// sparc.cc -- sparc target support for gold.

// Copyright (C) 2008-2024 Free Software Foundation, Inc.
// Written by David S. Miller <[email protected]>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#include "gold.h"

#include <cstdlib>
#include <cstdio>
#include <cstring>

#include "elfcpp.h"
#include "parameters.h"
#include "reloc.h"
#include "sparc.h"
#include "object.h"
#include "symtab.h"
#include "layout.h"
#include "output.h"
#include "copy-relocs.h"
#include "target.h"
#include "target-reloc.h"
#include "target-select.h"
#include "tls.h"
#include "errors.h"
#include "gc.h"

namespace
{

using namespace gold;

template<int size, bool big_endian>
class Output_data_plt_sparc;

template<int size, bool big_endian>
class Target_sparc : public Sized_target<size, big_endian>
{
public:
 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;

 Target_sparc()
   : Sized_target<size, big_endian>(&sparc_info),
     got_(NULL), plt_(NULL), rela_dyn_(NULL), rela_ifunc_(NULL),
     copy_relocs_(elfcpp::R_SPARC_COPY),
     got_mod_index_offset_(-1U), tls_get_addr_sym_(NULL),
     elf_machine_(sparc_info.machine_code), elf_flags_(0),
     elf_flags_set_(false), register_syms_()
 {
 }

 // Make a new symbol table entry.
 Sized_symbol<size>*
 make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t);

 // Process the relocations to determine unreferenced sections for
 // garbage collection.
 void
 gc_process_relocs(Symbol_table* symtab,
                   Layout* layout,
                   Sized_relobj_file<size, big_endian>* object,
                   unsigned int data_shndx,
                   unsigned int sh_type,
                   const unsigned char* prelocs,
                   size_t reloc_count,
                   Output_section* output_section,
                   bool needs_special_offset_handling,
                   size_t local_symbol_count,
                   const unsigned char* plocal_symbols);

 // Scan the relocations to look for symbol adjustments.
 void
 scan_relocs(Symbol_table* symtab,
             Layout* layout,
             Sized_relobj_file<size, big_endian>* object,
             unsigned int data_shndx,
             unsigned int sh_type,
             const unsigned char* prelocs,
             size_t reloc_count,
             Output_section* output_section,
             bool needs_special_offset_handling,
             size_t local_symbol_count,
             const unsigned char* plocal_symbols);
 // Finalize the sections.
 void
 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);

 // Return the value to use for a dynamic which requires special
 // treatment.
 uint64_t
 do_dynsym_value(const Symbol*) const;

 // Relocate a section.
 void
 relocate_section(const Relocate_info<size, big_endian>*,
                  unsigned int sh_type,
                  const unsigned char* prelocs,
                  size_t reloc_count,
                  Output_section* output_section,
                  bool needs_special_offset_handling,
                  unsigned char* view,
                  typename elfcpp::Elf_types<size>::Elf_Addr view_address,
                  section_size_type view_size,
                  const Reloc_symbol_changes*);

 // Scan the relocs during a relocatable link.
 void
 scan_relocatable_relocs(Symbol_table* symtab,
                         Layout* layout,
                         Sized_relobj_file<size, big_endian>* object,
                         unsigned int data_shndx,
                         unsigned int sh_type,
                         const unsigned char* prelocs,
                         size_t reloc_count,
                         Output_section* output_section,
                         bool needs_special_offset_handling,
                         size_t local_symbol_count,
                         const unsigned char* plocal_symbols,
                         Relocatable_relocs*);

 // Scan the relocs for --emit-relocs.
 void
 emit_relocs_scan(Symbol_table* symtab,
                  Layout* layout,
                  Sized_relobj_file<size, big_endian>* object,
                  unsigned int data_shndx,
                  unsigned int sh_type,
                  const unsigned char* prelocs,
                  size_t reloc_count,
                  Output_section* output_section,
                  bool needs_special_offset_handling,
                  size_t local_symbol_count,
                  const unsigned char* plocal_syms,
                  Relocatable_relocs* rr);

 // Emit relocations for a section.
 void
 relocate_relocs(const Relocate_info<size, big_endian>*,
                 unsigned int sh_type,
                 const unsigned char* prelocs,
                 size_t reloc_count,
                 Output_section* output_section,
                 typename elfcpp::Elf_types<size>::Elf_Off
                   offset_in_output_section,
                 unsigned char* view,
                 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
                 section_size_type view_size,
                 unsigned char* reloc_view,
                 section_size_type reloc_view_size);

 // Return whether SYM is defined by the ABI.
 bool
 do_is_defined_by_abi(const Symbol* sym) const
 { return strcmp(sym->name(), "___tls_get_addr") == 0; }

 // Return the PLT address to use for a global symbol.
 uint64_t
 do_plt_address_for_global(const Symbol* gsym) const
 { return this->plt_section()->address_for_global(gsym); }

 uint64_t
 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
 { return this->plt_section()->address_for_local(relobj, symndx); }

 // Return whether there is a GOT section.
 bool
 has_got_section() const
 { return this->got_ != NULL; }

 // Return the size of the GOT section.
 section_size_type
 got_size() const
 {
   gold_assert(this->got_ != NULL);
   return this->got_->data_size();
 }

 // Return the number of entries in the GOT.
 unsigned int
 got_entry_count() const
 {
   if (this->got_ == NULL)
     return 0;
   return this->got_size() / (size / 8);
 }

 // Return the address of the GOT.
 uint64_t
 got_address() const
 {
   if (this->got_ == NULL)
     return 0;
   return this->got_->address();
 }

 // Return the number of entries in the PLT.
 unsigned int
 plt_entry_count() const;

 // Return the offset of the first non-reserved PLT entry.
 unsigned int
 first_plt_entry_offset() const;

 // Return the size of each PLT entry.
 unsigned int
 plt_entry_size() const;

protected:
 // Make an ELF object.
 Object*
 do_make_elf_object(const std::string&, Input_file*, off_t,
                    const elfcpp::Ehdr<size, big_endian>& ehdr);

 void
 do_adjust_elf_header(unsigned char* view, int len);

private:

 // The class which scans relocations.
 class Scan
 {
 public:
   Scan()
     : issued_non_pic_error_(false)
   { }

   static inline int
   get_reference_flags(unsigned int r_type);

   inline void
   local(Symbol_table* symtab, Layout* layout, Target_sparc* target,
         Sized_relobj_file<size, big_endian>* object,
         unsigned int data_shndx,
         Output_section* output_section,
         const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
         const elfcpp::Sym<size, big_endian>& lsym,
         bool is_discarded);

   inline void
   global(Symbol_table* symtab, Layout* layout, Target_sparc* target,
          Sized_relobj_file<size, big_endian>* object,
          unsigned int data_shndx,
          Output_section* output_section,
          const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
          Symbol* gsym);

   inline bool
   local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
                                       Target_sparc* ,
                                       Sized_relobj_file<size, big_endian>* ,
                                       unsigned int ,
                                       Output_section* ,
                                       const elfcpp::Rela<size, big_endian>& ,
                                       unsigned int ,
                                       const elfcpp::Sym<size, big_endian>&)
   { return false; }

   inline bool
   global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
                                        Target_sparc* ,
                                        Sized_relobj_file<size, big_endian>* ,
                                        unsigned int ,
                                        Output_section* ,
                                        const elfcpp::Rela<size,
                                                           big_endian>& ,
                                        unsigned int , Symbol*)
   { return false; }


 private:
   static void
   unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
                           unsigned int r_type);

   static void
   unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
                            unsigned int r_type, Symbol*);

   static void
   generate_tls_call(Symbol_table* symtab, Layout* layout,
                     Target_sparc* target);

   void
   check_non_pic(Relobj*, unsigned int r_type);

   bool
   reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*,
                             unsigned int r_type);

   // Whether we have issued an error about a non-PIC compilation.
   bool issued_non_pic_error_;
 };

 // The class which implements relocation.
 class Relocate
 {
  public:
   Relocate()
     : ignore_gd_add_(false), reloc_adjust_addr_(NULL)
   { }

   ~Relocate()
   {
     if (this->ignore_gd_add_)
       {
         // FIXME: This needs to specify the location somehow.
         gold_error(_("missing expected TLS relocation"));
       }
   }

   // Do a relocation.  Return false if the caller should not issue
   // any warnings about this relocation.
   inline bool
   relocate(const Relocate_info<size, big_endian>*, unsigned int,
            Target_sparc*, Output_section*, size_t, const unsigned char*,
            const Sized_symbol<size>*, const Symbol_value<size>*,
            unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
            section_size_type);

  private:
   // Do a TLS relocation.
   inline void
   relocate_tls(const Relocate_info<size, big_endian>*, Target_sparc* target,
                size_t relnum, const elfcpp::Rela<size, big_endian>&,
                unsigned int r_type, const Sized_symbol<size>*,
                const Symbol_value<size>*,
                unsigned char*,
                typename elfcpp::Elf_types<size>::Elf_Addr,
                section_size_type);

   inline void
   relax_call(Target_sparc<size, big_endian>* target,
              unsigned char* view,
              const elfcpp::Rela<size, big_endian>& rela,
              section_size_type view_size);

   // Ignore the next relocation which should be R_SPARC_TLS_GD_ADD
   bool ignore_gd_add_;

   // If we hit a reloc at this view address, adjust it back by 4 bytes.
   unsigned char *reloc_adjust_addr_;
 };

 // Get the GOT section, creating it if necessary.
 Output_data_got<size, big_endian>*
 got_section(Symbol_table*, Layout*);

 // Create the PLT section.
 void
 make_plt_section(Symbol_table* symtab, Layout* layout);

 // Create a PLT entry for a global symbol.
 void
 make_plt_entry(Symbol_table*, Layout*, Symbol*);

 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
 void
 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
                            Sized_relobj_file<size, big_endian>* relobj,
                            unsigned int local_sym_index);

 // Create a GOT entry for the TLS module index.
 unsigned int
 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
                     Sized_relobj_file<size, big_endian>* object);

 // Return the gsym for "__tls_get_addr".  Cache if not already
 // cached.
 Symbol*
 tls_get_addr_sym(Symbol_table* symtab)
 {
   if (!this->tls_get_addr_sym_)
     this->tls_get_addr_sym_ = symtab->lookup("__tls_get_addr", NULL);
   gold_assert(this->tls_get_addr_sym_);
   return this->tls_get_addr_sym_;
 }

 // Get the PLT section.
 Output_data_plt_sparc<size, big_endian>*
 plt_section() const
 {
   gold_assert(this->plt_ != NULL);
   return this->plt_;
 }

 // Get the dynamic reloc section, creating it if necessary.
 Reloc_section*
 rela_dyn_section(Layout*);

 // Get the section to use for IFUNC relocations.
 Reloc_section*
 rela_ifunc_section(Layout*);

