// symtab.cc -- the gold symbol table

// Copyright (C) 2006-2024 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <[email protected]>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#include "gold.h"

#include <cstring>
#include <stdint.h>
#include <algorithm>
#include <set>
#include <string>
#include <utility>
#include "demangle.h"

#include "gc.h"
#include "object.h"
#include "dwarf_reader.h"
#include "dynobj.h"
#include "output.h"
#include "target.h"
#include "workqueue.h"
#include "symtab.h"
#include "script.h"
#include "plugin.h"
#include "incremental.h"

namespace gold
{

// Class Symbol.

// Initialize fields in Symbol.  This initializes everything except
// u1_, u2_ and source_.

void
Symbol::init_fields(const char* name, const char* version,
                   elfcpp::STT type, elfcpp::STB binding,
                   elfcpp::STV visibility, unsigned char nonvis)
{
 this->name_ = name;
 this->version_ = version;
 this->symtab_index_ = 0;
 this->dynsym_index_ = 0;
 this->got_offsets_.init();
 this->plt_offset_ = -1U;
 this->type_ = type;
 this->binding_ = binding;
 this->visibility_ = visibility;
 this->nonvis_ = nonvis;
 this->is_def_ = false;
 this->is_forwarder_ = false;
 this->has_alias_ = false;
 this->needs_dynsym_entry_ = false;
 this->in_reg_ = false;
 this->in_dyn_ = false;
 this->has_warning_ = false;
 this->is_copied_from_dynobj_ = false;
 this->is_forced_local_ = false;
 this->is_ordinary_shndx_ = false;
 this->in_real_elf_ = false;
 this->is_defined_in_discarded_section_ = false;
 this->undef_binding_set_ = false;
 this->undef_binding_weak_ = false;
 this->is_predefined_ = false;
 this->is_protected_ = false;
 this->non_zero_localentry_ = false;
}

// Return the demangled version of the symbol's name, but only
// if the --demangle flag was set.

static std::string
demangle(const char* name)
{
 if (!parameters->options().do_demangle())
   return name;

 // cplus_demangle allocates memory for the result it returns,
 // and returns NULL if the name is already demangled.
 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
 if (demangled_name == NULL)
   return name;

 std::string retval(demangled_name);
 free(demangled_name);
 return retval;
}

std::string
Symbol::demangled_name() const
{
 return demangle(this->name());
}

// Initialize the fields in the base class Symbol for SYM in OBJECT.

template<int size, bool big_endian>
void
Symbol::init_base_object(const char* name, const char* version, Object* object,
                        const elfcpp::Sym<size, big_endian>& sym,
                        unsigned int st_shndx, bool is_ordinary)
{
 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
                   sym.get_st_visibility(), sym.get_st_nonvis());
 this->u1_.object = object;
 this->u2_.shndx = st_shndx;
 this->is_ordinary_shndx_ = is_ordinary;
 this->source_ = FROM_OBJECT;
 this->in_reg_ = !object->is_dynamic();
 this->in_dyn_ = object->is_dynamic();
 this->in_real_elf_ = object->pluginobj() == NULL;
}

// Initialize the fields in the base class Symbol for a symbol defined
// in an Output_data.

void
Symbol::init_base_output_data(const char* name, const char* version,
                             Output_data* od, elfcpp::STT type,
                             elfcpp::STB binding, elfcpp::STV visibility,
                             unsigned char nonvis, bool offset_is_from_end,
                             bool is_predefined)
{
 this->init_fields(name, version, type, binding, visibility, nonvis);
 this->u1_.output_data = od;
 this->u2_.offset_is_from_end = offset_is_from_end;
 this->source_ = IN_OUTPUT_DATA;
 this->in_reg_ = true;
 this->in_real_elf_ = true;
 this->is_predefined_ = is_predefined;
}

// Initialize the fields in the base class Symbol for a symbol defined
// in an Output_segment.

void
Symbol::init_base_output_segment(const char* name, const char* version,
                                Output_segment* os, elfcpp::STT type,
                                elfcpp::STB binding, elfcpp::STV visibility,
                                unsigned char nonvis,
                                Segment_offset_base offset_base,
                                bool is_predefined)
{
 this->init_fields(name, version, type, binding, visibility, nonvis);
 this->u1_.output_segment = os;
 this->u2_.offset_base = offset_base;
 this->source_ = IN_OUTPUT_SEGMENT;
 this->in_reg_ = true;
 this->in_real_elf_ = true;
 this->is_predefined_ = is_predefined;
}

// Initialize the fields in the base class Symbol for a symbol defined
// as a constant.

void
Symbol::init_base_constant(const char* name, const char* version,
                          elfcpp::STT type, elfcpp::STB binding,
                          elfcpp::STV visibility, unsigned char nonvis,
                          bool is_predefined)
{
 this->init_fields(name, version, type, binding, visibility, nonvis);
 this->source_ = IS_CONSTANT;
 this->in_reg_ = true;
 this->in_real_elf_ = true;
 this->is_predefined_ = is_predefined;
}

// Initialize the fields in the base class Symbol for an undefined
// symbol.

void
Symbol::init_base_undefined(const char* name, const char* version,
                           elfcpp::STT type, elfcpp::STB binding,
                           elfcpp::STV visibility, unsigned char nonvis)
{
 this->init_fields(name, version, type, binding, visibility, nonvis);
 this->dynsym_index_ = -1U;
 this->source_ = IS_UNDEFINED;
 this->in_reg_ = true;
 this->in_real_elf_ = true;
}

// Allocate a common symbol in the base.

void
Symbol::allocate_base_common(Output_data* od)
{
 gold_assert(this->is_common());
 this->source_ = IN_OUTPUT_DATA;
 this->u1_.output_data = od;
 this->u2_.offset_is_from_end = false;
}

// Initialize the fields in Sized_symbol for SYM in OBJECT.

template<int size>
template<bool big_endian>
void
Sized_symbol<size>::init_object(const char* name, const char* version,
                               Object* object,
                               const elfcpp::Sym<size, big_endian>& sym,
                               unsigned int st_shndx, bool is_ordinary)
{
 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
 this->value_ = sym.get_st_value();
 this->symsize_ = sym.get_st_size();
}

// Initialize the fields in Sized_symbol for a symbol defined in an
// Output_data.

template<int size>
void
Sized_symbol<size>::init_output_data(const char* name, const char* version,
                                    Output_data* od, Value_type value,
                                    Size_type symsize, elfcpp::STT type,
                                    elfcpp::STB binding,
                                    elfcpp::STV visibility,
                                    unsigned char nonvis,
                                    bool offset_is_from_end,
                                    bool is_predefined)
{
 this->init_base_output_data(name, version, od, type, binding, visibility,
                             nonvis, offset_is_from_end, is_predefined);
 this->value_ = value;
 this->symsize_ = symsize;
}

// Initialize the fields in Sized_symbol for a symbol defined in an
// Output_segment.

template<int size>
void
Sized_symbol<size>::init_output_segment(const char* name, const char* version,
                                       Output_segment* os, Value_type value,
                                       Size_type symsize, elfcpp::STT type,
                                       elfcpp::STB binding,
                                       elfcpp::STV visibility,
                                       unsigned char nonvis,
                                       Segment_offset_base offset_base,
                                       bool is_predefined)
{
 this->init_base_output_segment(name, version, os, type, binding, visibility,
                                nonvis, offset_base, is_predefined);
 this->value_ = value;
 this->symsize_ = symsize;
}

// Initialize the fields in Sized_symbol for a symbol defined as a
// constant.

template<int size>
void
Sized_symbol<size>::init_constant(const char* name, const char* version,
                                 Value_type value, Size_type symsize,
                                 elfcpp::STT type, elfcpp::STB binding,
                                 elfcpp::STV visibility, unsigned char nonvis,
                                 bool is_predefined)
{
 this->init_base_constant(name, version, type, binding, visibility, nonvis,
                          is_predefined);
 this->value_ = value;
 this->symsize_ = symsize;
}

// Initialize the fields in Sized_symbol for an undefined symbol.

template<int size>
void
Sized_symbol<size>::init_undefined(const char* name, const char* version,
                                  Value_type value, elfcpp::STT type,
                                  elfcpp::STB binding, elfcpp::STV visibility,
                                  unsigned char nonvis)
{
 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
 this->value_ = value;
 this->symsize_ = 0;
}

// Return an allocated string holding the symbol's name as
// name@version.  This is used for relocatable links.

std::string
Symbol::versioned_name() const
{
 gold_assert(this->version_ != NULL);
 std::string ret = this->name_;
 ret.push_back('@');
 if (this->is_def_)
   ret.push_back('@');
 ret += this->version_;
 return ret;
}

// Return true if SHNDX represents a common symbol.

bool
Symbol::is_common_shndx(unsigned int shndx)
{
 return (shndx == elfcpp::SHN_COMMON
         || shndx == parameters->target().small_common_shndx()
         || shndx == parameters->target().large_common_shndx());
}

// Allocate a common symbol.

template<int size>
void
Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
{
 this->allocate_base_common(od);
 this->value_ = value;
}

// The ""'s around str ensure str is a string literal, so sizeof works.
#define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)

// Return true if this symbol should be added to the dynamic symbol
// table.

bool
Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
{
 // If the symbol is only present on plugin files, the plugin decided we
 // don't need it.
 if (!this->in_real_elf())
   return false;

 // If the symbol is used by a dynamic relocation, we need to add it.
 if (this->needs_dynsym_entry())
   return true;

 // If this symbol's section is not added, the symbol need not be added.
 // The section may have been GCed.  Note that export_dynamic is being
 // overridden here.  This should not be done for shared objects.
 if (parameters->options().gc_sections()
     && !parameters->options().shared()
     && this->source() == Symbol::FROM_OBJECT
     && !this->object()->is_dynamic())
   {
     Relobj* relobj = static_cast<Relobj*>(this->object());
     bool is_ordinary;
     unsigned int shndx = this->shndx(&is_ordinary);
     if (is_ordinary && shndx != elfcpp::SHN_UNDEF
         && !relobj->is_section_included(shndx)
         && !symtab->is_section_folded(relobj, shndx))
       return false;
   }

 // If the symbol was forced dynamic in a --dynamic-list file
 // or an --export-dynamic-symbol option, add it.
 if (!this->is_from_dynobj()
     && (parameters->options().in_dynamic_list(this->name())
         || parameters->options().is_export_dynamic_symbol(this->name())))
   {
     if (!this->is_forced_local())
       return true;
     gold_warning(_("Cannot export local symbol '%s'"),
                  this->demangled_name().c_str());
     return false;
   }

 // If the symbol was forced local in a version script, do not add it.
 if (this->is_forced_local())
   return false;

 // If dynamic-list-data was specified, add any STT_OBJECT.
 if (parameters->options().dynamic_list_data()
     && !this->is_from_dynobj()
     && this->type() == elfcpp::STT_OBJECT)
   return true;

 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
 if ((parameters->options().dynamic_list_cpp_new()
      || parameters->options().dynamic_list_cpp_typeinfo())
     && !this->is_from_dynobj())
   {
     // TODO(csilvers): We could probably figure out if we're an operator
     //                 new/delete or typeinfo without the need to demangle.
     char* demangled_name = cplus_demangle(this->name(),
                                           DMGL_ANSI | DMGL_PARAMS);
     if (demangled_name == NULL)
       {
         // Not a C++ symbol, so it can't satisfy these flags
       }
     else if (parameters->options().dynamic_list_cpp_new()
              && (strprefix(demangled_name, "operator new")
                  || strprefix(demangled_name, "operator delete")))
       {
         free(demangled_name);
         return true;
       }
     else if (parameters->options().dynamic_list_cpp_typeinfo()
              && (strprefix(demangled_name, "typeinfo name for")
                  || strprefix(demangled_name, "typeinfo for")))
       {
         free(demangled_name);
         return true;
       }
     else
       free(demangled_name);
   }

 // If exporting all symbols or building a shared library,
 // or the symbol should be globally unique (GNU_UNIQUE),
 // and the symbol is defined in a regular object and is
 // externally visible, we need to add it.
 if ((parameters->options().export_dynamic()
      || parameters->options().shared()
      || (parameters->options().gnu_unique()
          && this->binding() == elfcpp::STB_GNU_UNIQUE))
     && !this->is_from_dynobj()
     && !this->is_undefined()
     && this->is_externally_visible())
   return true;

 return false;
}

// Return true if the final value of this symbol is known at link
// time.

bool
Symbol::final_value_is_known() const
{
 // If we are not generating an executable, then no final values are
 // known, since they will change at runtime, with the exception of
 // TLS symbols in a position-independent executable.
 if ((parameters->options().output_is_position_independent()
      || parameters->options().relocatable())
     && !(this->type() == elfcpp::STT_TLS
          && parameters->options().pie()))
   return false;

 // If the symbol is not from an object file, and is not undefined,
 // then it is defined, and known.
 if (this->source_ != FROM_OBJECT)
   {
     if (this->source_ != IS_UNDEFINED)
       return true;
   }
 else
   {
     // If the symbol is from a dynamic object, then the final value
     // is not known.
     if (this->object()->is_dynamic())
       return false;

     // If the symbol is not undefined (it is defined or common),
     // then the final value is known.
     if (!this->is_undefined())
       return true;
   }

 // If the symbol is undefined, then whether the final value is known
 // depends on whether we are doing a static link.  If we are doing a
 // dynamic link, then the final value could be filled in at runtime.
 // This could reasonably be the case for a weak undefined symbol.
 return parameters->doing_static_link();
}

// Return the output section where this symbol is defined.

