void
 force_local(Symbol*);

 // Adjust NAME and *NAME_KEY for wrapping.
 const char*
 wrap_symbol(const char* name, Stringpool::Key* name_key);

 // Whether we should override a symbol, based on flags in
 // resolve.cc.
 static bool
 should_override(const Symbol*, unsigned int, elfcpp::STT, Defined,
                 Object*, bool*, bool*, bool);

 // Report a problem in symbol resolution.
 static void
 report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
                        Defined, Object* object);

 // Override a symbol.
 template<int size, bool big_endian>
 void
 override(Sized_symbol<size>* tosym,
          const elfcpp::Sym<size, big_endian>& fromsym,
          unsigned int st_shndx, bool is_ordinary,
          Object* object, const char* version);

 // Whether we should override a symbol with a special symbol which
 // is automatically defined by the linker.
 static bool
 should_override_with_special(const Symbol*, elfcpp::STT, Defined);

 // Override a symbol with a special symbol.
 template<int size>
 void
 override_with_special(Sized_symbol<size>* tosym,
                       const Sized_symbol<size>* fromsym);

 // Record all weak alias sets for a dynamic object.
 template<int size>
 void
 record_weak_aliases(std::vector<Sized_symbol<size>*>*);

 // Define a special symbol.
 template<int size, bool big_endian>
 Sized_symbol<size>*
 define_special_symbol(const char** pname, const char** pversion,
                       bool only_if_ref, elfcpp::STV visibility,
                       Sized_symbol<size>** poldsym,
                       bool* resolve_oldsym, bool is_forced_local);

 // Define a symbol in an Output_data, sized version.
 template<int size>
 Sized_symbol<size>*
 do_define_in_output_data(const char* name, const char* version, Defined,
                          Output_data*,
                          typename elfcpp::Elf_types<size>::Elf_Addr value,
                          typename elfcpp::Elf_types<size>::Elf_WXword ssize,
                          elfcpp::STT type, elfcpp::STB binding,
                          elfcpp::STV visibility, unsigned char nonvis,
                          bool offset_is_from_end, bool only_if_ref);

 // Define a symbol in an Output_segment, sized version.
 template<int size>
 Sized_symbol<size>*
 do_define_in_output_segment(
   const char* name, const char* version, Defined, Output_segment* os,
   typename elfcpp::Elf_types<size>::Elf_Addr value,
   typename elfcpp::Elf_types<size>::Elf_WXword ssize,
   elfcpp::STT type, elfcpp::STB binding,
   elfcpp::STV visibility, unsigned char nonvis,
   Symbol::Segment_offset_base offset_base, bool only_if_ref);

 // Define a symbol as a constant, sized version.
 template<int size>
 Sized_symbol<size>*
 do_define_as_constant(
   const char* name, const char* version, Defined,
   typename elfcpp::Elf_types<size>::Elf_Addr value,
   typename elfcpp::Elf_types<size>::Elf_WXword ssize,
   elfcpp::STT type, elfcpp::STB binding,
   elfcpp::STV visibility, unsigned char nonvis,
   bool only_if_ref, bool force_override);

 // Add any undefined symbols named on the command line to the symbol
 // table, sized version.
 template<int size>
 void
 do_add_undefined_symbols_from_command_line(Layout*);

 // Add one undefined symbol.
 template<int size>
 void
 add_undefined_symbol_from_command_line(const char* name);

 // Types of common symbols.

 enum Commons_section_type
 {
   COMMONS_NORMAL,
   COMMONS_TLS,
   COMMONS_SMALL,
   COMMONS_LARGE
 };

 // Allocate the common symbols, sized version.
 template<int size>
 void
 do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);

 // Allocate the common symbols from one list.
 template<int size>
 void
 do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
                          Mapfile*, Sort_commons_order);

 // Returns all of the lines attached to LOC, not just the one the
 // instruction actually came from.  This helps the ODR checker avoid
 // false positives.
 static std::vector<std::string>
 linenos_from_loc(const Task* task, const Symbol_location& loc);

 // Implement detect_odr_violations.
 template<int size, bool big_endian>
 void
 sized_detect_odr_violations() const;

 // Finalize symbols specialized for size.
 template<int size>
 off_t
 sized_finalize(off_t, Stringpool*, unsigned int*);

 // Finalize a symbol.  Return whether it should be added to the
 // symbol table.
 template<int size>
 bool
 sized_finalize_symbol(Symbol*);