 // Copy a relocation against a global symbol.
 void
 copy_reloc(Symbol_table* symtab, Layout* layout,
            Sized_relobj_file<size, big_endian>* object,
            unsigned int shndx, Output_section* output_section,
            Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
 {
   unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
   this->copy_relocs_.copy_reloc(symtab, layout,
                                 symtab->get_sized_symbol<size>(sym),
                                 object, shndx, output_section,
                                 r_type, reloc.get_r_offset(),
                                 reloc.get_r_addend(),
                                 this->rela_dyn_section(layout));
 }

 // Information about this specific target which we pass to the
 // general Target structure.
 static Target::Target_info sparc_info;

 // The types of GOT entries needed for this platform.
 // These values are exposed to the ABI in an incremental link.
 // Do not renumber existing values without changing the version
 // number of the .gnu_incremental_inputs section.
 enum Got_type
 {
   GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
   GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
   GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
 };

 struct Register_symbol
 {
   Register_symbol()
     : name(NULL), shndx(0), obj(NULL)
   { }
   const char* name;
   unsigned int shndx;
   Object* obj;
 };

 // The GOT section.
 Output_data_got<size, big_endian>* got_;
 // The PLT section.
 Output_data_plt_sparc<size, big_endian>* plt_;
 // The dynamic reloc section.
 Reloc_section* rela_dyn_;
 // The section to use for IFUNC relocs.
 Reloc_section* rela_ifunc_;
 // Relocs saved to avoid a COPY reloc.
 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
 // Offset of the GOT entry for the TLS module index;
 unsigned int got_mod_index_offset_;
 // Cached pointer to __tls_get_addr symbol
 Symbol* tls_get_addr_sym_;
 // Accumulated elf machine type
 elfcpp::Elf_Half elf_machine_;
 // Accumulated elf header flags
 elfcpp::Elf_Word elf_flags_;
 // Whether elf_flags_ has been set for the first time yet
 bool elf_flags_set_;
 // STT_SPARC_REGISTER symbols (%g2, %g3, %g6, %g7).
 Register_symbol register_syms_[4];
};

template<>
Target::Target_info Target_sparc<32, true>::sparc_info =
{
 32,                   // size
 true,                 // is_big_endian
 elfcpp::EM_SPARC,     // machine_code
 false,                // has_make_symbol
 false,                // has_resolve
 false,                // has_code_fill
 true,                 // is_default_stack_executable
 false,                // can_icf_inline_merge_sections
 '\0',                 // wrap_char
 "/usr/lib/ld.so.1",   // dynamic_linker
 0x00010000,           // default_text_segment_address
 64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
 8 * 1024,             // common_pagesize (overridable by -z common-page-size)
 false,                // isolate_execinstr
 0,                    // rosegment_gap
 elfcpp::SHN_UNDEF,    // small_common_shndx
 elfcpp::SHN_UNDEF,    // large_common_shndx
 0,                    // small_common_section_flags
 0,                    // large_common_section_flags
 NULL,                 // attributes_section
 NULL,                 // attributes_vendor
 "_start",             // entry_symbol_name
 32,                   // hash_entry_size
 elfcpp::SHT_PROGBITS, // unwind_section_type
};

template<>
Target::Target_info Target_sparc<64, true>::sparc_info =
{
 64,                   // size
 true,                 // is_big_endian
 elfcpp::EM_SPARCV9,   // machine_code
 true,                 // has_make_symbol
 false,                // has_resolve
 false,                // has_code_fill
 true,                 // is_default_stack_executable
 false,                // can_icf_inline_merge_sections
 '\0',                 // wrap_char
 "/usr/lib/sparcv9/ld.so.1",   // dynamic_linker
 0x100000,             // default_text_segment_address
 64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
 8 * 1024,             // common_pagesize (overridable by -z common-page-size)
 false,                // isolate_execinstr
 0,                    // rosegment_gap
 elfcpp::SHN_UNDEF,    // small_common_shndx
 elfcpp::SHN_UNDEF,    // large_common_shndx
 0,                    // small_common_section_flags
 0,                    // large_common_section_flags
 NULL,                 // attributes_section
 NULL,                 // attributes_vendor
 "_start",             // entry_symbol_name
 32,                   // hash_entry_size
 elfcpp::SHT_PROGBITS, // unwind_section_type
};

// We have to take care here, even when operating in little-endian
// mode, sparc instructions are still big endian.
template<int size, bool big_endian>
class Sparc_relocate_functions
{
private:
 // Do a simple relocation with the addend in the relocation.
 template<int valsize>
 static inline void
 rela(unsigned char* view,
      unsigned int right_shift,
      typename elfcpp::Elf_types<valsize>::Elf_Addr dst_mask,
      typename elfcpp::Swap<size, big_endian>::Valtype value,
      typename elfcpp::Swap<size, big_endian>::Valtype addend)
 {
   typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
   Valtype reloc = ((value + addend) >> right_shift);

   val &= ~dst_mask;
   reloc &= dst_mask;

   elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
 }

 // Do a simple relocation using a symbol value with the addend in
 // the relocation.
 template<int valsize>
 static inline void
 rela(unsigned char* view,
      unsigned int right_shift,
      typename elfcpp::Elf_types<valsize>::Elf_Addr dst_mask,
      const Sized_relobj_file<size, big_endian>* object,
      const Symbol_value<size>* psymval,
      typename elfcpp::Swap<valsize, big_endian>::Valtype addend)
 {
   typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
   Valtype reloc = (psymval->value(object, addend) >> right_shift);

   val &= ~dst_mask;
   reloc &= dst_mask;

   elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
 }

 // Do a simple relocation using a symbol value with the addend in
 // the relocation, unaligned.
 template<int valsize>
 static inline void
 rela_ua(unsigned char* view,
         unsigned int right_shift, elfcpp::Elf_Xword dst_mask,
         const Sized_relobj_file<size, big_endian>* object,
         const Symbol_value<size>* psymval,
         typename elfcpp::Swap<size, big_endian>::Valtype addend)
 {
   typedef typename elfcpp::Swap_unaligned<valsize,
           big_endian>::Valtype Valtype;
   unsigned char* wv = view;
   Valtype val = elfcpp::Swap_unaligned<valsize, big_endian>::readval(wv);
   Valtype reloc = (psymval->value(object, addend) >> right_shift);

   val &= ~dst_mask;
   reloc &= dst_mask;

   elfcpp::Swap_unaligned<valsize, big_endian>::writeval(wv, val | reloc);
 }

 // Do a simple PC relative relocation with a Symbol_value with the
 // addend in the relocation.
 template<int valsize>
 static inline void
 pcrela(unsigned char* view,
        unsigned int right_shift,
        typename elfcpp::Elf_types<valsize>::Elf_Addr dst_mask,
        const Sized_relobj_file<size, big_endian>* object,
        const Symbol_value<size>* psymval,
        typename elfcpp::Swap<size, big_endian>::Valtype addend,
        typename elfcpp::Elf_types<size>::Elf_Addr address)
 {
   typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
   Valtype reloc = ((psymval->value(object, addend) - address)
                    >> right_shift);

   val &= ~dst_mask;
   reloc &= dst_mask;

   elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
 }

 template<int valsize>
 static inline void
 pcrela_unaligned(unsigned char* view,
                  const Sized_relobj_file<size, big_endian>* object,
                  const Symbol_value<size>* psymval,
                  typename elfcpp::Swap<size, big_endian>::Valtype addend,
                  typename elfcpp::Elf_types<size>::Elf_Addr address)
 {
   typedef typename elfcpp::Swap_unaligned<valsize,
           big_endian>::Valtype Valtype;
   unsigned char* wv = view;
   Valtype reloc = (psymval->value(object, addend) - address);

   elfcpp::Swap_unaligned<valsize, big_endian>::writeval(wv, reloc);
 }

 typedef Sparc_relocate_functions<size, big_endian> This;
 typedef Sparc_relocate_functions<size, true> This_insn;

public:
 // R_SPARC_WDISP30: (Symbol + Addend - Address) >> 2
 static inline void
 wdisp30(unsigned char* view,
          const Sized_relobj_file<size, big_endian>* object,
          const Symbol_value<size>* psymval,
          typename elfcpp::Elf_types<size>::Elf_Addr addend,
          typename elfcpp::Elf_types<size>::Elf_Addr address)
 {
   This_insn::template pcrela<32>(view, 2, 0x3fffffff, object,
                                  psymval, addend, address);
 }

 // R_SPARC_WDISP22: (Symbol + Addend - Address) >> 2
 static inline void
 wdisp22(unsigned char* view,
          const Sized_relobj_file<size, big_endian>* object,
          const Symbol_value<size>* psymval,
          typename elfcpp::Elf_types<size>::Elf_Addr addend,
          typename elfcpp::Elf_types<size>::Elf_Addr address)
 {
   This_insn::template pcrela<32>(view, 2, 0x003fffff, object,
                                  psymval, addend, address);
 }

 // R_SPARC_WDISP19: (Symbol + Addend - Address) >> 2
 static inline void
 wdisp19(unsigned char* view,
         const Sized_relobj_file<size, big_endian>* object,
         const Symbol_value<size>* psymval,
         typename elfcpp::Elf_types<size>::Elf_Addr addend,
         typename elfcpp::Elf_types<size>::Elf_Addr address)
 {
   This_insn::template pcrela<32>(view, 2, 0x0007ffff, object,
                                  psymval, addend, address);
 }

 // R_SPARC_WDISP16: (Symbol + Addend - Address) >> 2
 static inline void
 wdisp16(unsigned char* view,
         const Sized_relobj_file<size, big_endian>* object,
         const Symbol_value<size>* psymval,
         typename elfcpp::Elf_types<size>::Elf_Addr addend,
         typename elfcpp::Elf_types<size>::Elf_Addr address)
 {
   typedef typename elfcpp::Swap<32, true>::Valtype Valtype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype val = elfcpp::Swap<32, true>::readval(wv);
   Valtype reloc = ((psymval->value(object, addend) - address)
                    >> 2);

   // The relocation value is split between the low 14 bits,
   // and bits 20-21.
   val &= ~((0x3 << 20) | 0x3fff);
   reloc = (((reloc & 0xc000) << (20 - 14))
            | (reloc & 0x3ffff));

   elfcpp::Swap<32, true>::writeval(wv, val | reloc);
 }

 // R_SPARC_WDISP10: (Symbol + Addend - Address) >> 2
 static inline void
 wdisp10(unsigned char* view,
         const Sized_relobj_file<size, big_endian>* object,
         const Symbol_value<size>* psymval,
         typename elfcpp::Elf_types<size>::Elf_Addr addend,
         typename elfcpp::Elf_types<size>::Elf_Addr address)
 {
   typedef typename elfcpp::Swap<32, true>::Valtype Valtype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype val = elfcpp::Swap<32, true>::readval(wv);
   Valtype reloc = ((psymval->value(object, addend) - address)
                    >> 2);