Output_section*
Symbol::output_section() const
{
 switch (this->source_)
   {
   case FROM_OBJECT:
     {
       unsigned int shndx = this->u2_.shndx;
       if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
         {
           gold_assert(!this->u1_.object->is_dynamic());
           gold_assert(this->u1_.object->pluginobj() == NULL);
           Relobj* relobj = static_cast<Relobj*>(this->u1_.object);
           return relobj->output_section(shndx);
         }
       return NULL;
     }

   case IN_OUTPUT_DATA:
     return this->u1_.output_data->output_section();

   case IN_OUTPUT_SEGMENT:
   case IS_CONSTANT:
   case IS_UNDEFINED:
     return NULL;

   default:
     gold_unreachable();
   }
}

// Set the symbol's output section.  This is used for symbols defined
// in scripts.  This should only be called after the symbol table has
// been finalized.

void
Symbol::set_output_section(Output_section* os)
{
 switch (this->source_)
   {
   case FROM_OBJECT:
   case IN_OUTPUT_DATA:
     gold_assert(this->output_section() == os);
     break;
   case IS_CONSTANT:
     this->source_ = IN_OUTPUT_DATA;
     this->u1_.output_data = os;
     this->u2_.offset_is_from_end = false;
     break;
   case IN_OUTPUT_SEGMENT:
   case IS_UNDEFINED:
   default:
     gold_unreachable();
   }
}

// Set the symbol's output segment.  This is used for pre-defined
// symbols whose segments aren't known until after layout is done
// (e.g., __ehdr_start).

void
Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
{
 gold_assert(this->is_predefined_);
 this->source_ = IN_OUTPUT_SEGMENT;
 this->u1_.output_segment = os;
 this->u2_.offset_base = base;
}

// Set the symbol to undefined.  This is used for pre-defined
// symbols whose segments aren't known until after layout is done
// (e.g., __ehdr_start).

void
Symbol::set_undefined()
{
 this->source_ = IS_UNDEFINED;
 this->is_predefined_ = false;
}

// Class Symbol_table.

Symbol_table::Symbol_table(unsigned int count,
                          const Version_script_info& version_script)
 : saw_undefined_(0), offset_(0), has_gnu_output_(false), table_(count),
   namepool_(), forwarders_(), commons_(), tls_commons_(), small_commons_(),
   large_commons_(), forced_locals_(), warnings_(),
   version_script_(version_script), gc_(NULL), icf_(NULL),
   target_symbols_()
{
 namepool_.reserve(count);
}

Symbol_table::~Symbol_table()
{
}

// The symbol table key equality function.  This is called with
// Stringpool keys.

inline bool
Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
                                         const Symbol_table_key& k2) const
{
 return k1.first == k2.first && k1.second == k2.second;
}

bool
Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
{
 return (parameters->options().icf_enabled()
         && this->icf_->is_section_folded(obj, shndx));
}

// For symbols that have been listed with a -u or --export-dynamic-symbol
// option, add them to the work list to avoid gc'ing them.

void
Symbol_table::gc_mark_undef_symbols(Layout* layout)
{
 for (options::String_set::const_iterator p =
        parameters->options().undefined_begin();
      p != parameters->options().undefined_end();
      ++p)
   {
     const char* name = p->c_str();
     Symbol* sym = this->lookup(name);
     gold_assert(sym != NULL);
     if (sym->source() == Symbol::FROM_OBJECT
         && !sym->object()->is_dynamic())
       {
         this->gc_mark_symbol(sym);
       }
   }

 for (options::String_set::const_iterator p =
        parameters->options().export_dynamic_symbol_begin();
      p != parameters->options().export_dynamic_symbol_end();
      ++p)
   {
     const char* name = p->c_str();
     Symbol* sym = this->lookup(name);
     // It's not an error if a symbol named by --export-dynamic-symbol
     // is undefined.
     if (sym != NULL
         && sym->source() == Symbol::FROM_OBJECT
         && !sym->object()->is_dynamic())
       {
         this->gc_mark_symbol(sym);
       }
   }

 for (Script_options::referenced_const_iterator p =
        layout->script_options()->referenced_begin();
      p != layout->script_options()->referenced_end();
      ++p)
   {
     Symbol* sym = this->lookup(p->c_str());
     gold_assert(sym != NULL);
     if (sym->source() == Symbol::FROM_OBJECT
         && !sym->object()->is_dynamic())
       {
         this->gc_mark_symbol(sym);
       }
   }
}

void
Symbol_table::gc_mark_symbol(Symbol* sym)
{
 // Add the object and section to the work list.
 bool is_ordinary;
 unsigned int shndx = sym->shndx(&is_ordinary);
 if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
   {
     gold_assert(this->gc_!= NULL);
     Relobj* relobj = static_cast<Relobj*>(sym->object());
     this->gc_->worklist().push_back(Section_id(relobj, shndx));
   }
 parameters->target().gc_mark_symbol(this, sym);
}

// When doing garbage collection, keep symbols that have been seen in
// dynamic objects.
inline void
Symbol_table::gc_mark_dyn_syms(Symbol* sym)
{
 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
     && !sym->object()->is_dynamic())
   this->gc_mark_symbol(sym);
}

// Make TO a symbol which forwards to FROM.

void
Symbol_table::make_forwarder(Symbol* from, Symbol* to)
{
 gold_assert(from != to);
 gold_assert(!from->is_forwarder() && !to->is_forwarder());
 this->forwarders_[from] = to;
 from->set_forwarder();
}

// Resolve the forwards from FROM, returning the real symbol.

Symbol*
Symbol_table::resolve_forwards(const Symbol* from) const
{
 gold_assert(from->is_forwarder());
 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
   this->forwarders_.find(from);
 gold_assert(p != this->forwarders_.end());
 return p->second;
}

// Look up a symbol by name.

Symbol*
Symbol_table::lookup(const char* name, const char* version) const
{
 Stringpool::Key name_key;
 name = this->namepool_.find(name, &name_key);
 if (name == NULL)
   return NULL;

 Stringpool::Key version_key = 0;
 if (version != NULL)
   {
     version = this->namepool_.find(version, &version_key);
     if (version == NULL)
       return NULL;
   }

 Symbol_table_key key(name_key, version_key);
 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
 if (p == this->table_.end())
   return NULL;
 return p->second;
}

// Resolve a Symbol with another Symbol.  This is only used in the
// unusual case where there are references to both an unversioned
// symbol and a symbol with a version, and we then discover that that
// version is the default version.  Because this is unusual, we do
// this the slow way, by converting back to an ELF symbol.

template<int size, bool big_endian>
void
Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
{
 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
 elfcpp::Sym_write<size, big_endian> esym(buf);
 // We don't bother to set the st_name or the st_shndx field.
 esym.put_st_value(from->value());
 esym.put_st_size(from->symsize());
 esym.put_st_info(from->binding(), from->type());
 esym.put_st_other(from->visibility(), from->nonvis());
 bool is_ordinary;
 unsigned int shndx = from->shndx(&is_ordinary);
 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
               from->version(), true);
 if (from->in_reg())
   to->set_in_reg();
 if (from->in_dyn())
   to->set_in_dyn();
 if (parameters->options().gc_sections())
   this->gc_mark_dyn_syms(to);
}

// Record that a symbol is forced to be local by a version script or
// by visibility.

void
Symbol_table::force_local(Symbol* sym)
{
 if (!sym->is_defined() && !sym->is_common())
   return;
 if (sym->is_forced_local())
   {
     // We already got this one.
     return;
   }
 sym->set_is_forced_local();
 this->forced_locals_.push_back(sym);
}

// Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
// is only called for undefined symbols, when at least one --wrap
// option was used.

const char*
Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
{
 // For some targets, we need to ignore a specific character when
 // wrapping, and add it back later.
 char prefix = '\0';
 if (name[0] == parameters->target().wrap_char())
   {
     prefix = name[0];
     ++name;
   }

 if (parameters->options().is_wrap(name))
   {
     // Turn NAME into __wrap_NAME.
     std::string s;
     if (prefix != '\0')
       s += prefix;
     s += "__wrap_";
     s += name;

     // This will give us both the old and new name in NAMEPOOL_, but
     // that is OK.  Only the versions we need will wind up in the
     // real string table in the output file.
     return this->namepool_.add(s.c_str(), true, name_key);
   }

 const char* const real_prefix = "__real_";
 const size_t real_prefix_length = strlen(real_prefix);
 if (strncmp(name, real_prefix, real_prefix_length) == 0
     && parameters->options().is_wrap(name + real_prefix_length))
   {
     // Turn __real_NAME into NAME.
     std::string s;
     if (prefix != '\0')
       s += prefix;
     s += name + real_prefix_length;
     return this->namepool_.add(s.c_str(), true, name_key);
   }

 return name;
}

// This is called when we see a symbol NAME/VERSION, and the symbol
// already exists in the symbol table, and VERSION is marked as being
// the default version.  SYM is the NAME/VERSION symbol we just added.
// DEFAULT_IS_NEW is true if this is the first time we have seen the
// symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.

template<int size, bool big_endian>
void
Symbol_table::define_default_version(Sized_symbol<size>* sym,
                                    bool default_is_new,
                                    Symbol_table_type::iterator pdef)
{
 if (default_is_new)
   {
     // This is the first time we have seen NAME/NULL.  Make
     // NAME/NULL point to NAME/VERSION, and mark SYM as the default
     // version.
     pdef->second = sym;
     sym->set_is_default();
   }
 else if (pdef->second == sym)
   {
     // NAME/NULL already points to NAME/VERSION.  Don't mark the
     // symbol as the default if it is not already the default.
   }
 else
   {
     // This is the unfortunate case where we already have entries
     // for both NAME/VERSION and NAME/NULL.  We now see a symbol
     // NAME/VERSION where VERSION is the default version.  We have
     // already resolved this new symbol with the existing
     // NAME/VERSION symbol.

     // It's possible that NAME/NULL and NAME/VERSION are both
     // defined in regular objects.  This can only happen if one
     // object file defines foo and another defines foo@@ver.  This
     // is somewhat obscure, but we call it a multiple definition
     // error.

     // It's possible that NAME/NULL actually has a version, in which
     // case it won't be the same as VERSION.  This happens with
     // ver_test_7.so in the testsuite for the symbol t2_2.  We see
     // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
     // then see an unadorned t2_2 in an object file and give it
     // version VER1 from the version script.  This looks like a
     // default definition for VER1, so it looks like we should merge
     // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
     // not obvious that this is an error, either.  So we just punt.

     // If one of the symbols has non-default visibility, and the
     // other is defined in a shared object, then they are different
     // symbols.

     // If the two symbols are from different shared objects,
     // they are different symbols.

     // Otherwise, we just resolve the symbols as though they were
     // the same.

     if (pdef->second->version() != NULL)
       gold_assert(pdef->second->version() != sym->version());
     else if (sym->visibility() != elfcpp::STV_DEFAULT
              && pdef->second->is_from_dynobj())
       ;
     else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
              && sym->is_from_dynobj())
       ;
     else if (pdef->second->is_from_dynobj()
              && sym->is_from_dynobj()
              && pdef->second->is_defined()
              && pdef->second->object() != sym->object())
       ;
     else
       {
         const Sized_symbol<size>* symdef;
         symdef = this->get_sized_symbol<size>(pdef->second);
         Symbol_table::resolve<size, big_endian>(sym, symdef);
         this->make_forwarder(pdef->second, sym);
         pdef->second = sym;
         sym->set_is_default();
       }
   }
}

// Add one symbol from OBJECT to the symbol table.  NAME is symbol
// name and VERSION is the version; both are canonicalized.  DEF is
// whether this is the default version.  ST_SHNDX is the symbol's
// section index; IS_ORDINARY is whether this is a normal section
// rather than a special code.

// If IS_DEFAULT_VERSION is true, then this is the definition of a
// default version of a symbol.  That means that any lookup of
// NAME/NULL and any lookup of NAME/VERSION should always return the
// same symbol.  This is obvious for references, but in particular we
// want to do this for definitions: overriding NAME/NULL should also
// override NAME/VERSION.  If we don't do that, it would be very hard
// to override functions in a shared library which uses versioning.

// We implement this by simply making both entries in the hash table
// point to the same Symbol structure.  That is easy enough if this is
// the first time we see NAME/NULL or NAME/VERSION, but it is possible
// that we have seen both already, in which case they will both have
// independent entries in the symbol table.  We can't simply change
// the symbol table entry, because we have pointers to the entries
// attached to the object files.  So we mark the entry attached to the
// object file as a forwarder, and record it in the forwarders_ map.
// Note that entries in the hash table will never be marked as
// forwarders.
//
// ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
// ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
// for a special section code.  ST_SHNDX may be modified if the symbol
// is defined in a section being discarded.

template<int size, bool big_endian>
Sized_symbol<size>*
Symbol_table::add_from_object(Object* object,
                             const char* name,
                             Stringpool::Key name_key,
                             const char* version,
                             Stringpool::Key version_key,
                             bool is_default_version,
                             const elfcpp::Sym<size, big_endian>& sym,
                             unsigned int st_shndx,
                             bool is_ordinary,
                             unsigned int orig_st_shndx)
{
 // Print a message if this symbol is being traced.
 if (parameters->options().is_trace_symbol(name))
   {
     if (orig_st_shndx == elfcpp::SHN_UNDEF)
       gold_info(_("%s: reference to %s"), object->name().c_str(), name);
     else
       gold_info(_("%s: definition of %s"), object->name().c_str(), name);
   }

 // For an undefined symbol, we may need to adjust the name using
 // --wrap.
 if (orig_st_shndx == elfcpp::SHN_UNDEF
     && parameters->options().any_wrap())
   {
     const char* wrap_name = this->wrap_symbol(name, &name_key);
     if (wrap_name != name)
       {
         // If we see a reference to malloc with version GLIBC_2.0,
         // and we turn it into a reference to __wrap_malloc, then we
         // discard the version number.  Otherwise the user would be
         // required to specify the correct version for
         // __wrap_malloc.
         version = NULL;
         version_key = 0;
         name = wrap_name;
       }
   }

 Symbol* const snull = NULL;
 std::pair<typename Symbol_table_type::iterator, bool> ins =
   this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
                                      snull));

 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
   std::make_pair(this->table_.end(), false);
 if (is_default_version)
   {
     const Stringpool::Key vnull_key = 0;
     insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
                                                                    vnull_key),
                                                     snull));
   }

 // ins.first: an iterator, which is a pointer to a pair.
 // ins.first->first: the key (a pair of name and version).
 // ins.first->second: the value (Symbol*).
 // ins.second: true if new entry was inserted, false if not.