 // Add a symbol the final symtab by setting its index.
 template<int size>
 void
 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);

 // Write globals specialized for size and endianness.
 template<int size, bool big_endian>
 void
 sized_write_globals(const Stringpool*, const Stringpool*,
                     Output_symtab_xindex*, Output_symtab_xindex*,
                     Output_file*) const;

 // Write out a symbol to P.
 template<int size, bool big_endian>
 void
 sized_write_symbol(Sized_symbol<size>*,
                    typename elfcpp::Elf_types<size>::Elf_Addr value,
                    unsigned int shndx, elfcpp::STB,
                    const Stringpool*, unsigned char* p) const;

 // Possibly warn about an undefined symbol from a dynamic object.
 void
 warn_about_undefined_dynobj_symbol(Symbol*) const;

 // Write out a section symbol, specialized for size and endianness.
 template<int size, bool big_endian>
 void
 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
                            Output_file*, off_t) const;

 // The type of the list of symbols which have been forced local.
 typedef std::vector<Symbol*> Forced_locals;

 // A map from symbols with COPY relocs to the dynamic objects where
 // they are defined.
 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;

 // We increment this every time we see a new undefined symbol, for
 // use in archive groups.
 size_t saw_undefined_;
 // The index of the first global symbol in the output file.
 unsigned int first_global_index_;
 // The file offset within the output symtab section where we should
 // write the table.
 off_t offset_;
 // The number of global symbols we want to write out.
 unsigned int output_count_;
 // The file offset of the global dynamic symbols, or 0 if none.
 off_t dynamic_offset_;
 // The index of the first global dynamic symbol (including
 // forced-local symbols).
 unsigned int first_dynamic_global_index_;
 // The number of global dynamic symbols (including forced-local symbols),
 // or 0 if none.
 unsigned int dynamic_count_;
 // Set if a STT_GNU_IFUNC or STB_GNU_UNIQUE symbol will be output.
 bool has_gnu_output_;
 // The symbol hash table.
 Symbol_table_type table_;
 // A pool of symbol names.  This is used for all global symbols.
 // Entries in the hash table point into this pool.
 Stringpool namepool_;
 // Forwarding symbols.
 Unordered_map<const Symbol*, Symbol*> forwarders_;
 // Weak aliases.  A symbol in this list points to the next alias.
 // The aliases point to each other in a circular list.
 Unordered_map<Symbol*, Symbol*> weak_aliases_;
 // We don't expect there to be very many common symbols, so we keep
 // a list of them.  When we find a common symbol we add it to this
 // list.  It is possible that by the time we process the list the
 // symbol is no longer a common symbol.  It may also have become a
 // forwarder.
 Commons_type commons_;
 // This is like the commons_ field, except that it holds TLS common
 // symbols.
 Commons_type tls_commons_;
 // This is for small common symbols.
 Commons_type small_commons_;
 // This is for large common symbols.
 Commons_type large_commons_;
 // A list of symbols which have been forced to be local.  We don't
 // expect there to be very many of them, so we keep a list of them
 // rather than walking the whole table to find them.
 Forced_locals forced_locals_;
 // Manage symbol warnings.
 Warnings warnings_;
 // Manage potential One Definition Rule (ODR) violations.
 Odr_map candidate_odr_violations_;

 // When we emit a COPY reloc for a symbol, we define it in an
 // Output_data.  When it's time to emit version information for it,
 // we need to know the dynamic object in which we found the original
 // definition.  This maps symbols with COPY relocs to the dynamic
 // object where they were defined.
 Copied_symbol_dynobjs copied_symbol_dynobjs_;
 // Information parsed from the version script, if any.
 const Version_script_info& version_script_;
 Garbage_collection* gc_;
 Icf* icf_;
 // Target-specific symbols, if any.
 std::vector<Symbol*> target_symbols_;
};

// We inline get_sized_symbol for efficiency.

template<int size>
Sized_symbol<size>*
Symbol_table::get_sized_symbol(Symbol* sym) const
{
 gold_assert(size == parameters->target().get_size());
 return static_cast<Sized_symbol<size>*>(sym);
}

template<int size>
const Sized_symbol<size>*
Symbol_table::get_sized_symbol(const Symbol* sym) const
{
 gold_assert(size == parameters->target().get_size());
 return static_cast<const Sized_symbol<size>*>(sym);
}

} // End namespace gold.

#endif // !defined(GOLD_SYMTAB_H)