   // The relocation value is split between the low bits 5-12,
   // and high bits 19-20.
   val &= ~((0x3 << 19) | (0xff << 5));
   reloc = (((reloc & 0x300) << (19 - 8))
            | ((reloc & 0xff) << (5 - 0)));

   elfcpp::Swap<32, true>::writeval(wv, val | reloc);
 }

 // R_SPARC_PC22: (Symbol + Addend - Address) >> 10
 static inline void
 pc22(unsigned char* view,
      const Sized_relobj_file<size, big_endian>* object,
      const Symbol_value<size>* psymval,
      typename elfcpp::Elf_types<size>::Elf_Addr addend,
      typename elfcpp::Elf_types<size>::Elf_Addr address)
 {
   This_insn::template pcrela<32>(view, 10, 0x003fffff, object,
                                  psymval, addend, address);
 }

 // R_SPARC_PC10: (Symbol + Addend - Address) & 0x3ff
 static inline void
 pc10(unsigned char* view,
      const Sized_relobj_file<size, big_endian>* object,
      const Symbol_value<size>* psymval,
      typename elfcpp::Elf_types<size>::Elf_Addr addend,
      typename elfcpp::Elf_types<size>::Elf_Addr address)
 {
   This_insn::template pcrela<32>(view, 0, 0x000003ff, object,
                                  psymval, addend, address);
 }

 // R_SPARC_HI22: (Symbol + Addend) >> 10
 static inline void
 hi22(unsigned char* view,
      typename elfcpp::Elf_types<size>::Elf_Addr value,
      typename elfcpp::Elf_types<size>::Elf_Addr addend)
 {
   This_insn::template rela<32>(view, 10, 0x003fffff, value, addend);
 }

 // R_SPARC_HI22: (Symbol + Addend) >> 10
 static inline void
 hi22(unsigned char* view,
      const Sized_relobj_file<size, big_endian>* object,
      const Symbol_value<size>* psymval,
      typename elfcpp::Elf_types<size>::Elf_Addr addend)
 {
   This_insn::template rela<32>(view, 10, 0x003fffff, object, psymval, addend);
 }

 // R_SPARC_PCPLT22: (Symbol + Addend - Address) >> 10
 static inline void
 pcplt22(unsigned char* view,
         const Sized_relobj_file<size, big_endian>* object,
         const Symbol_value<size>* psymval,
         typename elfcpp::Elf_types<size>::Elf_Addr addend,
         typename elfcpp::Elf_types<size>::Elf_Addr address)
 {
   This_insn::template pcrela<32>(view, 10, 0x003fffff, object,
                                  psymval, addend, address);
 }

 // R_SPARC_LO10: (Symbol + Addend) & 0x3ff
 static inline void
 lo10(unsigned char* view,
      typename elfcpp::Elf_types<size>::Elf_Addr value,
      typename elfcpp::Elf_types<size>::Elf_Addr addend)
 {
   This_insn::template rela<32>(view, 0, 0x000003ff, value, addend);
 }

 // R_SPARC_LO10: (Symbol + Addend) & 0x3ff
 static inline void
 lo10(unsigned char* view,
      const Sized_relobj_file<size, big_endian>* object,
      const Symbol_value<size>* psymval,
      typename elfcpp::Elf_types<size>::Elf_Addr addend)
 {
   This_insn::template rela<32>(view, 0, 0x000003ff, object, psymval, addend);
 }

 // R_SPARC_LO10: (Symbol + Addend) & 0x3ff
 static inline void
 lo10(unsigned char* view,
      const Sized_relobj_file<size, big_endian>* object,
      const Symbol_value<size>* psymval,
      typename elfcpp::Elf_types<size>::Elf_Addr addend,
      typename elfcpp::Elf_types<size>::Elf_Addr address)
 {
   This_insn::template pcrela<32>(view, 0, 0x000003ff, object,
                                  psymval, addend, address);
 }

 // R_SPARC_OLO10: ((Symbol + Addend) & 0x3ff) + Addend2
 static inline void
 olo10(unsigned char* view,
       const Sized_relobj_file<size, big_endian>* object,
       const Symbol_value<size>* psymval,
       typename elfcpp::Elf_types<size>::Elf_Addr addend,
       typename elfcpp::Elf_types<size>::Elf_Addr addend2)
 {
   typedef typename elfcpp::Swap<32, true>::Valtype Valtype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype val = elfcpp::Swap<32, true>::readval(wv);
   Valtype reloc = psymval->value(object, addend);

   val &= ~0x1fff;
   reloc &= 0x3ff;
   reloc += addend2;
   reloc &= 0x1fff;

   elfcpp::Swap<32, true>::writeval(wv, val | reloc);
 }

 // R_SPARC_22: (Symbol + Addend)
 static inline void
 rela32_22(unsigned char* view,
           const Sized_relobj_file<size, big_endian>* object,
           const Symbol_value<size>* psymval,
           typename elfcpp::Elf_types<size>::Elf_Addr addend)
 {
   This_insn::template rela<32>(view, 0, 0x003fffff, object, psymval, addend);
 }

 // R_SPARC_13: (Symbol + Addend)
 static inline void
 rela32_13(unsigned char* view,
           typename elfcpp::Elf_types<size>::Elf_Addr value,
           typename elfcpp::Elf_types<size>::Elf_Addr addend)
 {
   This_insn::template rela<32>(view, 0, 0x00001fff, value, addend);
 }

 // R_SPARC_13: (Symbol + Addend)
 static inline void
 rela32_13(unsigned char* view,
           const Sized_relobj_file<size, big_endian>* object,
           const Symbol_value<size>* psymval,
           typename elfcpp::Elf_types<size>::Elf_Addr addend)
 {
   This_insn::template rela<32>(view, 0, 0x00001fff, object, psymval, addend);
 }

 // R_SPARC_UA16: (Symbol + Addend)
 static inline void
 ua16(unsigned char* view,
      const Sized_relobj_file<size, big_endian>* object,
      const Symbol_value<size>* psymval,
      typename elfcpp::Elf_types<size>::Elf_Addr addend)
 {
   This::template rela_ua<16>(view, 0, 0xffff, object, psymval, addend);
 }

 // R_SPARC_UA32: (Symbol + Addend)
 static inline void
 ua32(unsigned char* view,
      const Sized_relobj_file<size, big_endian>* object,
      const Symbol_value<size>* psymval,
      typename elfcpp::Elf_types<size>::Elf_Addr addend)
 {
   This::template rela_ua<32>(view, 0, 0xffffffff, object, psymval, addend);
 }

 // R_SPARC_UA64: (Symbol + Addend)
 static inline void
 ua64(unsigned char* view,
      const Sized_relobj_file<size, big_endian>* object,
      const Symbol_value<size>* psymval,
      typename elfcpp::Elf_types<size>::Elf_Addr addend)
 {
   This::template rela_ua<64>(view, 0, ~(elfcpp::Elf_Xword) 0,
                              object, psymval, addend);
 }

 // R_SPARC_DISP8: (Symbol + Addend - Address)
 static inline void
 disp8(unsigned char* view,
       const Sized_relobj_file<size, big_endian>* object,
       const Symbol_value<size>* psymval,
       typename elfcpp::Elf_types<size>::Elf_Addr addend,
       typename elfcpp::Elf_types<size>::Elf_Addr address)
 {
   This::template pcrela_unaligned<8>(view, object, psymval,
                                      addend, address);
 }

 // R_SPARC_DISP16: (Symbol + Addend - Address)
 static inline void
 disp16(unsigned char* view,
        const Sized_relobj_file<size, big_endian>* object,
        const Symbol_value<size>* psymval,
        typename elfcpp::Elf_types<size>::Elf_Addr addend,
        typename elfcpp::Elf_types<size>::Elf_Addr address)
 {
   This::template pcrela_unaligned<16>(view, object, psymval,
                                       addend, address);
 }

 // R_SPARC_DISP32: (Symbol + Addend - Address)
 static inline void
 disp32(unsigned char* view,
        const Sized_relobj_file<size, big_endian>* object,
        const Symbol_value<size>* psymval,
        typename elfcpp::Elf_types<size>::Elf_Addr addend,
        typename elfcpp::Elf_types<size>::Elf_Addr address)
 {
   This::template pcrela_unaligned<32>(view, object, psymval,
                                       addend, address);
 }

 // R_SPARC_DISP64: (Symbol + Addend - Address)
 static inline void
 disp64(unsigned char* view,
        const Sized_relobj_file<size, big_endian>* object,
        const Symbol_value<size>* psymval,
        elfcpp::Elf_Xword addend,
        typename elfcpp::Elf_types<size>::Elf_Addr address)
 {
   This::template pcrela_unaligned<64>(view, object, psymval,
                                       addend, address);
 }

 // R_SPARC_H34: (Symbol + Addend) >> 12
 static inline void
 h34(unsigned char* view,
     const Sized_relobj_file<size, big_endian>* object,
     const Symbol_value<size>* psymval,
     typename elfcpp::Elf_types<size>::Elf_Addr  addend)
 {
   This_insn::template rela<32>(view, 12, 0x003fffff, object, psymval, addend);
 }

 // R_SPARC_H44: (Symbol + Addend) >> 22
 static inline void
 h44(unsigned char* view,
     const Sized_relobj_file<size, big_endian>* object,
     const Symbol_value<size>* psymval,
     typename elfcpp::Elf_types<size>::Elf_Addr  addend)
 {
   This_insn::template rela<32>(view, 22, 0x003fffff, object, psymval, addend);
 }

 // R_SPARC_M44: ((Symbol + Addend) >> 12) & 0x3ff
 static inline void
 m44(unsigned char* view,
     const Sized_relobj_file<size, big_endian>* object,
     const Symbol_value<size>* psymval,
     typename elfcpp::Elf_types<size>::Elf_Addr  addend)
 {
   This_insn::template rela<32>(view, 12, 0x000003ff, object, psymval, addend);
 }

 // R_SPARC_L44: (Symbol + Addend) & 0xfff
 static inline void
 l44(unsigned char* view,
     const Sized_relobj_file<size, big_endian>* object,
     const Symbol_value<size>* psymval,
     typename elfcpp::Elf_types<size>::Elf_Addr  addend)
 {
   This_insn::template rela<32>(view, 0, 0x00000fff, object, psymval, addend);
 }

 // R_SPARC_HH22: (Symbol + Addend) >> 42
 static inline void
 hh22(unsigned char* view,
      const Sized_relobj_file<size, big_endian>* object,
      const Symbol_value<size>* psymval,
      typename elfcpp::Elf_types<size>::Elf_Addr addend)
 {
   This_insn::template rela<32>(view, 42, 0x003fffff, object, psymval, addend);
 }