 Sized_symbol<size>* ret = NULL;
 bool was_undefined_in_reg;
 bool was_common;
 if (!ins.second)
   {
     // We already have an entry for NAME/VERSION.
     ret = this->get_sized_symbol<size>(ins.first->second);
     gold_assert(ret != NULL);

     was_undefined_in_reg = ret->is_undefined() && ret->in_reg();
     // Commons from plugins are just placeholders.
     was_common = ret->is_common() && ret->object()->pluginobj() == NULL;

     this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
                   version, is_default_version);
     if (parameters->options().gc_sections())
       this->gc_mark_dyn_syms(ret);

     if (is_default_version)
       this->define_default_version<size, big_endian>(ret, insdefault.second,
                                                      insdefault.first);
     else
       {
         bool dummy;
         if (version != NULL
             && ret->source() == Symbol::FROM_OBJECT
             && ret->object() == object
             && is_ordinary
             && ret->shndx(&dummy) == st_shndx
             && ret->is_default())
           {
             // We have seen NAME/VERSION already, and marked it as the
             // default version, but now we see a definition for
             // NAME/VERSION that is not the default version. This can
             // happen when the assembler generates two symbols for
             // a symbol as a result of a ".symver foo,foo@VER"
             // directive. We see the first unversioned symbol and
             // we may mark it as the default version (from a
             // version script); then we see the second versioned
             // symbol and we need to override the first.
             // In any other case, the two symbols should have generated
             // a multiple definition error.
             // (See PR gold/18703.)
             ret->set_is_not_default();
             const Stringpool::Key vnull_key = 0;
             this->table_.erase(std::make_pair(name_key, vnull_key));
           }
       }
   }
 else
   {
     // This is the first time we have seen NAME/VERSION.
     gold_assert(ins.first->second == NULL);

     if (is_default_version && !insdefault.second)
       {
         // We already have an entry for NAME/NULL.  If we override
         // it, then change it to NAME/VERSION.
         ret = this->get_sized_symbol<size>(insdefault.first->second);

         // If the existing symbol already has a version,
         // don't override it with the new symbol.
         // This should only happen when the new symbol
         // is from a shared library.
         if (ret->version() != NULL)
           {
             if (!object->is_dynamic())
               {
                 gold_warning(_("%s: conflicting default version definition"
                                " for %s@@%s"),
                              object->name().c_str(), name, version);
                 if (ret->source() == Symbol::FROM_OBJECT)
                   gold_info(_("%s: %s: previous definition of %s@@%s here"),
                             program_name,
                             ret->object()->name().c_str(),
                             name, ret->version());
               }
             ret = NULL;
             is_default_version = false;
           }
         else
           {
             was_undefined_in_reg = ret->is_undefined() && ret->in_reg();
             // Commons from plugins are just placeholders.
             was_common = (ret->is_common()
                           && ret->object()->pluginobj() == NULL);

             this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx,
                           object, version, is_default_version);
             if (parameters->options().gc_sections())
               this->gc_mark_dyn_syms(ret);
             ins.first->second = ret;
           }
       }

     if (ret == NULL)
       {
         was_undefined_in_reg = false;
         was_common = false;

         Sized_target<size, big_endian>* target =
           parameters->sized_target<size, big_endian>();
         if (!target->has_make_symbol())
           ret = new Sized_symbol<size>();
         else
           {
             ret = target->make_symbol(name, sym.get_st_type(), object,
                                       st_shndx, sym.get_st_value());
             if (ret == NULL)
               {
                 // This means that we don't want a symbol table
                 // entry after all.
                 if (!is_default_version)
                   this->table_.erase(ins.first);
                 else
                   {
                     this->table_.erase(insdefault.first);
                     // Inserting INSDEFAULT invalidated INS.
                     this->table_.erase(std::make_pair(name_key,
                                                       version_key));
                   }
                 return NULL;
               }
           }

         ret->init_object(name, version, object, sym, st_shndx, is_ordinary);

         ins.first->second = ret;
         if (is_default_version)
           {
             // This is the first time we have seen NAME/NULL.  Point
             // it at the new entry for NAME/VERSION.
             gold_assert(insdefault.second);
             insdefault.first->second = ret;
           }
       }

     if (is_default_version)
       ret->set_is_default();
   }

 // Record every time we see a new undefined symbol, to speed up archive
 // groups. We only care about symbols undefined in regular objects here
 // because undefined symbols only in dynamic objects should't trigger rescans.
 if (!was_undefined_in_reg && ret->is_undefined() && ret->in_reg())
   {
     ++this->saw_undefined_;
     if (parameters->options().has_plugins())
       parameters->options().plugins()->new_undefined_symbol(ret);
   }

 // Keep track of common symbols, to speed up common symbol
 // allocation.  Don't record commons from plugin objects;
 // we need to wait until we see the real symbol in the
 // replacement file.
 if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
   {
     if (ret->type() == elfcpp::STT_TLS)
       this->tls_commons_.push_back(ret);
     else if (!is_ordinary
              && st_shndx == parameters->target().small_common_shndx())
       this->small_commons_.push_back(ret);
     else if (!is_ordinary
              && st_shndx == parameters->target().large_common_shndx())
       this->large_commons_.push_back(ret);
     else
       this->commons_.push_back(ret);
   }

 // If we're not doing a relocatable link, then any symbol with
 // hidden or internal visibility is local.
 if ((ret->visibility() == elfcpp::STV_HIDDEN
      || ret->visibility() == elfcpp::STV_INTERNAL)
     && (ret->binding() == elfcpp::STB_GLOBAL
         || ret->binding() == elfcpp::STB_GNU_UNIQUE
         || ret->binding() == elfcpp::STB_WEAK)
     && !parameters->options().relocatable())
   this->force_local(ret);

 return ret;
}

// Add all the symbols in a relocatable object to the hash table.

template<int size, bool big_endian>
void
Symbol_table::add_from_relobj(
   Sized_relobj_file<size, big_endian>* relobj,
   const unsigned char* syms,
   size_t count,
   size_t symndx_offset,
   const char* sym_names,
   size_t sym_name_size,
   typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
   size_t* defined)
{
 *defined = 0;

 gold_assert(size == parameters->target().get_size());

 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;

 const bool just_symbols = relobj->just_symbols();

 const unsigned char* p = syms;
 for (size_t i = 0; i < count; ++i, p += sym_size)
   {
     (*sympointers)[i] = NULL;

     elfcpp::Sym<size, big_endian> sym(p);

     unsigned int st_name = sym.get_st_name();
     if (st_name >= sym_name_size)
       {
         relobj->error(_("bad global symbol name offset %u at %zu"),
                       st_name, i);
         continue;
       }

     const char* name = sym_names + st_name;

     if (!parameters->options().relocatable()
         && name[0] == '_'
         && name[1] == '_'
         && strcmp (name + (name[2] == '_'), "__gnu_lto_slim") == 0)
       gold_info(_("%s: plugin needed to handle lto object"),
                 relobj->name().c_str());

     bool is_ordinary;
     unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
                                                      sym.get_st_shndx(),
                                                      &is_ordinary);
     unsigned int orig_st_shndx = st_shndx;
     if (!is_ordinary)
       orig_st_shndx = elfcpp::SHN_UNDEF;

     if (st_shndx != elfcpp::SHN_UNDEF)
       ++*defined;

     // A symbol defined in a section which we are not including must
     // be treated as an undefined symbol.
     bool is_defined_in_discarded_section = false;
     if (st_shndx != elfcpp::SHN_UNDEF
         && is_ordinary
         && !relobj->is_section_included(st_shndx)
         && !this->is_section_folded(relobj, st_shndx))
       {
         st_shndx = elfcpp::SHN_UNDEF;
         is_defined_in_discarded_section = true;
       }

     // In an object file, an '@' in the name separates the symbol
     // name from the version name.  If there are two '@' characters,
     // this is the default version.
     const char* ver = strchr(name, '@');
     Stringpool::Key ver_key = 0;
     int namelen = 0;
     // IS_DEFAULT_VERSION: is the version default?
     // IS_FORCED_LOCAL: is the symbol forced local?
     bool is_default_version = false;
     bool is_forced_local = false;

     // FIXME: For incremental links, we don't store version information,
     // so we need to ignore version symbols for now.
     if (parameters->incremental_update() && ver != NULL)
       {
         namelen = ver - name;
         ver = NULL;
       }

     if (ver != NULL)
       {
         // The symbol name is of the form foo@VERSION or foo@@VERSION
         namelen = ver - name;
         ++ver;
         if (*ver == '@')
           {
             is_default_version = true;
             ++ver;
           }
         ver = this->namepool_.add(ver, true, &ver_key);
       }
     // We don't want to assign a version to an undefined symbol,
     // even if it is listed in the version script.  FIXME: What
     // about a common symbol?
     else
       {
         namelen = strlen(name);
         if (!this->version_script_.empty()
             && st_shndx != elfcpp::SHN_UNDEF)
           {
             // The symbol name did not have a version, but the
             // version script may assign a version anyway.
             std::string version;
             bool is_global;
             if (this->version_script_.get_symbol_version(name, &version,
                                                          &is_global))
               {
                 if (!is_global)
                   is_forced_local = true;
                 else if (!version.empty())
                   {
                     ver = this->namepool_.add_with_length(version.c_str(),
                                                           version.length(),
                                                           true,
                                                           &ver_key);
                     is_default_version = true;
                   }
               }
           }
       }

     elfcpp::Sym<size, big_endian>* psym = &sym;
     unsigned char symbuf[sym_size];
     elfcpp::Sym<size, big_endian> sym2(symbuf);
     if (just_symbols)
       {
         memcpy(symbuf, p, sym_size);
         elfcpp::Sym_write<size, big_endian> sw(symbuf);
         if (orig_st_shndx != elfcpp::SHN_UNDEF
             && is_ordinary
             && relobj->e_type() == elfcpp::ET_REL)
           {
             // Symbol values in relocatable object files are section
             // relative.  This is normally what we want, but since here
             // we are converting the symbol to absolute we need to add
             // the section address.  The section address in an object
             // file is normally zero, but people can use a linker
             // script to change it.
             sw.put_st_value(sym.get_st_value()
                             + relobj->section_address(orig_st_shndx));
           }
         st_shndx = elfcpp::SHN_ABS;
         is_ordinary = false;
         psym = &sym2;
       }

     // Fix up visibility if object has no-export set.
     if (relobj->no_export()
         && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
       {
         // We may have copied symbol already above.
         if (psym != &sym2)
           {
             memcpy(symbuf, p, sym_size);
             psym = &sym2;
           }

         elfcpp::STV visibility = sym2.get_st_visibility();
         if (visibility == elfcpp::STV_DEFAULT
             || visibility == elfcpp::STV_PROTECTED)
           {
             elfcpp::Sym_write<size, big_endian> sw(symbuf);
             unsigned char nonvis = sym2.get_st_nonvis();
             sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
           }
       }

     Stringpool::Key name_key;
     name = this->namepool_.add_with_length(name, namelen, true,
                                            &name_key);

     Sized_symbol<size>* res;
     res = this->add_from_object(relobj, name, name_key, ver, ver_key,
                                 is_default_version, *psym, st_shndx,
                                 is_ordinary, orig_st_shndx);

     if (res == NULL)
       continue;

     if (is_forced_local)
       this->force_local(res);

     // Do not treat this symbol as garbage if this symbol will be
     // exported to the dynamic symbol table.  This is true when
     // building a shared library or using --export-dynamic and
     // the symbol is externally visible.
     if (parameters->options().gc_sections()
         && res->is_externally_visible()
         && !res->is_from_dynobj()
         && (parameters->options().shared()
             || parameters->options().export_dynamic()
             || parameters->options().in_dynamic_list(res->name())))
       this->gc_mark_symbol(res);

     if (is_defined_in_discarded_section)
       res->set_is_defined_in_discarded_section();

     (*sympointers)[i] = res;
   }
}

// Add a symbol from a plugin-claimed file.

template<int size, bool big_endian>
Symbol*
Symbol_table::add_from_pluginobj(
   Sized_pluginobj<size, big_endian>* obj,
   const char* name,
   const char* ver,
   elfcpp::Sym<size, big_endian>* sym)
{
 unsigned int st_shndx = sym->get_st_shndx();
 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;

 Stringpool::Key ver_key = 0;
 bool is_default_version = false;
 bool is_forced_local = false;

 if (ver != NULL)
   {
     ver = this->namepool_.add(ver, true, &ver_key);
   }
 // We don't want to assign a version to an undefined symbol,
 // even if it is listed in the version script.  FIXME: What
 // about a common symbol?
 else
   {
     if (!this->version_script_.empty()
         && st_shndx != elfcpp::SHN_UNDEF)
       {
         // The symbol name did not have a version, but the
         // version script may assign a version anyway.
         std::string version;
         bool is_global;
         if (this->version_script_.get_symbol_version(name, &version,
                                                      &is_global))
           {
             if (!is_global)
               is_forced_local = true;
             else if (!version.empty())
               {
                 ver = this->namepool_.add_with_length(version.c_str(),
                                                       version.length(),
                                                       true,
                                                       &ver_key);
                 is_default_version = true;
               }
           }
       }
   }

 Stringpool::Key name_key;
 name = this->namepool_.add(name, true, &name_key);

 Sized_symbol<size>* res;
 res = this->add_from_object(obj, name, name_key, ver, ver_key,
                             is_default_version, *sym, st_shndx,
                             is_ordinary, st_shndx);

 if (res == NULL)
   return NULL;

 if (is_forced_local)
   this->force_local(res);

 return res;
}

// Add all the symbols in a dynamic object to the hash table.

template<int size, bool big_endian>
void
Symbol_table::add_from_dynobj(
   Sized_dynobj<size, big_endian>* dynobj,
   const unsigned char* syms,
   size_t count,
   const char* sym_names,
   size_t sym_name_size,
   const unsigned char* versym,
   size_t versym_size,
   const std::vector<const char*>* version_map,
   typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
   size_t* defined)
{
 *defined = 0;

 gold_assert(size == parameters->target().get_size());

 if (dynobj->just_symbols())
   {
     gold_error(_("--just-symbols does not make sense with a shared object"));
     return;
   }