 // R_SPARC_PC_HH22: (Symbol + Addend - Address) >> 42
 static inline void
 pc_hh22(unsigned char* view,
         const Sized_relobj_file<size, big_endian>* object,
         const Symbol_value<size>* psymval,
         typename elfcpp::Elf_types<size>::Elf_Addr addend,
         typename elfcpp::Elf_types<size>::Elf_Addr address)
 {
   This_insn::template pcrela<32>(view, 42, 0x003fffff, object,
                                  psymval, addend, address);
 }

 // R_SPARC_HM10: ((Symbol + Addend) >> 32) & 0x3ff
 static inline void
 hm10(unsigned char* view,
      const Sized_relobj_file<size, big_endian>* object,
      const Symbol_value<size>* psymval,
      typename elfcpp::Elf_types<size>::Elf_Addr addend)
 {
   This_insn::template rela<32>(view, 32, 0x000003ff, object, psymval, addend);
 }

 // R_SPARC_PC_HM10: ((Symbol + Addend - Address) >> 32) & 0x3ff
 static inline void
 pc_hm10(unsigned char* view,
         const Sized_relobj_file<size, big_endian>* object,
         const Symbol_value<size>* psymval,
         typename elfcpp::Elf_types<size>::Elf_Addr addend,
         typename elfcpp::Elf_types<size>::Elf_Addr address)
 {
   This_insn::template pcrela<32>(view, 32, 0x000003ff, object,
                                  psymval, addend, address);
 }

 // R_SPARC_11: (Symbol + Addend)
 static inline void
 rela32_11(unsigned char* view,
           const Sized_relobj_file<size, big_endian>* object,
           const Symbol_value<size>* psymval,
           typename elfcpp::Elf_types<size>::Elf_Addr addend)
 {
   This_insn::template rela<32>(view, 0, 0x000007ff, object, psymval, addend);
 }

 // R_SPARC_10: (Symbol + Addend)
 static inline void
 rela32_10(unsigned char* view,
           const Sized_relobj_file<size, big_endian>* object,
           const Symbol_value<size>* psymval,
           typename elfcpp::Elf_types<size>::Elf_Addr addend)
 {
   This_insn::template rela<32>(view, 0, 0x000003ff, object, psymval, addend);
 }

 // R_SPARC_7: (Symbol + Addend)
 static inline void
 rela32_7(unsigned char* view,
          const Sized_relobj_file<size, big_endian>* object,
          const Symbol_value<size>* psymval,
          typename elfcpp::Elf_types<size>::Elf_Addr addend)
 {
   This_insn::template rela<32>(view, 0, 0x0000007f, object, psymval, addend);
 }

 // R_SPARC_6: (Symbol + Addend)
 static inline void
 rela32_6(unsigned char* view,
          const Sized_relobj_file<size, big_endian>* object,
          const Symbol_value<size>* psymval,
          typename elfcpp::Elf_types<size>::Elf_Addr addend)
 {
   This_insn::template rela<32>(view, 0, 0x0000003f, object, psymval, addend);
 }

 // R_SPARC_5: (Symbol + Addend)
 static inline void
 rela32_5(unsigned char* view,
          const Sized_relobj_file<size, big_endian>* object,
          const Symbol_value<size>* psymval,
          typename elfcpp::Elf_types<size>::Elf_Addr addend)
 {
   This_insn::template rela<32>(view, 0, 0x0000001f, object, psymval, addend);
 }

 // R_SPARC_TLS_LDO_HIX22: @dtpoff(Symbol + Addend) >> 10
 static inline void
 ldo_hix22(unsigned char* view,
           typename elfcpp::Elf_types<size>::Elf_Addr value,
           typename elfcpp::Elf_types<size>::Elf_Addr addend)
 {
   This_insn::hi22(view, value, addend);
 }

 // R_SPARC_TLS_LDO_LOX10: @dtpoff(Symbol + Addend) & 0x3ff
 static inline void
 ldo_lox10(unsigned char* view,
           typename elfcpp::Elf_types<size>::Elf_Addr value,
           typename elfcpp::Elf_types<size>::Elf_Addr addend)
 {
   typedef typename elfcpp::Swap<32, true>::Valtype Valtype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype val = elfcpp::Swap<32, true>::readval(wv);
   Valtype reloc = (value + addend);

   val &= ~0x1fff;
   reloc &= 0x3ff;

   elfcpp::Swap<32, true>::writeval(wv, val | reloc);
 }

 // R_SPARC_TLS_LE_HIX22: (@tpoff(Symbol + Addend) ^ 0xffffffffffffffff) >> 10
 static inline void
 hix22(unsigned char* view,
       typename elfcpp::Elf_types<size>::Elf_Addr value,
       typename elfcpp::Elf_types<size>::Elf_Addr addend)
 {
   typedef typename elfcpp::Swap<32, true>::Valtype Valtype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype val = elfcpp::Swap<32, true>::readval(wv);
   Valtype reloc = (value + addend);

   val &= ~0x3fffff;

   reloc ^= ~(Valtype)0;
   reloc >>= 10;

   reloc &= 0x3fffff;

   elfcpp::Swap<32, true>::writeval(wv, val | reloc);
 }

 // R_SPARC_GOTDATA_OP_HIX22: @gdopoff(Symbol + Addend) >> 10
 static inline void
 gdop_hix22(unsigned char* view,
            typename elfcpp::Elf_types<size>::Elf_Addr value)
 {
   typedef typename elfcpp::Swap<32, true>::Valtype Valtype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype val = elfcpp::Swap<32, true>::readval(wv);
   int32_t reloc = static_cast<int32_t>(value);

   val &= ~0x3fffff;

   if (reloc < 0)
     reloc ^= ~static_cast<int32_t>(0);
   reloc >>= 10;

   reloc &= 0x3fffff;

   elfcpp::Swap<32, true>::writeval(wv, val | reloc);
 }

 // R_SPARC_HIX22: ((Symbol + Addend) ^ 0xffffffffffffffff) >> 10
 static inline void
 hix22(unsigned char* view,
       const Sized_relobj_file<size, big_endian>* object,
       const Symbol_value<size>* psymval,
       typename elfcpp::Elf_types<size>::Elf_Addr addend)
 {
   typedef typename elfcpp::Swap<32, true>::Valtype Valtype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype val = elfcpp::Swap<32, true>::readval(wv);
   Valtype reloc = psymval->value(object, addend);

   val &= ~0x3fffff;

   reloc ^= ~(Valtype)0;
   reloc >>= 10;

   reloc &= 0x3fffff;

   elfcpp::Swap<32, true>::writeval(wv, val | reloc);
 }


 // R_SPARC_TLS_LE_LOX10: (@tpoff(Symbol + Addend) & 0x3ff) | 0x1c00
 static inline void
 lox10(unsigned char* view,
       typename elfcpp::Elf_types<size>::Elf_Addr value,
       typename elfcpp::Elf_types<size>::Elf_Addr addend)
 {
   typedef typename elfcpp::Swap<32, true>::Valtype Valtype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype val = elfcpp::Swap<32, true>::readval(wv);
   Valtype reloc = (value + addend);

   val &= ~0x1fff;
   reloc &= 0x3ff;
   reloc |= 0x1c00;

   elfcpp::Swap<32, true>::writeval(wv, val | reloc);
 }

 // R_SPARC_GOTDATA_OP_LOX10: (@gdopoff(Symbol + Addend) & 0x3ff) | 0x1c00
 static inline void
 gdop_lox10(unsigned char* view,
            typename elfcpp::Elf_types<size>::Elf_Addr value)
 {
   typedef typename elfcpp::Swap<32, true>::Valtype Valtype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype val = elfcpp::Swap<32, true>::readval(wv);
   int32_t reloc = static_cast<int32_t>(value);

   if (reloc < 0)
     reloc = (reloc & 0x3ff) | 0x1c00;
   else
     reloc = (reloc & 0x3ff);

   val &= ~0x1fff;
   elfcpp::Swap<32, true>::writeval(wv, val | reloc);
 }

 // R_SPARC_LOX10: ((Symbol + Addend) & 0x3ff) | 0x1c00
 static inline void
 lox10(unsigned char* view,
       const Sized_relobj_file<size, big_endian>* object,
       const Symbol_value<size>* psymval,
       typename elfcpp::Elf_types<size>::Elf_Addr addend)
 {
   typedef typename elfcpp::Swap<32, true>::Valtype Valtype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype val = elfcpp::Swap<32, true>::readval(wv);
   Valtype reloc = psymval->value(object, addend);

   val &= ~0x1fff;
   reloc &= 0x3ff;
   reloc |= 0x1c00;

   elfcpp::Swap<32, true>::writeval(wv, val | reloc);
 }
};

// Get the GOT section, creating it if necessary.

template<int size, bool big_endian>
Output_data_got<size, big_endian>*
Target_sparc<size, big_endian>::got_section(Symbol_table* symtab,
                                           Layout* layout)
{
 if (this->got_ == NULL)
   {
     gold_assert(symtab != NULL && layout != NULL);

     this->got_ = new Output_data_got<size, big_endian>();

     layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
                                     (elfcpp::SHF_ALLOC
                                      | elfcpp::SHF_WRITE),
                                     this->got_, ORDER_RELRO, true);

     // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
     symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
                                   Symbol_table::PREDEFINED,
                                   this->got_,
                                   0, 0, elfcpp::STT_OBJECT,
                                   elfcpp::STB_LOCAL,
                                   elfcpp::STV_HIDDEN, 0,
                                   false, false);
   }

 return this->got_;
}

// Get the dynamic reloc section, creating it if necessary.

template<int size, bool big_endian>
typename Target_sparc<size, big_endian>::Reloc_section*
Target_sparc<size, big_endian>::rela_dyn_section(Layout* layout)
{
 if (this->rela_dyn_ == NULL)
   {
     gold_assert(layout != NULL);
     this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
     layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
                                     elfcpp::SHF_ALLOC, this->rela_dyn_,
                                     ORDER_DYNAMIC_RELOCS, false);
   }
 return this->rela_dyn_;
}

// Get the section to use for IFUNC relocs, creating it if
// necessary.  These go in .rela.dyn, but only after all other dynamic
// relocations.  They need to follow the other dynamic relocations so
// that they can refer to global variables initialized by those
// relocs.

template<int size, bool big_endian>
typename Target_sparc<size, big_endian>::Reloc_section*
Target_sparc<size, big_endian>::rela_ifunc_section(Layout* layout)
{
 if (this->rela_ifunc_ == NULL)
   {
     // Make sure we have already created the dynamic reloc section.
     this->rela_dyn_section(layout);
     this->rela_ifunc_ = new Reloc_section(false);
     layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
                                     elfcpp::SHF_ALLOC, this->rela_ifunc_,
                                     ORDER_DYNAMIC_RELOCS, false);
     gold_assert(this->rela_dyn_->output_section()
                 == this->rela_ifunc_->output_section());
   }
 return this->rela_ifunc_;
}

// A class to handle the PLT data.

template<int size, bool big_endian>
class Output_data_plt_sparc : public Output_section_data
{
public:
 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
                           size, big_endian> Reloc_section;

 Output_data_plt_sparc(Layout*);

 // Add an entry to the PLT.
 void add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym);

 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
 unsigned int
 add_local_ifunc_entry(Symbol_table*, Layout*,
                       Sized_relobj_file<size, big_endian>* relobj,
                       unsigned int local_sym_index);

 // Return the .rela.plt section data.
 const Reloc_section* rel_plt() const
 {
   return this->rel_;
 }

 // Return where the IFUNC relocations should go.
 Reloc_section*
 rela_ifunc(Symbol_table*, Layout*);

 void
 emit_pending_ifunc_relocs();

 // Return whether we created a section for IFUNC relocations.
 bool
 has_ifunc_section() const
 { return this->ifunc_rel_ != NULL; }

 // Return the number of PLT entries.
 unsigned int
 entry_count() const
 { return this->count_ + this->ifunc_count_; }

 // Return the offset of the first non-reserved PLT entry.
 static unsigned int
 first_plt_entry_offset()
 { return 4 * base_plt_entry_size; }

 // Return the size of a PLT entry.
 static unsigned int
 get_plt_entry_size()
 { return base_plt_entry_size; }

 // Return the PLT address to use for a global symbol.
 uint64_t
 address_for_global(const Symbol*);

 // Return the PLT address to use for a local symbol.
 uint64_t
 address_for_local(const Relobj*, unsigned int symndx);

protected:
 void do_adjust_output_section(Output_section* os);

 // Write to a map file.
 void
 do_print_to_mapfile(Mapfile* mapfile) const
 { mapfile->print_output_data(this, _("** PLT")); }

private:
 // The size of an entry in the PLT.
 static const int base_plt_entry_size = (size == 32 ? 12 : 32);

 static const unsigned int plt_entries_per_block = 160;
 static const unsigned int plt_insn_chunk_size = 24;
 static const unsigned int plt_pointer_chunk_size = 8;
 static const unsigned int plt_block_size =
   (plt_entries_per_block
    * (plt_insn_chunk_size + plt_pointer_chunk_size));

 section_offset_type
 plt_index_to_offset(unsigned int index)
 {
   section_offset_type offset;

   if (size == 32 || index < 32768)
     offset = index * base_plt_entry_size;
   else
     {
       unsigned int ext_index = index - 32768;

       offset = (32768 * base_plt_entry_size)
         + ((ext_index / plt_entries_per_block)
            * plt_block_size)
         + ((ext_index % plt_entries_per_block)
            * plt_insn_chunk_size);
     }
   return offset;
 }

 // Set the final size.
 void
 set_final_data_size()
 {
   unsigned int full_count = this->entry_count() + 4;
   unsigned int extra = (size == 32 ? 4 : 0);
   section_offset_type sz = plt_index_to_offset(full_count) + extra;

   return this->set_data_size(sz);
 }

 // Write out the PLT data.
 void
 do_write(Output_file*);

 struct Global_ifunc
 {
   Reloc_section* rel;
   Symbol* gsym;
   unsigned int plt_index;
 };

 struct Local_ifunc
 {
   Reloc_section* rel;
   Sized_relobj_file<size, big_endian>* object;
   unsigned int local_sym_index;
   unsigned int plt_index;
 };

 // The reloc section.
 Reloc_section* rel_;
 // The IFUNC relocations, if necessary.  These must follow the
 // regular relocations.
 Reloc_section* ifunc_rel_;
 // The number of PLT entries.
 unsigned int count_;
 // The number of PLT entries for IFUNC symbols.
 unsigned int ifunc_count_;
 // Global STT_GNU_IFUNC symbols.
 std::vector<Global_ifunc> global_ifuncs_;
 // Local STT_GNU_IFUNC symbols.
 std::vector<Local_ifunc> local_ifuncs_;
};

// Define the constants as required by C++ standard.

template<int size, bool big_endian>
const int Output_data_plt_sparc<size, big_endian>::base_plt_entry_size;

template<int size, bool big_endian>
const unsigned int
Output_data_plt_sparc<size, big_endian>::plt_entries_per_block;

template<int size, bool big_endian>
const unsigned int Output_data_plt_sparc<size, big_endian>::plt_insn_chunk_size;

template<int size, bool big_endian>
const unsigned int
Output_data_plt_sparc<size, big_endian>::plt_pointer_chunk_size;

template<int size, bool big_endian>
const unsigned int Output_data_plt_sparc<size, big_endian>::plt_block_size;

// Create the PLT section.  The ordinary .got section is an argument,
// since we need to refer to the start.

template<int size, bool big_endian>
Output_data_plt_sparc<size, big_endian>::Output_data_plt_sparc(Layout* layout)
 : Output_section_data(size == 32 ? 4 : 8), ifunc_rel_(NULL),
   count_(0), ifunc_count_(0), global_ifuncs_(), local_ifuncs_()
{
 this->rel_ = new Reloc_section(false);
 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
                                 elfcpp::SHF_ALLOC, this->rel_,
                                 ORDER_DYNAMIC_PLT_RELOCS, false);
}

template<int size, bool big_endian>
void
Output_data_plt_sparc<size, big_endian>::do_adjust_output_section(Output_section* os)
{
 os->set_entsize(0);
}

// Add an entry to the PLT.

template<int size, bool big_endian>
void
Output_data_plt_sparc<size, big_endian>::add_entry(Symbol_table* symtab,
                                                  Layout* layout,
                                                  Symbol* gsym)
{
 gold_assert(!gsym->has_plt_offset());

 section_offset_type plt_offset;
 unsigned int index;

 if (gsym->type() == elfcpp::STT_GNU_IFUNC
     && gsym->can_use_relative_reloc(false))
   {
     index = this->ifunc_count_;
     plt_offset = plt_index_to_offset(index);
     gsym->set_plt_offset(plt_offset);
     ++this->ifunc_count_;
     Reloc_section* rel = this->rela_ifunc(symtab, layout);

     struct Global_ifunc gi;
     gi.rel = rel;
     gi.gsym = gsym;
     gi.plt_index = index;
     this->global_ifuncs_.push_back(gi);
   }
 else
   {
     plt_offset = plt_index_to_offset(this->count_ + 4);
     gsym->set_plt_offset(plt_offset);
     ++this->count_;
     gsym->set_needs_dynsym_entry();
     this->rel_->add_global(gsym, elfcpp::R_SPARC_JMP_SLOT, this,
                            plt_offset, 0);
   }

 // Note that we don't need to save the symbol.  The contents of the
 // PLT are independent of which symbols are used.  The symbols only
 // appear in the relocations.
}

template<int size, bool big_endian>
unsigned int
Output_data_plt_sparc<size, big_endian>::add_local_ifunc_entry(
   Symbol_table* symtab,
   Layout* layout,
   Sized_relobj_file<size, big_endian>* relobj,
   unsigned int local_sym_index)
{
 unsigned int index = this->ifunc_count_;
 section_offset_type plt_offset;

 plt_offset = plt_index_to_offset(index);
 ++this->ifunc_count_;

 Reloc_section* rel = this->rela_ifunc(symtab, layout);

 struct Local_ifunc li;
 li.rel = rel;
 li.object = relobj;
 li.local_sym_index = local_sym_index;
 li.plt_index = index;
 this->local_ifuncs_.push_back(li);

 return plt_offset;
}

// Emit any pending IFUNC plt relocations.

template<int size, bool big_endian>
void
Output_data_plt_sparc<size, big_endian>::emit_pending_ifunc_relocs()
{
 // Emit any pending IFUNC relocs.
 for (typename std::vector<Global_ifunc>::const_iterator p =
        this->global_ifuncs_.begin();
      p != this->global_ifuncs_.end();
      ++p)
   {
     section_offset_type plt_offset;
     unsigned int index;

     index = this->count_ + p->plt_index + 4;
     plt_offset = this->plt_index_to_offset(index);
     p->rel->add_symbolless_global_addend(p->gsym, elfcpp::R_SPARC_JMP_IREL,
                                          this, plt_offset, 0);
   }

 for (typename std::vector<Local_ifunc>::const_iterator p =
        this->local_ifuncs_.begin();
      p != this->local_ifuncs_.end();
      ++p)
   {
     section_offset_type plt_offset;
     unsigned int index;

     index = this->count_ + p->plt_index + 4;
     plt_offset = this->plt_index_to_offset(index);
     p->rel->add_symbolless_local_addend(p->object, p->local_sym_index,
                                         elfcpp::R_SPARC_JMP_IREL,
                                         this, plt_offset, 0);
   }
}

// Return where the IFUNC relocations should go in the PLT.  These
// follow the non-IFUNC relocations.

template<int size, bool big_endian>
typename Output_data_plt_sparc<size, big_endian>::Reloc_section*
Output_data_plt_sparc<size, big_endian>::rela_ifunc(
       Symbol_table* symtab,
       Layout* layout)
{
 if (this->ifunc_rel_ == NULL)
   {
     this->ifunc_rel_ = new Reloc_section(false);
     layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
                                     elfcpp::SHF_ALLOC, this->ifunc_rel_,
                                     ORDER_DYNAMIC_PLT_RELOCS, false);
     gold_assert(this->ifunc_rel_->output_section()
                 == this->rel_->output_section());

     if (parameters->doing_static_link())
       {
         // A statically linked executable will only have a .rel.plt
         // section to hold R_SPARC_IRELATIVE and R_SPARC_JMP_IREL
         // relocs for STT_GNU_IFUNC symbols.  The library will use
         // these symbols to locate the IRELATIVE and JMP_IREL relocs
         // at program startup time.
         symtab->define_in_output_data("__rela_iplt_start", NULL,
                                       Symbol_table::PREDEFINED,
                                       this->ifunc_rel_, 0, 0,
                                       elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
                                       elfcpp::STV_HIDDEN, 0, false, true);
         symtab->define_in_output_data("__rela_iplt_end", NULL,
                                       Symbol_table::PREDEFINED,
                                       this->ifunc_rel_, 0, 0,
                                       elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
                                       elfcpp::STV_HIDDEN, 0, true, true);
       }
   }
 return this->ifunc_rel_;
}

// Return the PLT address to use for a global symbol.

template<int size, bool big_endian>
uint64_t
Output_data_plt_sparc<size, big_endian>::address_for_global(const Symbol* gsym)
{
 uint64_t offset = 0;
 if (gsym->type() == elfcpp::STT_GNU_IFUNC
     && gsym->can_use_relative_reloc(false))
   offset = plt_index_to_offset(this->count_ + 4);
 return this->address() + offset + gsym->plt_offset();
}

// Return the PLT address to use for a local symbol.  These are always
// IRELATIVE relocs.