 // FIXME: For incremental links, we don't store version information,
 // so we need to ignore version symbols for now.
 if (parameters->incremental_update())
   versym = NULL;

 if (versym != NULL && versym_size / 2 < count)
   {
     dynobj->error(_("too few symbol versions"));
     return;
   }

 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;

 // We keep a list of all STT_OBJECT symbols, so that we can resolve
 // weak aliases.  This is necessary because if the dynamic object
 // provides the same variable under two names, one of which is a
 // weak definition, and the regular object refers to the weak
 // definition, we have to put both the weak definition and the
 // strong definition into the dynamic symbol table.  Given a weak
 // definition, the only way that we can find the corresponding
 // strong definition, if any, is to search the symbol table.
 std::vector<Sized_symbol<size>*> object_symbols;

 const unsigned char* p = syms;
 const unsigned char* vs = versym;
 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
   {
     elfcpp::Sym<size, big_endian> sym(p);

     if (sympointers != NULL)
       (*sympointers)[i] = NULL;

     // Ignore symbols with local binding or that have
     // internal or hidden visibility.
     if (sym.get_st_bind() == elfcpp::STB_LOCAL
         || sym.get_st_visibility() == elfcpp::STV_INTERNAL
         || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
       continue;

     // A protected symbol in a shared library must be treated as a
     // normal symbol when viewed from outside the shared library.
     // Implement this by overriding the visibility here.
     // Likewise, an IFUNC symbol in a shared library must be treated
     // as a normal FUNC symbol.
     elfcpp::Sym<size, big_endian>* psym = &sym;
     unsigned char symbuf[sym_size];
     elfcpp::Sym<size, big_endian> sym2(symbuf);
     if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
         || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
       {
         memcpy(symbuf, p, sym_size);
         elfcpp::Sym_write<size, big_endian> sw(symbuf);
         if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
           sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
         if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
           sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
         psym = &sym2;
       }

     unsigned int st_name = psym->get_st_name();
     if (st_name >= sym_name_size)
       {
         dynobj->error(_("bad symbol name offset %u at %zu"),
                       st_name, i);
         continue;
       }

     const char* name = sym_names + st_name;

     bool is_ordinary;
     unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
                                                      &is_ordinary);

     if (st_shndx != elfcpp::SHN_UNDEF)
       ++*defined;

     Sized_symbol<size>* res;

     if (versym == NULL)
       {
         Stringpool::Key name_key;
         name = this->namepool_.add(name, true, &name_key);
         res = this->add_from_object(dynobj, name, name_key, NULL, 0,
                                     false, *psym, st_shndx, is_ordinary,
                                     st_shndx);
       }
     else
       {
         // Read the version information.

         unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);

         bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
         v &= elfcpp::VERSYM_VERSION;

         // The Sun documentation says that V can be VER_NDX_LOCAL,
         // or VER_NDX_GLOBAL, or a version index.  The meaning of
         // VER_NDX_LOCAL is defined as "Symbol has local scope."
         // The old GNU linker will happily generate VER_NDX_LOCAL
         // for an undefined symbol.  I don't know what the Sun
         // linker will generate.

         if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
             && st_shndx != elfcpp::SHN_UNDEF)
           {
             // This symbol should not be visible outside the object.
             continue;
           }

         // At this point we are definitely going to add this symbol.
         Stringpool::Key name_key;
         name = this->namepool_.add(name, true, &name_key);

         if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
             || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
           {
             // This symbol does not have a version.
             res = this->add_from_object(dynobj, name, name_key, NULL, 0,
                                         false, *psym, st_shndx, is_ordinary,
                                         st_shndx);
           }
         else
           {
             if (v >= version_map->size())
               {
                 dynobj->error(_("versym for symbol %zu out of range: %u"),
                               i, v);
                 continue;
               }

             const char* version = (*version_map)[v];
             if (version == NULL)
               {
                 dynobj->error(_("versym for symbol %zu has no name: %u"),
                               i, v);
                 continue;
               }

             Stringpool::Key version_key;
             version = this->namepool_.add(version, true, &version_key);

             // If this is an absolute symbol, and the version name
             // and symbol name are the same, then this is the
             // version definition symbol.  These symbols exist to
             // support using -u to pull in particular versions.  We
             // do not want to record a version for them.
             if (st_shndx == elfcpp::SHN_ABS
                 && !is_ordinary
                 && name_key == version_key)
               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
                                           false, *psym, st_shndx, is_ordinary,
                                           st_shndx);
             else
               {
                 const bool is_default_version =
                   !hidden && st_shndx != elfcpp::SHN_UNDEF;
                 res = this->add_from_object(dynobj, name, name_key, version,
                                             version_key, is_default_version,
                                             *psym, st_shndx,
                                             is_ordinary, st_shndx);
               }
           }
       }

     if (res == NULL)
       continue;

     // Note that it is possible that RES was overridden by an
     // earlier object, in which case it can't be aliased here.
     if (st_shndx != elfcpp::SHN_UNDEF
         && is_ordinary
         && psym->get_st_type() == elfcpp::STT_OBJECT
         && res->source() == Symbol::FROM_OBJECT
         && res->object() == dynobj)
       object_symbols.push_back(res);

     // If the symbol has protected visibility in the dynobj,
     // mark it as such if it was not overridden.
     if (res->source() == Symbol::FROM_OBJECT
         && res->object() == dynobj
         && sym.get_st_visibility() == elfcpp::STV_PROTECTED)
       res->set_is_protected();

     if (sympointers != NULL)
       (*sympointers)[i] = res;
   }

 this->record_weak_aliases(&object_symbols);
}

// Add a symbol from a incremental object file.

template<int size, bool big_endian>
Sized_symbol<size>*
Symbol_table::add_from_incrobj(
   Object* obj,
   const char* name,
   const char* ver,
   elfcpp::Sym<size, big_endian>* sym)
{
 unsigned int st_shndx = sym->get_st_shndx();
 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;

 Stringpool::Key ver_key = 0;
 bool is_default_version = false;

 Stringpool::Key name_key;
 name = this->namepool_.add(name, true, &name_key);

 Sized_symbol<size>* res;
 res = this->add_from_object(obj, name, name_key, ver, ver_key,
                             is_default_version, *sym, st_shndx,
                             is_ordinary, st_shndx);

 return res;
}

// This is used to sort weak aliases.  We sort them first by section
// index, then by offset, then by weak ahead of strong.

template<int size>
class Weak_alias_sorter
{
public:
 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
};

template<int size>
bool
Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
                                   const Sized_symbol<size>* s2) const
{
 bool is_ordinary;
 unsigned int s1_shndx = s1->shndx(&is_ordinary);
 gold_assert(is_ordinary);
 unsigned int s2_shndx = s2->shndx(&is_ordinary);
 gold_assert(is_ordinary);
 if (s1_shndx != s2_shndx)
   return s1_shndx < s2_shndx;

 if (s1->value() != s2->value())
   return s1->value() < s2->value();
 if (s1->binding() != s2->binding())
   {
     if (s1->binding() == elfcpp::STB_WEAK)
       return true;
     if (s2->binding() == elfcpp::STB_WEAK)
       return false;
   }
 return std::string(s1->name()) < std::string(s2->name());
}

// SYMBOLS is a list of object symbols from a dynamic object.  Look
// for any weak aliases, and record them so that if we add the weak
// alias to the dynamic symbol table, we also add the corresponding
// strong symbol.

template<int size>
void
Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
{
 // Sort the vector by section index, then by offset, then by weak
 // ahead of strong.
 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());

 // Walk through the vector.  For each weak definition, record
 // aliases.
 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
        symbols->begin();
      p != symbols->end();
      ++p)
   {
     if ((*p)->binding() != elfcpp::STB_WEAK)
       continue;

     // Build a circular list of weak aliases.  Each symbol points to
     // the next one in the circular list.

     Sized_symbol<size>* from_sym = *p;
     typename std::vector<Sized_symbol<size>*>::const_iterator q;
     for (q = p + 1; q != symbols->end(); ++q)
       {
         bool dummy;
         if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
             || (*q)->value() != from_sym->value())
           break;

         this->weak_aliases_[from_sym] = *q;
         from_sym->set_has_alias();
         from_sym = *q;
       }

     if (from_sym != *p)
       {
         this->weak_aliases_[from_sym] = *p;
         from_sym->set_has_alias();
       }

     p = q - 1;
   }
}

// Create and return a specially defined symbol.  If ONLY_IF_REF is
// true, then only create the symbol if there is a reference to it.
// If this does not return NULL, it sets *POLDSYM to the existing
// symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
// resolve the newly created symbol to the old one.  This
// canonicalizes *PNAME and *PVERSION.

template<int size, bool big_endian>
Sized_symbol<size>*
Symbol_table::define_special_symbol(const char** pname, const char** pversion,
                                   bool only_if_ref,
                                   elfcpp::STV visibility,
                                   Sized_symbol<size>** poldsym,
                                   bool* resolve_oldsym, bool is_forced_local)
{
 *resolve_oldsym = false;
 *poldsym = NULL;

 // If the caller didn't give us a version, see if we get one from
 // the version script.
 std::string v;
 bool is_default_version = false;
 if (!is_forced_local && *pversion == NULL)
   {
     bool is_global;
     if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
       {
         if (is_global && !v.empty())
           {
             *pversion = v.c_str();
             // If we get the version from a version script, then we
             // are also the default version.
             is_default_version = true;
           }
       }
   }

 Symbol* oldsym;
 Sized_symbol<size>* sym;

 bool add_to_table = false;
 typename Symbol_table_type::iterator add_loc = this->table_.end();
 bool add_def_to_table = false;
 typename Symbol_table_type::iterator add_def_loc = this->table_.end();

 if (only_if_ref)
   {
     oldsym = this->lookup(*pname, *pversion);
     if (oldsym == NULL && is_default_version)
       oldsym = this->lookup(*pname, NULL);
     if (oldsym == NULL)
       return NULL;
     if (!oldsym->is_undefined())
       {
         // Skip if the old definition is from a regular object.
         if (!oldsym->is_from_dynobj())
           return NULL;

         // If the symbol has hidden or internal visibility, ignore
         // definition and reference from a dynamic object.
         if ((visibility == elfcpp::STV_HIDDEN
              || visibility == elfcpp::STV_INTERNAL)
             && !oldsym->in_reg())
           return NULL;
       }

     *pname = oldsym->name();
     if (is_default_version)
       *pversion = this->namepool_.add(*pversion, true, NULL);
     else
       *pversion = oldsym->version();
   }
 else
   {
     // Canonicalize NAME and VERSION.
     Stringpool::Key name_key;
     *pname = this->namepool_.add(*pname, true, &name_key);

     Stringpool::Key version_key = 0;
     if (*pversion != NULL)
       *pversion = this->namepool_.add(*pversion, true, &version_key);

     Symbol* const snull = NULL;
     std::pair<typename Symbol_table_type::iterator, bool> ins =
       this->table_.insert(std::make_pair(std::make_pair(name_key,
                                                         version_key),
                                          snull));

     std::pair<typename Symbol_table_type::iterator, bool> insdefault =
       std::make_pair(this->table_.end(), false);
     if (is_default_version)
       {
         const Stringpool::Key vnull = 0;
         insdefault =
           this->table_.insert(std::make_pair(std::make_pair(name_key,
                                                             vnull),
                                              snull));
       }

     if (!ins.second)
       {
         // We already have a symbol table entry for NAME/VERSION.
         oldsym = ins.first->second;
         gold_assert(oldsym != NULL);

         if (is_default_version)
           {
             Sized_symbol<size>* soldsym =
               this->get_sized_symbol<size>(oldsym);
             this->define_default_version<size, big_endian>(soldsym,
                                                            insdefault.second,
                                                            insdefault.first);
           }
       }
     else
       {
         // We haven't seen this symbol before.
         gold_assert(ins.first->second == NULL);

         add_to_table = true;
         add_loc = ins.first;

         if (is_default_version
             && !insdefault.second
             && insdefault.first->second->version() == NULL)
           {
             // We are adding NAME/VERSION, and it is the default
             // version.  We already have an entry for NAME/NULL
             // that does not already have a version.
             oldsym = insdefault.first->second;
             *resolve_oldsym = true;
           }
         else
           {
             oldsym = NULL;

             if (is_default_version)
               {
                 add_def_to_table = true;
                 add_def_loc = insdefault.first;
               }
           }
       }
   }

 const Target& target = parameters->target();
 if (!target.has_make_symbol())
   sym = new Sized_symbol<size>();
 else
   {
     Sized_target<size, big_endian>* sized_target =
       parameters->sized_target<size, big_endian>();
     sym = sized_target->make_symbol(*pname, elfcpp::STT_NOTYPE,
                                     NULL, elfcpp::SHN_UNDEF, 0);
     if (sym == NULL)
       return NULL;
   }

 if (add_to_table)
   add_loc->second = sym;
 else
   gold_assert(oldsym != NULL);

 if (add_def_to_table)
   add_def_loc->second = sym;

 *poldsym = this->get_sized_symbol<size>(oldsym);

 return sym;
}

// Define a symbol based on an Output_data.

Symbol*
Symbol_table::define_in_output_data(const char* name,
                                   const char* version,
                                   Defined defined,
                                   Output_data* od,
                                   uint64_t value,
                                   uint64_t symsize,
                                   elfcpp::STT type,
                                   elfcpp::STB binding,
                                   elfcpp::STV visibility,
                                   unsigned char nonvis,
                                   bool offset_is_from_end,
                                   bool only_if_ref)
{
 if (parameters->target().get_size() == 32)
   {
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
     return this->do_define_in_output_data<32>(name, version, defined, od,
                                               value, symsize, type, binding,
                                               visibility, nonvis,
                                               offset_is_from_end,
                                               only_if_ref);
#else
     gold_unreachable();
#endif
   }
 else if (parameters->target().get_size() == 64)
   {
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
     return this->do_define_in_output_data<64>(name, version, defined, od,
                                               value, symsize, type, binding,
                                               visibility, nonvis,
                                               offset_is_from_end,
                                               only_if_ref);
#else
     gold_unreachable();
#endif
   }
 else
   gold_unreachable();
}

// Define a symbol in an Output_data, sized version.

template<int size>
Sized_symbol<size>*
Symbol_table::do_define_in_output_data(
   const char* name,
   const char* version,
   Defined defined,
   Output_data* od,
   typename elfcpp::Elf_types<size>::Elf_Addr value,
   typename elfcpp::Elf_types<size>::Elf_WXword symsize,
   elfcpp::STT type,
   elfcpp::STB binding,
   elfcpp::STV visibility,
   unsigned char nonvis,
   bool offset_is_from_end,
   bool only_if_ref)
{
 Sized_symbol<size>* sym;
 Sized_symbol<size>* oldsym;
 bool resolve_oldsym;
 const bool is_forced_local = binding == elfcpp::STB_LOCAL;

 if (parameters->target().is_big_endian())
   {
#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
     sym = this->define_special_symbol<size, true>(&name, &version,
                                                   only_if_ref,
                                                   visibility,
                                                   &oldsym,
                                                   &resolve_oldsym,
                                                   is_forced_local);
#else
     gold_unreachable();
#endif
   }
 else
   {
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
     sym = this->define_special_symbol<size, false>(&name, &version,
                                                    only_if_ref,
                                                    visibility,
                                                    &oldsym,
                                                    &resolve_oldsym,
                                                    is_forced_local);
#else
     gold_unreachable();
#endif
   }

 if (sym == NULL)
   return NULL;

 sym->init_output_data(name, version, od, value, symsize, type, binding,
                       visibility, nonvis, offset_is_from_end,
                       defined == PREDEFINED);

 if (oldsym == NULL)
   {
     if (is_forced_local || this->version_script_.symbol_is_local(name))
       this->force_local(sym);
     else if (version != NULL)
       sym->set_is_default();
     return sym;
   }

 if (Symbol_table::should_override_with_special(oldsym, type, defined))
   this->override_with_special(oldsym, sym);

 if (resolve_oldsym)
   return sym;
 else
   {
     if (defined == PREDEFINED
         && (is_forced_local || this->version_script_.symbol_is_local(name)))
       this->force_local(oldsym);
     delete sym;
     return oldsym;
   }
}

// Define a symbol based on an Output_segment.

Symbol*
Symbol_table::define_in_output_segment(const char* name,
                                      const char* version,
                                      Defined defined,
                                      Output_segment* os,
                                      uint64_t value,
                                      uint64_t symsize,
                                      elfcpp::STT type,
                                      elfcpp::STB binding,
                                      elfcpp::STV visibility,
                                      unsigned char nonvis,
                                      Symbol::Segment_offset_base offset_base,
                                      bool only_if_ref)
{
 if (parameters->target().get_size() == 32)
   {
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
     return this->do_define_in_output_segment<32>(name, version, defined, os,
                                                  value, symsize, type,
                                                  binding, visibility, nonvis,
                                                  offset_base, only_if_ref);
#else
     gold_unreachable();
#endif
   }
 else if (parameters->target().get_size() == 64)
   {
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
     return this->do_define_in_output_segment<64>(name, version, defined, os,
                                                  value, symsize, type,
                                                  binding, visibility, nonvis,
                                                  offset_base, only_if_ref);
#else
     gold_unreachable();
#endif
   }
 else
   gold_unreachable();
}

// Define a symbol in an Output_segment, sized version.

template<int size>
Sized_symbol<size>*
Symbol_table::do_define_in_output_segment(
   const char* name,
   const char* version,
   Defined defined,
   Output_segment* os,
   typename elfcpp::Elf_types<size>::Elf_Addr value,
   typename elfcpp::Elf_types<size>::Elf_WXword symsize,
   elfcpp::STT type,
   elfcpp::STB binding,
   elfcpp::STV visibility,
   unsigned char nonvis,
   Symbol::Segment_offset_base offset_base,
   bool only_if_ref)
{
 Sized_symbol<size>* sym;
 Sized_symbol<size>* oldsym;
 bool resolve_oldsym;
 const bool is_forced_local = binding == elfcpp::STB_LOCAL;

 if (parameters->target().is_big_endian())
   {
#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
     sym = this->define_special_symbol<size, true>(&name, &version,
                                                   only_if_ref,
                                                   visibility,
                                                   &oldsym,
                                                   &resolve_oldsym,
                                                   is_forced_local);
#else
     gold_unreachable();
#endif
   }
 else
   {
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
     sym = this->define_special_symbol<size, false>(&name, &version,
                                                    only_if_ref,
                                                    visibility,
                                                    &oldsym,
                                                    &resolve_oldsym,
                                                    is_forced_local);
#else
     gold_unreachable();
#endif
   }

 if (sym == NULL)
   return NULL;

 sym->init_output_segment(name, version, os, value, symsize, type, binding,
                          visibility, nonvis, offset_base,
                          defined == PREDEFINED);

 if (oldsym == NULL)
   {
     if (is_forced_local || this->version_script_.symbol_is_local(name))
       this->force_local(sym);
     else if (version != NULL)
       sym->set_is_default();
     return sym;
   }

 if (Symbol_table::should_override_with_special(oldsym, type, defined))
   this->override_with_special(oldsym, sym);

 if (resolve_oldsym)
   return sym;
 else
   {
     if (is_forced_local || this->version_script_.symbol_is_local(name))
       this->force_local(oldsym);
     delete sym;
     return oldsym;
   }
}

// Define a special symbol with a constant value.  It is a multiple
// definition error if this symbol is already defined.

Symbol*
Symbol_table::define_as_constant(const char* name,
                                const char* version,
                                Defined defined,
                                uint64_t value,
                                uint64_t symsize,
                                elfcpp::STT type,
                                elfcpp::STB binding,
                                elfcpp::STV visibility,
                                unsigned char nonvis,
                                bool only_if_ref,
                                bool force_override)
{
 if (parameters->target().get_size() == 32)
   {
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
     return this->do_define_as_constant<32>(name, version, defined, value,
                                            symsize, type, binding,
                                            visibility, nonvis, only_if_ref,
                                            force_override);
#else
     gold_unreachable();
#endif
   }
 else if (parameters->target().get_size() == 64)
   {
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
     return this->do_define_as_constant<64>(name, version, defined, value,
                                            symsize, type, binding,
                                            visibility, nonvis, only_if_ref,
                                            force_override);
#else
     gold_unreachable();
#endif
   }
 else
   gold_unreachable();
}

// Define a symbol as a constant, sized version.

template<int size>
Sized_symbol<size>*
Symbol_table::do_define_as_constant(
   const char* name,
   const char* version,
   Defined defined,
   typename elfcpp::Elf_types<size>::Elf_Addr value,
   typename elfcpp::Elf_types<size>::Elf_WXword symsize,
   elfcpp::STT type,
   elfcpp::STB binding,
   elfcpp::STV visibility,
   unsigned char nonvis,
   bool only_if_ref,
   bool force_override)
{
 Sized_symbol<size>* sym;
 Sized_symbol<size>* oldsym;
 bool resolve_oldsym;
 const bool is_forced_local = binding == elfcpp::STB_LOCAL;

 if (parameters->target().is_big_endian())
   {
#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
     sym = this->define_special_symbol<size, true>(&name, &version,
                                                   only_if_ref,
                                                   visibility,
                                                   &oldsym,
                                                   &resolve_oldsym,
                                                   is_forced_local);
#else
     gold_unreachable();
#endif
   }
 else
   {
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
     sym = this->define_special_symbol<size, false>(&name, &version,
                                                    only_if_ref,
                                                    visibility,
                                                    &oldsym,
                                                    &resolve_oldsym,
                                                    is_forced_local);
#else
     gold_unreachable();
#endif
   }

 if (sym == NULL)
   return NULL;

 sym->init_constant(name, version, value, symsize, type, binding, visibility,
                    nonvis, defined == PREDEFINED);

 if (oldsym == NULL)
   {
     // Version symbols are absolute symbols with name == version.
     // We don't want to force them to be local.
     if ((version == NULL
          || name != version
          || value != 0)
         && (is_forced_local || this->version_script_.symbol_is_local(name)))
       this->force_local(sym);
     else if (version != NULL
              && (name != version || value != 0))
       sym->set_is_default();
     return sym;
   }

 if (force_override
     || Symbol_table::should_override_with_special(oldsym, type, defined))
   this->override_with_special(oldsym, sym);

 if (resolve_oldsym)
   return sym;
 else
   {
     if (is_forced_local || this->version_script_.symbol_is_local(name))
       this->force_local(oldsym);
     delete sym;
     return oldsym;
   }
}

// Define a set of symbols in output sections.

void
Symbol_table::define_symbols(const Layout* layout, int count,
                            const Define_symbol_in_section* p,
                            bool only_if_ref)
{
 for (int i = 0; i < count; ++i, ++p)
   {
     Output_section* os = layout->find_output_section(p->output_section);
     if (os != NULL)
       this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
                                   p->size, p->type, p->binding,
                                   p->visibility, p->nonvis,
                                   p->offset_is_from_end,
                                   only_if_ref || p->only_if_ref);
     else
       this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
                                p->type, p->binding, p->visibility, p->nonvis,
                                only_if_ref || p->only_if_ref,
                                false);
   }
}

// Define a set of symbols in output segments.

void
Symbol_table::define_symbols(const Layout* layout, int count,
                            const Define_symbol_in_segment* p,
                            bool only_if_ref)
{
 for (int i = 0; i < count; ++i, ++p)
   {
     Output_segment* os = layout->find_output_segment(p->segment_type,
                                                      p->segment_flags_set,
                                                      p->segment_flags_clear);
     if (os != NULL)
       this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
                                      p->size, p->type, p->binding,
                                      p->visibility, p->nonvis,
                                      p->offset_base,
                                      only_if_ref || p->only_if_ref);
     else
       this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
                                p->type, p->binding, p->visibility, p->nonvis,
                                only_if_ref || p->only_if_ref,
                                false);
   }
}

// Define CSYM using a COPY reloc.  POSD is the Output_data where the
// symbol should be defined--typically a .dyn.bss section.  VALUE is
// the offset within POSD.

template<int size>
void
Symbol_table::define_with_copy_reloc(
   Sized_symbol<size>* csym,
   Output_data* posd,
   typename elfcpp::Elf_types<size>::Elf_Addr value)
{
 gold_assert(csym->is_from_dynobj());
 gold_assert(!csym->is_copied_from_dynobj());
 Object* object = csym->object();
 gold_assert(object->is_dynamic());
 Dynobj* dynobj = static_cast<Dynobj*>(object);

 // Our copied variable has to override any variable in a shared
 // library.
 elfcpp::STB binding = csym->binding();
 if (binding == elfcpp::STB_WEAK)
   binding = elfcpp::STB_GLOBAL;

 this->define_in_output_data(csym->name(), csym->version(), COPY,
                             posd, value, csym->symsize(),
                             csym->type(), binding,
                             csym->visibility(), csym->nonvis(),
                             false, false);

 csym->set_is_copied_from_dynobj();
 csym->set_needs_dynsym_entry();

 this->copied_symbol_dynobjs_[csym] = dynobj;

 // We have now defined all aliases, but we have not entered them all
 // in the copied_symbol_dynobjs_ map.
 if (csym->has_alias())
   {
     Symbol* sym = csym;
     while (true)
       {
         sym = this->weak_aliases_[sym];
         if (sym == csym)
           break;
         gold_assert(sym->output_data() == posd);

         sym->set_is_copied_from_dynobj();
         this->copied_symbol_dynobjs_[sym] = dynobj;
       }
   }
}

// SYM is defined using a COPY reloc.  Return the dynamic object where
// the original definition was found.

Dynobj*
Symbol_table::get_copy_source(const Symbol* sym) const
{
 gold_assert(sym->is_copied_from_dynobj());
 Copied_symbol_dynobjs::const_iterator p =
   this->copied_symbol_dynobjs_.find(sym);
 gold_assert(p != this->copied_symbol_dynobjs_.end());
 return p->second;
}

// Add any undefined symbols named on the command line.

void
Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
{
 if (parameters->options().any_undefined()
     || layout->script_options()->any_unreferenced())
   {
     if (parameters->target().get_size() == 32)
       {
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
         this->do_add_undefined_symbols_from_command_line<32>(layout);
#else
         gold_unreachable();
#endif
       }
     else if (parameters->target().get_size() == 64)
       {
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
         this->do_add_undefined_symbols_from_command_line<64>(layout);
#else
         gold_unreachable();
#endif
       }
     else
       gold_unreachable();
   }
}

template<int size>
void
Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
{
 for (options::String_set::const_iterator p =
        parameters->options().undefined_begin();
      p != parameters->options().undefined_end();
      ++p)
   this->add_undefined_symbol_from_command_line<size>(p->c_str());

 for (Script_options::referenced_const_iterator p =
        layout->script_options()->referenced_begin();
      p != layout->script_options()->referenced_end();
      ++p)
   this->add_undefined_symbol_from_command_line<size>(p->c_str());
}

template<int size>
void
Symbol_table::add_undefined_symbol_from_command_line(const char* name)
{
 if (this->lookup(name) != NULL)
   return;

 const char* version = NULL;

 Sized_symbol<size>* sym;
 Sized_symbol<size>* oldsym;
 bool resolve_oldsym;
 if (parameters->target().is_big_endian())
   {
#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
     sym = this->define_special_symbol<size, true>(&name, &version,
                                                   false,
                                                   elfcpp::STV_DEFAULT,
                                                   &oldsym,
                                                   &resolve_oldsym,
                                                   false);
#else
     gold_unreachable();
#endif
   }
 else
   {
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
     sym = this->define_special_symbol<size, false>(&name, &version,
                                                    false,
                                                    elfcpp::STV_DEFAULT,
                                                    &oldsym,
                                                    &resolve_oldsym,
                                                    false);
#else
     gold_unreachable();
#endif
   }

 gold_assert(oldsym == NULL);

 sym->init_undefined(name, version, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
                     elfcpp::STV_DEFAULT, 0);
 ++this->saw_undefined_;
}