template<int size, bool big_endian>
uint64_t
Output_data_plt_sparc<size, big_endian>::address_for_local(
       const Relobj* object,
       unsigned int r_sym)
{
 return (this->address()
         + plt_index_to_offset(this->count_ + 4)
         + object->local_plt_offset(r_sym));
}

static const unsigned int sparc_nop = 0x01000000;
static const unsigned int sparc_sethi_g1 = 0x03000000;
static const unsigned int sparc_branch_always = 0x30800000;
static const unsigned int sparc_branch_always_pt = 0x30680000;
static const unsigned int sparc_mov = 0x80100000;
static const unsigned int sparc_mov_g0_o0 = 0x90100000;
static const unsigned int sparc_mov_o7_g5 = 0x8a10000f;
static const unsigned int sparc_call_plus_8 = 0x40000002;
static const unsigned int sparc_ldx_o7_imm_g1 = 0xc25be000;
static const unsigned int sparc_jmpl_o7_g1_g1 = 0x83c3c001;
static const unsigned int sparc_mov_g5_o7 = 0x9e100005;

// Write out the PLT.

template<int size, bool big_endian>
void
Output_data_plt_sparc<size, big_endian>::do_write(Output_file* of)
{
 const off_t offset = this->offset();
 const section_size_type oview_size =
   convert_to_section_size_type(this->data_size());
 unsigned char* const oview = of->get_output_view(offset, oview_size);
 unsigned char* pov = oview;

 memset(pov, 0, base_plt_entry_size * 4);
 pov += this->first_plt_entry_offset();

 unsigned int plt_offset = base_plt_entry_size * 4;
 const unsigned int count = this->entry_count();

 if (size == 64)
   {
     unsigned int limit;

     limit = (count > 32768 ? 32768 : count);

     for (unsigned int i = 0; i < limit; ++i)
       {
         elfcpp::Swap<32, true>::writeval(pov + 0x00,
                                          sparc_sethi_g1 + plt_offset);
         elfcpp::Swap<32, true>::writeval(pov + 0x04,
                                          sparc_branch_always_pt +
                                          (((base_plt_entry_size -
                                             (plt_offset + 4)) >> 2) &
                                           0x7ffff));
         elfcpp::Swap<32, true>::writeval(pov + 0x08, sparc_nop);
         elfcpp::Swap<32, true>::writeval(pov + 0x0c, sparc_nop);
         elfcpp::Swap<32, true>::writeval(pov + 0x10, sparc_nop);
         elfcpp::Swap<32, true>::writeval(pov + 0x14, sparc_nop);
         elfcpp::Swap<32, true>::writeval(pov + 0x18, sparc_nop);
         elfcpp::Swap<32, true>::writeval(pov + 0x1c, sparc_nop);

         pov += base_plt_entry_size;
         plt_offset += base_plt_entry_size;
       }

     if (count > 32768)
       {
         unsigned int ext_cnt = count - 32768;
         unsigned int blks = ext_cnt / plt_entries_per_block;

         for (unsigned int i = 0; i < blks; ++i)
           {
             unsigned int data_off = (plt_entries_per_block
                                      * plt_insn_chunk_size) - 4;

             for (unsigned int j = 0; j < plt_entries_per_block; ++j)
               {
                 elfcpp::Swap<32, true>::writeval(pov + 0x00,
                                                  sparc_mov_o7_g5);
                 elfcpp::Swap<32, true>::writeval(pov + 0x04,
                                                  sparc_call_plus_8);
                 elfcpp::Swap<32, true>::writeval(pov + 0x08,
                                                  sparc_nop);
                 elfcpp::Swap<32, true>::writeval(pov + 0x0c,
                                                  sparc_ldx_o7_imm_g1 +
                                                  (data_off & 0x1fff));
                 elfcpp::Swap<32, true>::writeval(pov + 0x10,
                                                  sparc_jmpl_o7_g1_g1);
                 elfcpp::Swap<32, true>::writeval(pov + 0x14,
                                                  sparc_mov_g5_o7);

                 elfcpp::Swap<64, big_endian>::writeval(
                               pov + 0x4 + data_off,
                               (elfcpp::Elf_Xword) (oview - (pov + 0x04)));

                 pov += plt_insn_chunk_size;
                 data_off -= 16;
               }
           }

         unsigned int sub_blk_cnt = ext_cnt % plt_entries_per_block;
         for (unsigned int i = 0; i < sub_blk_cnt; ++i)
           {
             unsigned int data_off = (sub_blk_cnt
                                      * plt_insn_chunk_size) - 4;

             for (unsigned int j = 0; j < plt_entries_per_block; ++j)
               {
                 elfcpp::Swap<32, true>::writeval(pov + 0x00,
                                                  sparc_mov_o7_g5);
                 elfcpp::Swap<32, true>::writeval(pov + 0x04,
                                                  sparc_call_plus_8);
                 elfcpp::Swap<32, true>::writeval(pov + 0x08,
                                                  sparc_nop);
                 elfcpp::Swap<32, true>::writeval(pov + 0x0c,
                                                  sparc_ldx_o7_imm_g1 +
                                                  (data_off & 0x1fff));
                 elfcpp::Swap<32, true>::writeval(pov + 0x10,
                                                  sparc_jmpl_o7_g1_g1);
                 elfcpp::Swap<32, true>::writeval(pov + 0x14,
                                                  sparc_mov_g5_o7);

                 elfcpp::Swap<64, big_endian>::writeval(
                               pov + 0x4 + data_off,
                               (elfcpp::Elf_Xword) (oview - (pov + 0x04)));

                 pov += plt_insn_chunk_size;
                 data_off -= 16;
               }
           }
       }
   }
 else
   {
     for (unsigned int i = 0; i < count; ++i)
       {
         elfcpp::Swap<32, true>::writeval(pov + 0x00,
                                          sparc_sethi_g1 + plt_offset);
         elfcpp::Swap<32, true>::writeval(pov + 0x04,
                                          sparc_branch_always +
                                          (((- (plt_offset + 4)) >> 2) &
                                           0x003fffff));
         elfcpp::Swap<32, true>::writeval(pov + 0x08, sparc_nop);

         pov += base_plt_entry_size;
         plt_offset += base_plt_entry_size;
       }

     elfcpp::Swap<32, true>::writeval(pov, sparc_nop);
     pov += 4;
   }

 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);

 of->write_output_view(offset, oview_size, oview);
}

// Create the PLT section.

template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::make_plt_section(Symbol_table* symtab,
                                                Layout* layout)
{
 // Create the GOT sections first.
 this->got_section(symtab, layout);

 // Ensure that .rela.dyn always appears before .rela.plt  This is
 // necessary due to how, on Sparc and some other targets, .rela.dyn
 // needs to include .rela.plt in it's range.
 this->rela_dyn_section(layout);

 this->plt_ = new Output_data_plt_sparc<size, big_endian>(layout);
 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
                                 (elfcpp::SHF_ALLOC
                                  | elfcpp::SHF_EXECINSTR
                                  | elfcpp::SHF_WRITE),
                                 this->plt_, ORDER_NON_RELRO_FIRST, false);

 // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
 symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
                               Symbol_table::PREDEFINED,
                               this->plt_,
                               0, 0, elfcpp::STT_OBJECT,
                               elfcpp::STB_LOCAL,
                               elfcpp::STV_HIDDEN, 0,
                               false, false);
}

// Create a PLT entry for a global symbol.

template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
                                              Layout* layout,
                                              Symbol* gsym)
{
 if (gsym->has_plt_offset())
   return;

 if (this->plt_ == NULL)
   this->make_plt_section(symtab, layout);

 this->plt_->add_entry(symtab, layout, gsym);
}

// Make a PLT entry for a local STT_GNU_IFUNC symbol.

template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::make_local_ifunc_plt_entry(
       Symbol_table* symtab,
       Layout* layout,
       Sized_relobj_file<size, big_endian>* relobj,
       unsigned int local_sym_index)
{
 if (relobj->local_has_plt_offset(local_sym_index))
   return;
 if (this->plt_ == NULL)
   this->make_plt_section(symtab, layout);
 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
                                                             relobj,
                                                             local_sym_index);
 relobj->set_local_plt_offset(local_sym_index, plt_offset);
}

// Return the number of entries in the PLT.

template<int size, bool big_endian>
unsigned int
Target_sparc<size, big_endian>::plt_entry_count() const
{
 if (this->plt_ == NULL)
   return 0;
 return this->plt_->entry_count();
}

// Return the offset of the first non-reserved PLT entry.

template<int size, bool big_endian>
unsigned int
Target_sparc<size, big_endian>::first_plt_entry_offset() const
{
 return Output_data_plt_sparc<size, big_endian>::first_plt_entry_offset();
}

// Return the size of each PLT entry.

template<int size, bool big_endian>
unsigned int
Target_sparc<size, big_endian>::plt_entry_size() const
{
 return Output_data_plt_sparc<size, big_endian>::get_plt_entry_size();
}

// Create a GOT entry for the TLS module index.

template<int size, bool big_endian>
unsigned int
Target_sparc<size, big_endian>::got_mod_index_entry(
    Symbol_table* symtab,
    Layout* layout,
    Sized_relobj_file<size, big_endian>* object)
{
 if (this->got_mod_index_offset_ == -1U)
   {
     gold_assert(symtab != NULL && layout != NULL && object != NULL);
     Reloc_section* rela_dyn = this->rela_dyn_section(layout);
     Output_data_got<size, big_endian>* got;
     unsigned int got_offset;

     got = this->got_section(symtab, layout);
     got_offset = got->add_constant(0);
     rela_dyn->add_local(object, 0,
                         (size == 64 ?
                          elfcpp::R_SPARC_TLS_DTPMOD64 :
                          elfcpp::R_SPARC_TLS_DTPMOD32), got,
                         got_offset, 0);
     got->add_constant(0);
     this->got_mod_index_offset_ = got_offset;
   }
 return this->got_mod_index_offset_;
}

// Optimize the TLS relocation type based on what we know about the
// symbol.  IS_FINAL is true if the final address of this symbol is
// known at link time.