// Set the dynamic symbol indexes.  INDEX is the index of the first
// global dynamic symbol.  Pointers to the global symbols are stored
// into the vector SYMS.  The names are added to DYNPOOL.
// This returns an updated dynamic symbol index.

unsigned int
Symbol_table::set_dynsym_indexes(unsigned int index,
                                unsigned int* pforced_local_count,
                                std::vector<Symbol*>* syms,
                                Stringpool* dynpool,
                                Versions* versions)
{
 // First process all the symbols which have been forced to be local,
 // as they must appear before all global symbols.
 unsigned int forced_local_count = 0;
 for (Forced_locals::iterator p = this->forced_locals_.begin();
      p != this->forced_locals_.end();
      ++p)
   {
     Symbol* sym = *p;
     gold_assert(sym->is_forced_local());
     if (sym->has_dynsym_index())
       continue;
     if (!sym->should_add_dynsym_entry(this))
       sym->set_dynsym_index(-1U);
     else
       {
         sym->set_dynsym_index(index);
         ++index;
         ++forced_local_count;
         dynpool->add(sym->name(), false, NULL);
         if (sym->type() == elfcpp::STT_GNU_IFUNC)
           this->set_has_gnu_output();
       }
   }
 *pforced_local_count = forced_local_count;

 // Allow a target to set dynsym indexes.
 if (parameters->target().has_custom_set_dynsym_indexes())
   {
     std::vector<Symbol*> dyn_symbols;
     for (Symbol_table_type::iterator p = this->table_.begin();
          p != this->table_.end();
          ++p)
       {
         Symbol* sym = p->second;
         if (sym->is_forced_local())
           continue;
         if (!sym->should_add_dynsym_entry(this))
           sym->set_dynsym_index(-1U);
         else
           {
             dyn_symbols.push_back(sym);
             if (sym->type() == elfcpp::STT_GNU_IFUNC
                 || (sym->binding() == elfcpp::STB_GNU_UNIQUE
                     && parameters->options().gnu_unique()))
               this->set_has_gnu_output();
           }
       }

     return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
                                                    dynpool, versions, this);
   }

 for (Symbol_table_type::iterator p = this->table_.begin();
      p != this->table_.end();
      ++p)
   {
     Symbol* sym = p->second;

     if (sym->is_forced_local())
       continue;

     // Note that SYM may already have a dynamic symbol index, since
     // some symbols appear more than once in the symbol table, with
     // and without a version.

     if (!sym->should_add_dynsym_entry(this))
       sym->set_dynsym_index(-1U);
     else if (!sym->has_dynsym_index())
       {
         sym->set_dynsym_index(index);
         ++index;
         syms->push_back(sym);
         dynpool->add(sym->name(), false, NULL);
         if (sym->type() == elfcpp::STT_GNU_IFUNC
             || (sym->binding() == elfcpp::STB_GNU_UNIQUE
                 && parameters->options().gnu_unique()))
           this->set_has_gnu_output();

         // Record any version information, except those from
         // as-needed libraries not seen to be needed.  Note that the
         // is_needed state for such libraries can change in this loop.
         if (sym->version() != NULL)
           {
             if (!sym->is_from_dynobj()
                 || !sym->object()->as_needed()
                 || sym->object()->is_needed())
               versions->record_version(this, dynpool, sym);
             else
               {
                 if (parameters->options().warn_drop_version())
                   gold_warning(_("discarding version information for "
                                  "%s@%s, defined in unused shared library %s "
                                  "(linked with --as-needed)"),
                                sym->name(), sym->version(),
                                sym->object()->name().c_str());
                 sym->clear_version();
               }
           }
       }
   }

 // Finish up the versions.  In some cases this may add new dynamic
 // symbols.
 index = versions->finalize(this, index, syms);

 // Process target-specific symbols.
 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
      p != this->target_symbols_.end();
      ++p)
   {
     (*p)->set_dynsym_index(index);
     ++index;
     syms->push_back(*p);
     dynpool->add((*p)->name(), false, NULL);
   }

 return index;
}

// Set the final values for all the symbols.  The index of the first
// global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
// file offset OFF.  Add their names to POOL.  Return the new file
// offset.  Update *PLOCAL_SYMCOUNT if necessary.  DYNOFF and
// DYN_GLOBAL_INDEX refer to the start of the symbols that will be
// written from the global symbol table in Symtab::write_globals(),
// which will include forced-local symbols.  DYN_GLOBAL_INDEX is
// not necessarily the same as the sh_info field for the .dynsym
// section, which will point to the first real global symbol.

off_t
Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
                      size_t dyncount, Stringpool* pool,
                      unsigned int* plocal_symcount)
{
 off_t ret;

 gold_assert(*plocal_symcount != 0);
 this->first_global_index_ = *plocal_symcount;

 this->dynamic_offset_ = dynoff;
 this->first_dynamic_global_index_ = dyn_global_index;
 this->dynamic_count_ = dyncount;

 if (parameters->target().get_size() == 32)
   {
#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
     ret = this->sized_finalize<32>(off, pool, plocal_symcount);
#else
     gold_unreachable();
#endif
   }
 else if (parameters->target().get_size() == 64)
   {
#if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
     ret = this->sized_finalize<64>(off, pool, plocal_symcount);
#else
     gold_unreachable();
#endif
   }
 else
   gold_unreachable();

 if (this->has_gnu_output_)
   {
     Target* target = const_cast<Target*>(&parameters->target());
     if (target->osabi() == elfcpp::ELFOSABI_NONE)
       target->set_osabi(elfcpp::ELFOSABI_GNU);
   }

 // Now that we have the final symbol table, we can reliably note
 // which symbols should get warnings.
 this->warnings_.note_warnings(this);

 return ret;
}

// SYM is going into the symbol table at *PINDEX.  Add the name to
// POOL, update *PINDEX and *POFF.

template<int size>
void
Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
                                 unsigned int* pindex, off_t* poff)
{
 sym->set_symtab_index(*pindex);
 if (sym->version() == NULL || !parameters->options().relocatable())
   pool->add(sym->name(), false, NULL);
 else
   pool->add(sym->versioned_name(), true, NULL);
 ++*pindex;
 *poff += elfcpp::Elf_sizes<size>::sym_size;
}

// Set the final value for all the symbols.  This is called after
// Layout::finalize, so all the output sections have their final
// address.

template<int size>
off_t
Symbol_table::sized_finalize(off_t off, Stringpool* pool,
                            unsigned int* plocal_symcount)
{
 off = align_address(off, size >> 3);
 this->offset_ = off;

 unsigned int index = *plocal_symcount;
 const unsigned int orig_index = index;

 // First do all the symbols which have been forced to be local, as
 // they must appear before all global symbols.
 for (Forced_locals::iterator p = this->forced_locals_.begin();
      p != this->forced_locals_.end();
      ++p)
   {
     Symbol* sym = *p;
     gold_assert(sym->is_forced_local());
     if (this->sized_finalize_symbol<size>(sym))
       {
         this->add_to_final_symtab<size>(sym, pool, &index, &off);
         ++*plocal_symcount;
         if (sym->type() == elfcpp::STT_GNU_IFUNC)
           this->set_has_gnu_output();
       }
   }

 // Now do all the remaining symbols.
 for (Symbol_table_type::iterator p = this->table_.begin();
      p != this->table_.end();
      ++p)
   {
     Symbol* sym = p->second;
     if (this->sized_finalize_symbol<size>(sym))
       {
         this->add_to_final_symtab<size>(sym, pool, &index, &off);
         if (sym->type() == elfcpp::STT_GNU_IFUNC
             || (sym->binding() == elfcpp::STB_GNU_UNIQUE
                 && parameters->options().gnu_unique()))
           this->set_has_gnu_output();
       }
   }

 // Now do target-specific symbols.
 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
      p != this->target_symbols_.end();
      ++p)
   {
     this->add_to_final_symtab<size>(*p, pool, &index, &off);
   }

 this->output_count_ = index - orig_index;

 return off;
}

// Compute the final value of SYM and store status in location PSTATUS.
// During relaxation, this may be called multiple times for a symbol to
// compute its would-be final value in each relaxation pass.

template<int size>
typename Sized_symbol<size>::Value_type
Symbol_table::compute_final_value(
   const Sized_symbol<size>* sym,
   Compute_final_value_status* pstatus) const
{
 typedef typename Sized_symbol<size>::Value_type Value_type;
 Value_type value;

 switch (sym->source())
   {
   case Symbol::FROM_OBJECT:
     {
       bool is_ordinary;
       unsigned int shndx = sym->shndx(&is_ordinary);

       if (!is_ordinary
           && shndx != elfcpp::SHN_ABS
           && !Symbol::is_common_shndx(shndx))
         {
           *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
           return 0;
         }

       Object* symobj = sym->object();
       if (symobj->is_dynamic())
         {
           value = 0;
           shndx = elfcpp::SHN_UNDEF;
         }
       else if (symobj->pluginobj() != NULL)
         {
           value = 0;
           shndx = elfcpp::SHN_UNDEF;
         }
       else if (shndx == elfcpp::SHN_UNDEF)
         value = 0;
       else if (!is_ordinary
                && (shndx == elfcpp::SHN_ABS
                    || Symbol::is_common_shndx(shndx)))
         value = sym->value();
       else
         {
           Relobj* relobj = static_cast<Relobj*>(symobj);
           Output_section* os = relobj->output_section(shndx);

           if (this->is_section_folded(relobj, shndx))
             {
               gold_assert(os == NULL);
               // Get the os of the section it is folded onto.
               Section_id folded = this->icf_->get_folded_section(relobj,
                                                                  shndx);
               gold_assert(folded.first != NULL);
               Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
               unsigned folded_shndx = folded.second;

               os = folded_obj->output_section(folded_shndx);
               gold_assert(os != NULL);

               // Replace (relobj, shndx) with canonical ICF input section.
               shndx = folded_shndx;
               relobj = folded_obj;
             }

           uint64_t secoff64 = relobj->output_section_offset(shndx);
           if (os == NULL)
             {
               bool static_or_reloc = (parameters->doing_static_link() ||
                                       parameters->options().relocatable());
               gold_assert(static_or_reloc || sym->dynsym_index() == -1U);

               *pstatus = CFVS_NO_OUTPUT_SECTION;
               return 0;
             }

           if (secoff64 == -1ULL)
             {
               // The section needs special handling (e.g., a merge section).

               value = os->output_address(relobj, shndx, sym->value());
             }
           else
             {
               Value_type secoff =
                 convert_types<Value_type, uint64_t>(secoff64);
               if (sym->type() == elfcpp::STT_TLS)
                 value = sym->value() + os->tls_offset() + secoff;
               else
                 value = sym->value() + os->address() + secoff;
             }
         }
     }
     break;

   case Symbol::IN_OUTPUT_DATA:
     {
       Output_data* od = sym->output_data();
       value = sym->value();
       if (sym->type() != elfcpp::STT_TLS)
         value += od->address();
       else
         {
           Output_section* os = od->output_section();
           gold_assert(os != NULL);
           value += os->tls_offset() + (od->address() - os->address());
         }
       if (sym->offset_is_from_end())
         value += od->data_size();
     }
     break;

   case Symbol::IN_OUTPUT_SEGMENT:
     {
       Output_segment* os = sym->output_segment();
       value = sym->value();
       if (sym->type() != elfcpp::STT_TLS)
         value += os->vaddr();
       switch (sym->offset_base())
         {
         case Symbol::SEGMENT_START:
           break;
         case Symbol::SEGMENT_END:
           value += os->memsz();
           break;
         case Symbol::SEGMENT_BSS:
           value += os->filesz();
           break;
         default:
           gold_unreachable();
         }
     }
     break;

   case Symbol::IS_CONSTANT:
     value = sym->value();
     break;

   case Symbol::IS_UNDEFINED:
     value = 0;
     break;

   default:
     gold_unreachable();
   }

 *pstatus = CFVS_OK;
 return value;
}

// Finalize the symbol SYM.  This returns true if the symbol should be
// added to the symbol table, false otherwise.

template<int size>
bool
Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
{
 typedef typename Sized_symbol<size>::Value_type Value_type;

 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);

 // The default version of a symbol may appear twice in the symbol
 // table.  We only need to finalize it once.
 if (sym->has_symtab_index())
   return false;

 if (!sym->in_reg())
   {
     gold_assert(!sym->has_symtab_index());
     sym->set_symtab_index(-1U);
     gold_assert(sym->dynsym_index() == -1U);
     return false;
   }

 // If the symbol is only present on plugin files, the plugin decided we
 // don't need it.
 if (!sym->in_real_elf())
   {
     gold_assert(!sym->has_symtab_index());
     sym->set_symtab_index(-1U);
     return false;
   }

 // Compute final symbol value.
 Compute_final_value_status status;
 Value_type value = this->compute_final_value(sym, &status);

 switch (status)
   {
   case CFVS_OK:
     break;
   case CFVS_UNSUPPORTED_SYMBOL_SECTION:
     {
       bool is_ordinary;
       unsigned int shndx = sym->shndx(&is_ordinary);
       gold_error(_("%s: unsupported symbol section 0x%x"),
                  sym->demangled_name().c_str(), shndx);
     }
     break;
   case CFVS_NO_OUTPUT_SECTION:
     sym->set_symtab_index(-1U);
     return false;
   default:
     gold_unreachable();
   }

 sym->set_value(value);

 if (parameters->options().strip_all()
     || !parameters->options().should_retain_symbol(sym->name()))
   {
     sym->set_symtab_index(-1U);
     return false;
   }

 return true;
}

// Write out the global symbols.

void
Symbol_table::write_globals(const Stringpool* sympool,
                           const Stringpool* dynpool,
                           Output_symtab_xindex* symtab_xindex,
                           Output_symtab_xindex* dynsym_xindex,
                           Output_file* of) const
{
 switch (parameters->size_and_endianness())
   {
#ifdef HAVE_TARGET_32_LITTLE
   case Parameters::TARGET_32_LITTLE:
     this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
                                          dynsym_xindex, of);
     break;
#endif
#ifdef HAVE_TARGET_32_BIG
   case Parameters::TARGET_32_BIG:
     this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
                                         dynsym_xindex, of);
     break;
#endif
#ifdef HAVE_TARGET_64_LITTLE
   case Parameters::TARGET_64_LITTLE:
     this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
                                          dynsym_xindex, of);
     break;
#endif
#ifdef HAVE_TARGET_64_BIG
   case Parameters::TARGET_64_BIG:
     this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
                                         dynsym_xindex, of);
     break;
#endif
   default:
     gold_unreachable();
   }
}

// Write out the global symbols.

template<int size, bool big_endian>
void
Symbol_table::sized_write_globals(const Stringpool* sympool,
                                 const Stringpool* dynpool,
                                 Output_symtab_xindex* symtab_xindex,
                                 Output_symtab_xindex* dynsym_xindex,
                                 Output_file* of) const
{
 const Target& target = parameters->target();

 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;

 const unsigned int output_count = this->output_count_;
 const section_size_type oview_size = output_count * sym_size;
 const unsigned int first_global_index = this->first_global_index_;
 unsigned char* psyms;
 if (this->offset_ == 0 || output_count == 0)
   psyms = NULL;
 else
   psyms = of->get_output_view(this->offset_, oview_size);

 const unsigned int dynamic_count = this->dynamic_count_;
 const section_size_type dynamic_size = dynamic_count * sym_size;
 const unsigned int first_dynamic_global_index =
   this->first_dynamic_global_index_;
 unsigned char* dynamic_view;
 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
   dynamic_view = NULL;
 else
   dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);

 for (Symbol_table_type::const_iterator p = this->table_.begin();
      p != this->table_.end();
      ++p)
   {
     Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);

     // Possibly warn about unresolved symbols in shared libraries.
     this->warn_about_undefined_dynobj_symbol(sym);

     unsigned int sym_index = sym->symtab_index();
     unsigned int dynsym_index;
     if (dynamic_view == NULL)
       dynsym_index = -1U;
     else
       dynsym_index = sym->dynsym_index();

     if (sym_index == -1U && dynsym_index == -1U)
       {
         // This symbol is not included in the output file.
         continue;
       }

     unsigned int shndx;
     typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
     typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
     elfcpp::STB binding = sym->binding();

     // If --weak-unresolved-symbols is set, change binding of unresolved
     // global symbols to STB_WEAK.
     if (parameters->options().weak_unresolved_symbols()
         && binding == elfcpp::STB_GLOBAL
         && sym->is_undefined())
       binding = elfcpp::STB_WEAK;

     // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
     if (binding == elfcpp::STB_GNU_UNIQUE
         && !parameters->options().gnu_unique())
       binding = elfcpp::STB_GLOBAL;

     switch (sym->source())
       {
       case Symbol::FROM_OBJECT:
         {
           bool is_ordinary;
           unsigned int in_shndx = sym->shndx(&is_ordinary);

           if (!is_ordinary
               && in_shndx != elfcpp::SHN_ABS
               && !Symbol::is_common_shndx(in_shndx))
             {
               gold_error(_("%s: unsupported symbol section 0x%x"),
                          sym->demangled_name().c_str(), in_shndx);
               shndx = in_shndx;
             }
           else
             {
               Object* symobj = sym->object();
               if (symobj->is_dynamic())
                 {
                   if (sym->needs_dynsym_value())
                     dynsym_value = target.dynsym_value(sym);
                   shndx = elfcpp::SHN_UNDEF;
                   if (sym->is_undef_binding_weak())
                     binding = elfcpp::STB_WEAK;
                   else
                     binding = elfcpp::STB_GLOBAL;
                 }
               else if (symobj->pluginobj() != NULL)
                 shndx = elfcpp::SHN_UNDEF;
               else if (in_shndx == elfcpp::SHN_UNDEF
                        || (!is_ordinary
                            && (in_shndx == elfcpp::SHN_ABS
                                || Symbol::is_common_shndx(in_shndx))))
                 shndx = in_shndx;
               else
                 {
                   Relobj* relobj = static_cast<Relobj*>(symobj);
                   Output_section* os = relobj->output_section(in_shndx);
                   if (this->is_section_folded(relobj, in_shndx))
                     {
                       // This global symbol must be written out even though
                       // it is folded.
                       // Get the os of the section it is folded onto.
                       Section_id folded =
                            this->icf_->get_folded_section(relobj, in_shndx);
                       gold_assert(folded.first !=NULL);
                       Relobj* folded_obj =
                         reinterpret_cast<Relobj*>(folded.first);
                       os = folded_obj->output_section(folded.second);
                       gold_assert(os != NULL);
                     }
                   gold_assert(os != NULL);
                   shndx = os->out_shndx();

                   if (shndx >= elfcpp::SHN_LORESERVE)
                     {
                       if (sym_index != -1U)
                         symtab_xindex->add(sym_index, shndx);
                       if (dynsym_index != -1U)
                         dynsym_xindex->add(dynsym_index, shndx);
                       shndx = elfcpp::SHN_XINDEX;
                     }

                   // In object files symbol values are section
                   // relative.
                   if (parameters->options().relocatable())
                     sym_value -= os->address();
                 }
             }
         }
         break;

       case Symbol::IN_OUTPUT_DATA:
         {
           Output_data* od = sym->output_data();

           shndx = od->out_shndx();
           if (shndx >= elfcpp::SHN_LORESERVE)
             {
               if (sym_index != -1U)
                 symtab_xindex->add(sym_index, shndx);
               if (dynsym_index != -1U)
                 dynsym_xindex->add(dynsym_index, shndx);
               shndx = elfcpp::SHN_XINDEX;
             }

           // In object files symbol values are section
           // relative.
           if (parameters->options().relocatable())
             {
               Output_section* os = od->output_section();
               gold_assert(os != NULL);
               sym_value -= os->address();
             }
         }
         break;

       case Symbol::IN_OUTPUT_SEGMENT:
         {
           Output_segment* oseg = sym->output_segment();
           Output_section* osect = oseg->first_section();
           if (osect == NULL)
             shndx = elfcpp::SHN_ABS;
           else
             shndx = osect->out_shndx();
         }
         break;

       case Symbol::IS_CONSTANT:
         shndx = elfcpp::SHN_ABS;
         break;

       case Symbol::IS_UNDEFINED:
         shndx = elfcpp::SHN_UNDEF;
         break;

       default:
         gold_unreachable();
       }

     if (sym_index != -1U)
       {
         sym_index -= first_global_index;
         gold_assert(sym_index < output_count);
         unsigned char* ps = psyms + (sym_index * sym_size);
         this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
                                                    binding, sympool, ps);
       }

     if (dynsym_index != -1U)
       {
         dynsym_index -= first_dynamic_global_index;
         gold_assert(dynsym_index < dynamic_count);
         unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
         this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
                                                    binding, dynpool, pd);
         // Allow a target to adjust dynamic symbol value.
         parameters->target().adjust_dyn_symbol(sym, pd);
       }
   }

 // Write the target-specific symbols.
 for (std::vector<Symbol*>::const_iterator p = this->target_symbols_.begin();
      p != this->target_symbols_.end();
      ++p)
   {
     Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(*p);

     unsigned int sym_index = sym->symtab_index();
     unsigned int dynsym_index;
     if (dynamic_view == NULL)
       dynsym_index = -1U;
     else
       dynsym_index = sym->dynsym_index();

     unsigned int shndx;
     switch (sym->source())
       {
       case Symbol::IS_CONSTANT:
         shndx = elfcpp::SHN_ABS;
         break;
       case Symbol::IS_UNDEFINED:
         shndx = elfcpp::SHN_UNDEF;
         break;
       default:
         gold_unreachable();
       }

     if (sym_index != -1U)
       {
         sym_index -= first_global_index;
         gold_assert(sym_index < output_count);
         unsigned char* ps = psyms + (sym_index * sym_size);
         this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
                                                    sym->binding(), sympool,
                                                    ps);
       }

     if (dynsym_index != -1U)
       {
         dynsym_index -= first_dynamic_global_index;
         gold_assert(dynsym_index < dynamic_count);
         unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
         this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
                                                    sym->binding(), dynpool,
                                                    pd);
       }
   }

 of->write_output_view(this->offset_, oview_size, psyms);
 if (dynamic_view != NULL)
   of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
}

// Write out the symbol SYM, in section SHNDX, to P.  POOL is the
// strtab holding the name.

template<int size, bool big_endian>
void
Symbol_table::sized_write_symbol(
   Sized_symbol<size>* sym,
   typename elfcpp::Elf_types<size>::Elf_Addr value,
   unsigned int shndx,
   elfcpp::STB binding,
   const Stringpool* pool,
   unsigned char* p) const
{
 elfcpp::Sym_write<size, big_endian> osym(p);
 if (sym->version() == NULL || !parameters->options().relocatable())
   osym.put_st_name(pool->get_offset(sym->name()));
 else
   osym.put_st_name(pool->get_offset(sym->versioned_name()));
 osym.put_st_value(value);
 // Use a symbol size of zero for undefined symbols from shared libraries.
 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
   osym.put_st_size(0);
 else
   osym.put_st_size(sym->symsize());
 elfcpp::STT type = sym->type();
 gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
 // A version script may have overridden the default binding.
 if (sym->is_forced_local())
   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
 else
   osym.put_st_info(elfcpp::elf_st_info(binding, type));
 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
 osym.put_st_shndx(shndx);
}

// Check for unresolved symbols in shared libraries.  This is
// controlled by the --allow-shlib-undefined option.

// We only warn about libraries for which we have seen all the
// DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
// which were not seen in this link.  If we didn't see a DT_NEEDED
// entry, we aren't going to be able to reliably report whether the
// symbol is undefined.

// We also don't warn about libraries found in a system library
// directory (e.g., /lib or /usr/lib); we assume that those libraries
// are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
// can have undefined references satisfied by ld-linux.so.

inline void
Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
{
 bool dummy;
 if (sym->source() == Symbol::FROM_OBJECT
     && sym->object()->is_dynamic()
     && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
     && sym->binding() != elfcpp::STB_WEAK
     && !parameters->options().allow_shlib_undefined()
     && !parameters->target().is_defined_by_abi(sym)
     && !sym->object()->is_in_system_directory())
   {
     // A very ugly cast.
     Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
     if (!dynobj->has_unknown_needed_entries())
       gold_undefined_symbol(sym);
   }
}

// Write out a section symbol.  Return the update offset.

void
Symbol_table::write_section_symbol(const Output_section* os,
                                  Output_symtab_xindex* symtab_xindex,
                                  Output_file* of,
                                  off_t offset) const
{
 switch (parameters->size_and_endianness())
   {
#ifdef HAVE_TARGET_32_LITTLE
   case Parameters::TARGET_32_LITTLE:
     this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
                                                 offset);
     break;
#endif
#ifdef HAVE_TARGET_32_BIG
   case Parameters::TARGET_32_BIG:
     this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
                                                offset);
     break;
#endif
#ifdef HAVE_TARGET_64_LITTLE
   case Parameters::TARGET_64_LITTLE:
     this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
                                                 offset);
     break;
#endif
#ifdef HAVE_TARGET_64_BIG
   case Parameters::TARGET_64_BIG:
     this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
                                                offset);
     break;
#endif
   default:
     gold_unreachable();
   }
}

// Write out a section symbol, specialized for size and endianness.

template<int size, bool big_endian>
void
Symbol_table::sized_write_section_symbol(const Output_section* os,
                                        Output_symtab_xindex* symtab_xindex,
                                        Output_file* of,
                                        off_t offset) const
{
 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;

 unsigned char* pov = of->get_output_view(offset, sym_size);

 elfcpp::Sym_write<size, big_endian> osym(pov);
 osym.put_st_name(0);
 if (parameters->options().relocatable())
   osym.put_st_value(0);
 else
   osym.put_st_value(os->address());
 osym.put_st_size(0);
 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
                                      elfcpp::STT_SECTION));
 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));

 unsigned int shndx = os->out_shndx();
 if (shndx >= elfcpp::SHN_LORESERVE)
   {
     symtab_xindex->add(os->symtab_index(), shndx);
     shndx = elfcpp::SHN_XINDEX;
   }
 osym.put_st_shndx(shndx);

 of->write_output_view(offset, sym_size, pov);
}

// Print statistical information to stderr.  This is used for --stats.

void
Symbol_table::print_stats() const
{
#if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
         program_name, this->table_.size(), this->table_.bucket_count());
#else
 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
         program_name, this->table_.size());
#endif
 this->namepool_.print_stats("symbol table stringpool");
}

// We check for ODR violations by looking for symbols with the same
// name for which the debugging information reports that they were
// defined in disjoint source locations.  When comparing the source
// location, we consider instances with the same base filename to be
// the same.  This is because different object files/shared libraries
// can include the same header file using different paths, and
// different optimization settings can make the line number appear to
// be a couple lines off, and we don't want to report an ODR violation
// in those cases.

// This struct is used to compare line information, as returned by
// Dwarf_line_info::one_addr2line.  It implements a < comparison
// operator used with std::sort.

struct Odr_violation_compare
{
 bool
 operator()(const std::string& s1, const std::string& s2) const
 {
   // Inputs should be of the form "dirname/filename:linenum" where
   // "dirname/" is optional.  We want to compare just the filename:linenum.