static tls::Tls_optimization
optimize_tls_reloc(bool is_final, int r_type)
{
 // If we are generating a shared library, then we can't do anything
 // in the linker.
 if (parameters->options().shared())
   return tls::TLSOPT_NONE;

 switch (r_type)
   {
   case elfcpp::R_SPARC_TLS_GD_HI22: // Global-dynamic
   case elfcpp::R_SPARC_TLS_GD_LO10:
   case elfcpp::R_SPARC_TLS_GD_ADD:
   case elfcpp::R_SPARC_TLS_GD_CALL:
     // These are General-Dynamic which permits fully general TLS
     // access.  Since we know that we are generating an executable,
     // we can convert this to Initial-Exec.  If we also know that
     // this is a local symbol, we can further switch to Local-Exec.
     if (is_final)
       return tls::TLSOPT_TO_LE;
     return tls::TLSOPT_TO_IE;

   case elfcpp::R_SPARC_TLS_LDM_HI22:  // Local-dynamic
   case elfcpp::R_SPARC_TLS_LDM_LO10:
   case elfcpp::R_SPARC_TLS_LDM_ADD:
   case elfcpp::R_SPARC_TLS_LDM_CALL:
     // This is Local-Dynamic, which refers to a local symbol in the
     // dynamic TLS block.  Since we know that we generating an
     // executable, we can switch to Local-Exec.
     return tls::TLSOPT_TO_LE;

   case elfcpp::R_SPARC_TLS_LDO_HIX22: // Alternate local-dynamic
   case elfcpp::R_SPARC_TLS_LDO_LOX10:
   case elfcpp::R_SPARC_TLS_LDO_ADD:
     // Another type of Local-Dynamic relocation.
     return tls::TLSOPT_TO_LE;

   case elfcpp::R_SPARC_TLS_IE_HI22:   // Initial-exec
   case elfcpp::R_SPARC_TLS_IE_LO10:
   case elfcpp::R_SPARC_TLS_IE_LD:
   case elfcpp::R_SPARC_TLS_IE_LDX:
   case elfcpp::R_SPARC_TLS_IE_ADD:
     // These are Initial-Exec relocs which get the thread offset
     // from the GOT.  If we know that we are linking against the
     // local symbol, we can switch to Local-Exec, which links the
     // thread offset into the instruction.
     if (is_final)
       return tls::TLSOPT_TO_LE;
     return tls::TLSOPT_NONE;

   case elfcpp::R_SPARC_TLS_LE_HIX22:  // Local-exec
   case elfcpp::R_SPARC_TLS_LE_LOX10:
     // When we already have Local-Exec, there is nothing further we
     // can do.
     return tls::TLSOPT_NONE;

   default:
     gold_unreachable();
   }
}

// Get the Reference_flags for a particular relocation.

template<int size, bool big_endian>
int
Target_sparc<size, big_endian>::Scan::get_reference_flags(unsigned int r_type)
{
 r_type &= 0xff;
 switch (r_type)
   {
   case elfcpp::R_SPARC_NONE:
   case elfcpp::R_SPARC_REGISTER:
   case elfcpp::R_SPARC_GNU_VTINHERIT:
   case elfcpp::R_SPARC_GNU_VTENTRY:
     // No symbol reference.
     return 0;

   case elfcpp::R_SPARC_UA64:
   case elfcpp::R_SPARC_64:
   case elfcpp::R_SPARC_HIX22:
   case elfcpp::R_SPARC_LOX10:
   case elfcpp::R_SPARC_H34:
   case elfcpp::R_SPARC_H44:
   case elfcpp::R_SPARC_M44:
   case elfcpp::R_SPARC_L44:
   case elfcpp::R_SPARC_HH22:
   case elfcpp::R_SPARC_HM10:
   case elfcpp::R_SPARC_LM22:
   case elfcpp::R_SPARC_HI22:
   case elfcpp::R_SPARC_LO10:
   case elfcpp::R_SPARC_OLO10:
   case elfcpp::R_SPARC_UA32:
   case elfcpp::R_SPARC_32:
   case elfcpp::R_SPARC_UA16:
   case elfcpp::R_SPARC_16:
   case elfcpp::R_SPARC_11:
   case elfcpp::R_SPARC_10:
   case elfcpp::R_SPARC_8:
   case elfcpp::R_SPARC_7:
   case elfcpp::R_SPARC_6:
   case elfcpp::R_SPARC_5:
     return Symbol::ABSOLUTE_REF;

   case elfcpp::R_SPARC_DISP8:
   case elfcpp::R_SPARC_DISP16:
   case elfcpp::R_SPARC_DISP32:
   case elfcpp::R_SPARC_DISP64:
   case elfcpp::R_SPARC_PC_HH22:
   case elfcpp::R_SPARC_PC_HM10:
   case elfcpp::R_SPARC_PC_LM22:
   case elfcpp::R_SPARC_PC10:
   case elfcpp::R_SPARC_PC22:
   case elfcpp::R_SPARC_WDISP30:
   case elfcpp::R_SPARC_WDISP22:
   case elfcpp::R_SPARC_WDISP19:
   case elfcpp::R_SPARC_WDISP16:
   case elfcpp::R_SPARC_WDISP10:
     return Symbol::RELATIVE_REF;

   case elfcpp::R_SPARC_PLT64:
   case elfcpp::R_SPARC_PLT32:
   case elfcpp::R_SPARC_HIPLT22:
   case elfcpp::R_SPARC_LOPLT10:
   case elfcpp::R_SPARC_PCPLT10:
     return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;

   case elfcpp::R_SPARC_PCPLT32:
   case elfcpp::R_SPARC_PCPLT22:
   case elfcpp::R_SPARC_WPLT30:
     return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;

   case elfcpp::R_SPARC_GOTDATA_OP:
   case elfcpp::R_SPARC_GOTDATA_OP_HIX22:
   case elfcpp::R_SPARC_GOTDATA_OP_LOX10:
   case elfcpp::R_SPARC_GOT10:
   case elfcpp::R_SPARC_GOT13:
   case elfcpp::R_SPARC_GOT22:
     // Absolute in GOT.
     return Symbol::ABSOLUTE_REF;

   case elfcpp::R_SPARC_TLS_GD_HI22: // Global-dynamic
   case elfcpp::R_SPARC_TLS_GD_LO10:
   case elfcpp::R_SPARC_TLS_GD_ADD:
   case elfcpp::R_SPARC_TLS_GD_CALL:
   case elfcpp::R_SPARC_TLS_LDM_HI22:  // Local-dynamic
   case elfcpp::R_SPARC_TLS_LDM_LO10:
   case elfcpp::R_SPARC_TLS_LDM_ADD:
   case elfcpp::R_SPARC_TLS_LDM_CALL:
   case elfcpp::R_SPARC_TLS_LDO_HIX22: // Alternate local-dynamic
   case elfcpp::R_SPARC_TLS_LDO_LOX10:
   case elfcpp::R_SPARC_TLS_LDO_ADD:
   case elfcpp::R_SPARC_TLS_LE_HIX22:
   case elfcpp::R_SPARC_TLS_LE_LOX10:
   case elfcpp::R_SPARC_TLS_IE_HI22:   // Initial-exec
   case elfcpp::R_SPARC_TLS_IE_LO10:
   case elfcpp::R_SPARC_TLS_IE_LD:
   case elfcpp::R_SPARC_TLS_IE_LDX:
   case elfcpp::R_SPARC_TLS_IE_ADD:
     return Symbol::TLS_REF;

   case elfcpp::R_SPARC_COPY:
   case elfcpp::R_SPARC_GLOB_DAT:
   case elfcpp::R_SPARC_JMP_SLOT:
   case elfcpp::R_SPARC_JMP_IREL:
   case elfcpp::R_SPARC_RELATIVE:
   case elfcpp::R_SPARC_IRELATIVE:
   case elfcpp::R_SPARC_TLS_DTPMOD64:
   case elfcpp::R_SPARC_TLS_DTPMOD32:
   case elfcpp::R_SPARC_TLS_DTPOFF64:
   case elfcpp::R_SPARC_TLS_DTPOFF32:
   case elfcpp::R_SPARC_TLS_TPOFF64:
   case elfcpp::R_SPARC_TLS_TPOFF32:
   default:
     // Not expected.  We will give an error later.
     return 0;
   }
}

// Generate a PLT entry slot for a call to __tls_get_addr
template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::Scan::generate_tls_call(Symbol_table* symtab,
                                                       Layout* layout,
                                                       Target_sparc<size, big_endian>* target)
{
 Symbol* gsym = target->tls_get_addr_sym(symtab);

 target->make_plt_entry(symtab, layout, gsym);
}

// Report an unsupported relocation against a local symbol.

template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::Scan::unsupported_reloc_local(
                       Sized_relobj_file<size, big_endian>* object,
                       unsigned int r_type)
{
 gold_error(_("%s: unsupported reloc %u against local symbol"),
            object->name().c_str(), r_type);
}

// We are about to emit a dynamic relocation of type R_TYPE.  If the
// dynamic linker does not support it, issue an error.

template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::Scan::check_non_pic(Relobj* object, unsigned int r_type)
{
 gold_assert(r_type != elfcpp::R_SPARC_NONE);

 if (size == 64)
   {
     switch (r_type)
       {
         // These are the relocation types supported by glibc for sparc 64-bit.
       case elfcpp::R_SPARC_RELATIVE:
       case elfcpp::R_SPARC_IRELATIVE:
       case elfcpp::R_SPARC_COPY:
       case elfcpp::R_SPARC_32:
       case elfcpp::R_SPARC_64:
       case elfcpp::R_SPARC_GLOB_DAT:
       case elfcpp::R_SPARC_JMP_SLOT:
       case elfcpp::R_SPARC_JMP_IREL:
       case elfcpp::R_SPARC_TLS_DTPMOD64:
       case elfcpp::R_SPARC_TLS_DTPOFF64:
       case elfcpp::R_SPARC_TLS_TPOFF64:
       case elfcpp::R_SPARC_TLS_LE_HIX22:
       case elfcpp::R_SPARC_TLS_LE_LOX10:
       case elfcpp::R_SPARC_8:
       case elfcpp::R_SPARC_16:
       case elfcpp::R_SPARC_DISP8:
       case elfcpp::R_SPARC_DISP16:
       case elfcpp::R_SPARC_DISP32:
       case elfcpp::R_SPARC_WDISP30:
       case elfcpp::R_SPARC_LO10:
       case elfcpp::R_SPARC_HI22:
       case elfcpp::R_SPARC_OLO10:
       case elfcpp::R_SPARC_H34:
       case elfcpp::R_SPARC_H44:
       case elfcpp::R_SPARC_M44:
       case elfcpp::R_SPARC_L44:
       case elfcpp::R_SPARC_HH22:
       case elfcpp::R_SPARC_HM10:
       case elfcpp::R_SPARC_LM22:
       case elfcpp::R_SPARC_UA16:
       case elfcpp::R_SPARC_UA32:
       case elfcpp::R_SPARC_UA64:
         return;

       default:
         break;
       }
   }
 else
   {
     switch (r_type)
       {
         // These are the relocation types supported by glibc for sparc 32-bit.
       case elfcpp::R_SPARC_RELATIVE:
       case elfcpp::R_SPARC_IRELATIVE:
       case elfcpp::R_SPARC_COPY:
       case elfcpp::R_SPARC_GLOB_DAT:
       case elfcpp::R_SPARC_32:
       case elfcpp::R_SPARC_JMP_SLOT:
       case elfcpp::R_SPARC_JMP_IREL:
       case elfcpp::R_SPARC_TLS_DTPMOD32:
       case elfcpp::R_SPARC_TLS_DTPOFF32:
       case elfcpp::R_SPARC_TLS_TPOFF32:
       case elfcpp::R_SPARC_TLS_LE_HIX22:
       case elfcpp::R_SPARC_TLS_LE_LOX10:
       case elfcpp::R_SPARC_8:
       case elfcpp::R_SPARC_16:
       case elfcpp::R_SPARC_DISP8:
       case elfcpp::R_SPARC_DISP16:
       case elfcpp::R_SPARC_DISP32:
       case elfcpp::R_SPARC_LO10:
       case elfcpp::R_SPARC_WDISP30:
       case elfcpp::R_SPARC_HI22:
       case elfcpp::R_SPARC_UA16:
       case elfcpp::R_SPARC_UA32:
         return;

       default:
         break;
       }
   }

 // This prevents us from issuing more than one error per reloc
 // section.  But we can still wind up issuing more than one
 // error per object file.
 if (this->issued_non_pic_error_)
   return;
 gold_assert(parameters->options().output_is_position_independent());
 object->error(_("requires unsupported dynamic reloc; "
                 "recompile with -fPIC"));
 this->issued_non_pic_error_ = true;
 return;
}