   // Find the last '/' in each string.
   std::string::size_type s1begin = s1.rfind('/');
   std::string::size_type s2begin = s2.rfind('/');
   // If there was no '/' in a string, start at the beginning.
   if (s1begin == std::string::npos)
     s1begin = 0;
   if (s2begin == std::string::npos)
     s2begin = 0;
   return s1.compare(s1begin, std::string::npos,
                     s2, s2begin, std::string::npos) < 0;
 }
};

// Returns all of the lines attached to LOC, not just the one the
// instruction actually came from.
std::vector<std::string>
Symbol_table::linenos_from_loc(const Task* task,
                              const Symbol_location& loc)
{
 // We need to lock the object in order to read it.  This
 // means that we have to run in a singleton Task.  If we
 // want to run this in a general Task for better
 // performance, we will need one Task for object, plus
 // appropriate locking to ensure that we don't conflict with
 // other uses of the object.  Also note, one_addr2line is not
 // currently thread-safe.
 Task_lock_obj<Object> tl(task, loc.object);

 std::vector<std::string> result;
 Symbol_location code_loc = loc;
 parameters->target().function_location(&code_loc);
 // 16 is the size of the object-cache that one_addr2line should use.
 std::string canonical_result = Dwarf_line_info::one_addr2line(
     code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
 if (!canonical_result.empty())
   result.push_back(canonical_result);
 return result;
}

// OutputIterator that records if it was ever assigned to.  This
// allows it to be used with std::set_intersection() to check for
// intersection rather than computing the intersection.
struct Check_intersection
{
 Check_intersection()
   : value_(false)
 {}

 bool had_intersection() const
 { return this->value_; }

 Check_intersection& operator++()
 { return *this; }

 Check_intersection& operator*()
 { return *this; }

 template<typename T>
 Check_intersection& operator=(const T&)
 {
   this->value_ = true;
   return *this;
 }

private:
 bool value_;
};

// Check candidate_odr_violations_ to find symbols with the same name
// but apparently different definitions (different source-file/line-no
// for each line assigned to the first instruction).

void
Symbol_table::detect_odr_violations(const Task* task,
                                   const char* output_file_name) const
{
 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
      it != candidate_odr_violations_.end();
      ++it)
   {
     const char* const symbol_name = it->first;

     std::string first_object_name;
     std::vector<std::string> first_object_linenos;

     Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
         locs = it->second.begin();
     const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
         locs_end = it->second.end();
     for (; locs != locs_end && first_object_linenos.empty(); ++locs)
       {
         // Save the line numbers from the first definition to
         // compare to the other definitions.  Ideally, we'd compare
         // every definition to every other, but we don't want to
         // take O(N^2) time to do this.  This shortcut may cause
         // false negatives that appear or disappear depending on the
         // link order, but it won't cause false positives.
         first_object_name = locs->object->name();
         first_object_linenos = this->linenos_from_loc(task, *locs);
       }
     if (first_object_linenos.empty())
       continue;

     // Sort by Odr_violation_compare to make std::set_intersection work.
     std::string first_object_canonical_result = first_object_linenos.back();
     std::sort(first_object_linenos.begin(), first_object_linenos.end(),
               Odr_violation_compare());

     for (; locs != locs_end; ++locs)
       {
         std::vector<std::string> linenos =
             this->linenos_from_loc(task, *locs);
         // linenos will be empty if we couldn't parse the debug info.
         if (linenos.empty())
           continue;
         // Sort by Odr_violation_compare to make std::set_intersection work.
         gold_assert(!linenos.empty());
         std::string second_object_canonical_result = linenos.back();
         std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());

         Check_intersection intersection_result =
             std::set_intersection(first_object_linenos.begin(),
                                   first_object_linenos.end(),
                                   linenos.begin(),
                                   linenos.end(),
                                   Check_intersection(),
                                   Odr_violation_compare());
         if (!intersection_result.had_intersection())
           {
             gold_warning(_("while linking %s: symbol '%s' defined in "
                            "multiple places (possible ODR violation):"),
                          output_file_name, demangle(symbol_name).c_str());
             // This only prints one location from each definition,
             // which may not be the location we expect to intersect
             // with another definition.  We could print the whole
             // set of locations, but that seems too verbose.
             fprintf(stderr, _("  %s from %s\n"),
                     first_object_canonical_result.c_str(),
                     first_object_name.c_str());
             fprintf(stderr, _("  %s from %s\n"),
                     second_object_canonical_result.c_str(),
                     locs->object->name().c_str());
             // Only print one broken pair, to avoid needing to
             // compare against a list of the disjoint definition
             // locations we've found so far.  (If we kept comparing
             // against just the first one, we'd get a lot of
             // redundant complaints about the second definition
             // location.)
             break;
           }
       }
   }
 // We only call one_addr2line() in this function, so we can clear its cache.
 Dwarf_line_info::clear_addr2line_cache();
}

// Warnings functions.

// Add a new warning.

void
Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
                     const std::string& warning)
{
 name = symtab->canonicalize_name(name);
 this->warnings_[name].set(obj, warning);
}

// Look through the warnings and mark the symbols for which we should
// warn.  This is called during Layout::finalize when we know the
// sources for all the symbols.

void
Warnings::note_warnings(Symbol_table* symtab)
{
 for (Warning_table::iterator p = this->warnings_.begin();
      p != this->warnings_.end();
      ++p)
   {
     Symbol* sym = symtab->lookup(p->first, NULL);
     if (sym != NULL
         && sym->source() == Symbol::FROM_OBJECT
         && sym->object() == p->second.object)
       sym->set_has_warning();
   }
}

// Issue a warning.  This is called when we see a relocation against a
// symbol for which has a warning.

template<int size, bool big_endian>
void
Warnings::issue_warning(const Symbol* sym,
                       const Relocate_info<size, big_endian>* relinfo,
                       size_t relnum, off_t reloffset) const
{
 gold_assert(sym->has_warning());

 // We don't want to issue a warning for a relocation against the
 // symbol in the same object file in which the symbol is defined.
 if (sym->object() == relinfo->object)
   return;

 Warning_table::const_iterator p = this->warnings_.find(sym->name());
 gold_assert(p != this->warnings_.end());
 gold_warning_at_location(relinfo, relnum, reloffset,
                          "%s", p->second.text.c_str());
}

// Instantiate the templates we need.  We could use the configure
// script to restrict this to only the ones needed for implemented
// targets.

#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
template
void
Sized_symbol<32>::allocate_common(Output_data*, Value_type);
#endif

#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
template
void
Sized_symbol<64>::allocate_common(Output_data*, Value_type);
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
void
Symbol_table::add_from_relobj<32, false>(
   Sized_relobj_file<32, false>* relobj,
   const unsigned char* syms,
   size_t count,
   size_t symndx_offset,
   const char* sym_names,
   size_t sym_name_size,
   Sized_relobj_file<32, false>::Symbols* sympointers,
   size_t* defined);
#endif

#ifdef HAVE_TARGET_32_BIG
template
void
Symbol_table::add_from_relobj<32, true>(
   Sized_relobj_file<32, true>* relobj,
   const unsigned char* syms,
   size_t count,
   size_t symndx_offset,
   const char* sym_names,
   size_t sym_name_size,
   Sized_relobj_file<32, true>::Symbols* sympointers,
   size_t* defined);
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
void
Symbol_table::add_from_relobj<64, false>(
   Sized_relobj_file<64, false>* relobj,
   const unsigned char* syms,
   size_t count,
   size_t symndx_offset,
   const char* sym_names,
   size_t sym_name_size,
   Sized_relobj_file<64, false>::Symbols* sympointers,
   size_t* defined);
#endif

#ifdef HAVE_TARGET_64_BIG
template
void
Symbol_table::add_from_relobj<64, true>(
   Sized_relobj_file<64, true>* relobj,
   const unsigned char* syms,
   size_t count,
   size_t symndx_offset,
   const char* sym_names,
   size_t sym_name_size,
   Sized_relobj_file<64, true>::Symbols* sympointers,
   size_t* defined);
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
Symbol*
Symbol_table::add_from_pluginobj<32, false>(
   Sized_pluginobj<32, false>* obj,
   const char* name,
   const char* ver,
   elfcpp::Sym<32, false>* sym);
#endif

#ifdef HAVE_TARGET_32_BIG
template
Symbol*
Symbol_table::add_from_pluginobj<32, true>(
   Sized_pluginobj<32, true>* obj,
   const char* name,
   const char* ver,
   elfcpp::Sym<32, true>* sym);
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
Symbol*
Symbol_table::add_from_pluginobj<64, false>(
   Sized_pluginobj<64, false>* obj,
   const char* name,
   const char* ver,
   elfcpp::Sym<64, false>* sym);
#endif

#ifdef HAVE_TARGET_64_BIG
template
Symbol*
Symbol_table::add_from_pluginobj<64, true>(
   Sized_pluginobj<64, true>* obj,
   const char* name,
   const char* ver,
   elfcpp::Sym<64, true>* sym);
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
void
Symbol_table::add_from_dynobj<32, false>(
   Sized_dynobj<32, false>* dynobj,
   const unsigned char* syms,
   size_t count,
   const char* sym_names,
   size_t sym_name_size,
   const unsigned char* versym,
   size_t versym_size,
   const std::vector<const char*>* version_map,
   Sized_relobj_file<32, false>::Symbols* sympointers,
   size_t* defined);
#endif

#ifdef HAVE_TARGET_32_BIG
template
void
Symbol_table::add_from_dynobj<32, true>(
   Sized_dynobj<32, true>* dynobj,
   const unsigned char* syms,
   size_t count,
   const char* sym_names,
   size_t sym_name_size,
   const unsigned char* versym,
   size_t versym_size,
   const std::vector<const char*>* version_map,
   Sized_relobj_file<32, true>::Symbols* sympointers,
   size_t* defined);
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
void
Symbol_table::add_from_dynobj<64, false>(
   Sized_dynobj<64, false>* dynobj,
   const unsigned char* syms,
   size_t count,
   const char* sym_names,
   size_t sym_name_size,
   const unsigned char* versym,
   size_t versym_size,
   const std::vector<const char*>* version_map,
   Sized_relobj_file<64, false>::Symbols* sympointers,
   size_t* defined);
#endif

#ifdef HAVE_TARGET_64_BIG
template
void
Symbol_table::add_from_dynobj<64, true>(
   Sized_dynobj<64, true>* dynobj,
   const unsigned char* syms,
   size_t count,
   const char* sym_names,
   size_t sym_name_size,
   const unsigned char* versym,
   size_t versym_size,
   const std::vector<const char*>* version_map,
   Sized_relobj_file<64, true>::Symbols* sympointers,
   size_t* defined);
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
Sized_symbol<32>*
Symbol_table::add_from_incrobj(
   Object* obj,
   const char* name,
   const char* ver,
   elfcpp::Sym<32, false>* sym);
#endif

#ifdef HAVE_TARGET_32_BIG
template
Sized_symbol<32>*
Symbol_table::add_from_incrobj(
   Object* obj,
   const char* name,
   const char* ver,
   elfcpp::Sym<32, true>* sym);
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
Sized_symbol<64>*
Symbol_table::add_from_incrobj(
   Object* obj,
   const char* name,
   const char* ver,
   elfcpp::Sym<64, false>* sym);
#endif

#ifdef HAVE_TARGET_64_BIG
template
Sized_symbol<64>*
Symbol_table::add_from_incrobj(
   Object* obj,
   const char* name,
   const char* ver,
   elfcpp::Sym<64, true>* sym);
#endif

#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
template
void
Symbol_table::define_with_copy_reloc<32>(
   Sized_symbol<32>* sym,
   Output_data* posd,
   elfcpp::Elf_types<32>::Elf_Addr value);
#endif

#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
template
void
Symbol_table::define_with_copy_reloc<64>(
   Sized_symbol<64>* sym,
   Output_data* posd,
   elfcpp::Elf_types<64>::Elf_Addr value);
#endif

#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
template
void
Sized_symbol<32>::init_output_data(const char* name, const char* version,
                                  Output_data* od, Value_type value,
                                  Size_type symsize, elfcpp::STT type,
                                  elfcpp::STB binding,
                                  elfcpp::STV visibility,
                                  unsigned char nonvis,
                                  bool offset_is_from_end,
                                  bool is_predefined);

template
void
Sized_symbol<32>::init_constant(const char* name, const char* version,
                               Value_type value, Size_type symsize,
                               elfcpp::STT type, elfcpp::STB binding,
                               elfcpp::STV visibility, unsigned char nonvis,
                               bool is_predefined);

template
void
Sized_symbol<32>::init_undefined(const char* name, const char* version,
                                Value_type value, elfcpp::STT type,
                                elfcpp::STB binding, elfcpp::STV visibility,
                                unsigned char nonvis);
#endif

#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
template
void
Sized_symbol<64>::init_output_data(const char* name, const char* version,
                                  Output_data* od, Value_type value,
                                  Size_type symsize, elfcpp::STT type,
                                  elfcpp::STB binding,
                                  elfcpp::STV visibility,
                                  unsigned char nonvis,
                                  bool offset_is_from_end,
                                  bool is_predefined);

template
void
Sized_symbol<64>::init_constant(const char* name, const char* version,
                               Value_type value, Size_type symsize,
                               elfcpp::STT type, elfcpp::STB binding,
                               elfcpp::STV visibility, unsigned char nonvis,
                               bool is_predefined);

template
void
Sized_symbol<64>::init_undefined(const char* name, const char* version,
                                Value_type value, elfcpp::STT type,
                                elfcpp::STB binding, elfcpp::STV visibility,
                                unsigned char nonvis);
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
void
Warnings::issue_warning<32, false>(const Symbol* sym,
                                  const Relocate_info<32, false>* relinfo,
                                  size_t relnum, off_t reloffset) const;
#endif

#ifdef HAVE_TARGET_32_BIG
template
void
Warnings::issue_warning<32, true>(const Symbol* sym,
                                 const Relocate_info<32, true>* relinfo,
                                 size_t relnum, off_t reloffset) const;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
void
Warnings::issue_warning<64, false>(const Symbol* sym,
                                  const Relocate_info<64, false>* relinfo,
                                  size_t relnum, off_t reloffset) const;
#endif

#ifdef HAVE_TARGET_64_BIG
template
void
Warnings::issue_warning<64, true>(const Symbol* sym,
                                 const Relocate_info<64, true>* relinfo,
                                 size_t relnum, off_t reloffset) const;
#endif

} // End namespace gold.