// Return whether we need to make a PLT entry for a relocation of the
// given type against a STT_GNU_IFUNC symbol.

template<int size, bool big_endian>
bool
Target_sparc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
    Sized_relobj_file<size, big_endian>* object,
    unsigned int r_type)
{
 int flags = Scan::get_reference_flags(r_type);
 if (flags & Symbol::TLS_REF)
   gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
              object->name().c_str(), r_type);
 return flags != 0;
}

// Scan a relocation for a local symbol.

template<int size, bool big_endian>
inline void
Target_sparc<size, big_endian>::Scan::local(
                       Symbol_table* symtab,
                       Layout* layout,
                       Target_sparc<size, big_endian>* target,
                       Sized_relobj_file<size, big_endian>* object,
                       unsigned int data_shndx,
                       Output_section* output_section,
                       const elfcpp::Rela<size, big_endian>& reloc,
                       unsigned int r_type,
                       const elfcpp::Sym<size, big_endian>& lsym,
                       bool is_discarded)
{
 if (is_discarded)
   return;

 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
 unsigned int orig_r_type = r_type;
 r_type &= 0xff;

 if (is_ifunc
     && this->reloc_needs_plt_for_ifunc(object, r_type))
   {
     unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
     target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
   }

 switch (r_type)
   {
   case elfcpp::R_SPARC_NONE:
   case elfcpp::R_SPARC_REGISTER:
   case elfcpp::R_SPARC_GNU_VTINHERIT:
   case elfcpp::R_SPARC_GNU_VTENTRY:
     break;

   case elfcpp::R_SPARC_64:
   case elfcpp::R_SPARC_32:
     // If building a shared library (or a position-independent
     // executable), we need to create a dynamic relocation for
     // this location. The relocation applied at link time will
     // apply the link-time value, so we flag the location with
     // an R_SPARC_RELATIVE relocation so the dynamic loader can
     // relocate it easily.
     if (parameters->options().output_is_position_independent()
         && ((size == 64 && r_type == elfcpp::R_SPARC_64)
             || (size == 32 && r_type == elfcpp::R_SPARC_32)))
       {
         Reloc_section* rela_dyn = target->rela_dyn_section(layout);
         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
         rela_dyn->add_local_relative(object, r_sym, elfcpp::R_SPARC_RELATIVE,
                                      output_section, data_shndx,
                                      reloc.get_r_offset(),
                                      reloc.get_r_addend(), is_ifunc);
         break;
       }
     // Fall through.

   case elfcpp::R_SPARC_HIX22:
   case elfcpp::R_SPARC_LOX10:
   case elfcpp::R_SPARC_H34:
   case elfcpp::R_SPARC_H44:
   case elfcpp::R_SPARC_M44:
   case elfcpp::R_SPARC_L44:
   case elfcpp::R_SPARC_HH22:
   case elfcpp::R_SPARC_HM10:
   case elfcpp::R_SPARC_LM22:
   case elfcpp::R_SPARC_UA64:
   case elfcpp::R_SPARC_UA32:
   case elfcpp::R_SPARC_UA16:
   case elfcpp::R_SPARC_HI22:
   case elfcpp::R_SPARC_LO10:
   case elfcpp::R_SPARC_OLO10:
   case elfcpp::R_SPARC_16:
   case elfcpp::R_SPARC_11:
   case elfcpp::R_SPARC_10:
   case elfcpp::R_SPARC_8:
   case elfcpp::R_SPARC_7:
   case elfcpp::R_SPARC_6:
   case elfcpp::R_SPARC_5:
     // If building a shared library (or a position-independent
     // executable), we need to create a dynamic relocation for
     // this location.
     if (parameters->options().output_is_position_independent())
       {
         Reloc_section* rela_dyn = target->rela_dyn_section(layout);
         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());

         check_non_pic(object, r_type);
         if (lsym.get_st_type() != elfcpp::STT_SECTION)
           {
             rela_dyn->add_local(object, r_sym, orig_r_type, output_section,
                                 data_shndx, reloc.get_r_offset(),
                                 reloc.get_r_addend());
           }
         else
           {
             gold_assert(lsym.get_st_value() == 0);
             rela_dyn->add_symbolless_local_addend(object, r_sym, orig_r_type,
                                                   output_section, data_shndx,
                                                   reloc.get_r_offset(),
                                                   reloc.get_r_addend());
           }
       }
     break;

   case elfcpp::R_SPARC_WDISP30:
   case elfcpp::R_SPARC_WPLT30:
   case elfcpp::R_SPARC_WDISP22:
   case elfcpp::R_SPARC_WDISP19:
   case elfcpp::R_SPARC_WDISP16:
   case elfcpp::R_SPARC_WDISP10:
   case elfcpp::R_SPARC_DISP8:
   case elfcpp::R_SPARC_DISP16:
   case elfcpp::R_SPARC_DISP32:
   case elfcpp::R_SPARC_DISP64:
   case elfcpp::R_SPARC_PC10:
   case elfcpp::R_SPARC_PC22:
     break;

   case elfcpp::R_SPARC_GOTDATA_OP:
   case elfcpp::R_SPARC_GOTDATA_OP_HIX22:
   case elfcpp::R_SPARC_GOTDATA_OP_LOX10:
     // We will optimize this into a GOT relative relocation
     // and code transform the GOT load into an addition.
     break;

   case elfcpp::R_SPARC_GOT10:
   case elfcpp::R_SPARC_GOT13:
   case elfcpp::R_SPARC_GOT22:
     {
       // The symbol requires a GOT entry.
       Output_data_got<size, big_endian>* got;
       unsigned int r_sym;

       got = target->got_section(symtab, layout);
       r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());

       // If we are generating a shared object, we need to add a
       // dynamic relocation for this symbol's GOT entry.
       if (parameters->options().output_is_position_independent())
         {
           if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
             {
               Reloc_section* rela_dyn = target->rela_dyn_section(layout);
               unsigned int off = got->add_constant(0);
               object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
               rela_dyn->add_local_relative(object, r_sym,
                                            elfcpp::R_SPARC_RELATIVE,
                                            got, off, 0, is_ifunc);
             }
         }
       else
         got->add_local(object, r_sym, GOT_TYPE_STANDARD);
     }
     break;

     // These are initial TLS relocs, which are expected when
     // linking.
   case elfcpp::R_SPARC_TLS_GD_HI22: // Global-dynamic
   case elfcpp::R_SPARC_TLS_GD_LO10:
   case elfcpp::R_SPARC_TLS_GD_ADD:
   case elfcpp::R_SPARC_TLS_GD_CALL:
   case elfcpp::R_SPARC_TLS_LDM_HI22 : // Local-dynamic
   case elfcpp::R_SPARC_TLS_LDM_LO10:
   case elfcpp::R_SPARC_TLS_LDM_ADD:
   case elfcpp::R_SPARC_TLS_LDM_CALL:
   case elfcpp::R_SPARC_TLS_LDO_HIX22: // Alternate local-dynamic
   case elfcpp::R_SPARC_TLS_LDO_LOX10:
   case elfcpp::R_SPARC_TLS_LDO_ADD:
   case elfcpp::R_SPARC_TLS_IE_HI22:   // Initial-exec
   case elfcpp::R_SPARC_TLS_IE_LO10:
   case elfcpp::R_SPARC_TLS_IE_LD:
   case elfcpp::R_SPARC_TLS_IE_LDX:
   case elfcpp::R_SPARC_TLS_IE_ADD:
   case elfcpp::R_SPARC_TLS_LE_HIX22:  // Local-exec
   case elfcpp::R_SPARC_TLS_LE_LOX10:
     {
       bool output_is_shared = parameters->options().shared();
       const tls::Tls_optimization optimized_type
           = optimize_tls_reloc(!output_is_shared, r_type);
       switch (r_type)
         {
         case elfcpp::R_SPARC_TLS_GD_HI22: // Global-dynamic
         case elfcpp::R_SPARC_TLS_GD_LO10:
         case elfcpp::R_SPARC_TLS_GD_ADD:
         case elfcpp::R_SPARC_TLS_GD_CALL:
           if (optimized_type == tls::TLSOPT_NONE)
             {
               // Create a pair of GOT entries for the module index and
               // dtv-relative offset.
               Output_data_got<size, big_endian>* got
                   = target->got_section(symtab, layout);
               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
               unsigned int shndx = lsym.get_st_shndx();
               bool is_ordinary;
               shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
               if (!is_ordinary)
                 object->error(_("local symbol %u has bad shndx %u"),
                               r_sym, shndx);
               else
                 got->add_local_pair_with_rel(object, r_sym,
                                              lsym.get_st_shndx(),
                                              GOT_TYPE_TLS_PAIR,
                                              target->rela_dyn_section(layout),
                                              (size == 64
                                               ? elfcpp::R_SPARC_TLS_DTPMOD64
                                               : elfcpp::R_SPARC_TLS_DTPMOD32));
               if (r_type == elfcpp::R_SPARC_TLS_GD_CALL)
                 generate_tls_call(symtab, layout, target);
             }
           else if (optimized_type != tls::TLSOPT_TO_LE)
             unsupported_reloc_local(object, r_type);
           break;

         case elfcpp::R_SPARC_TLS_LDM_HI22 :   // Local-dynamic
         case elfcpp::R_SPARC_TLS_LDM_LO10:
         case elfcpp::R_SPARC_TLS_LDM_ADD:
         case elfcpp::R_SPARC_TLS_LDM_CALL:
           if (optimized_type == tls::TLSOPT_NONE)
             {
               // Create a GOT entry for the module index.
               target->got_mod_index_entry(symtab, layout, object);

               if (r_type == elfcpp::R_SPARC_TLS_LDM_CALL)
                 generate_tls_call(symtab, layout, target);
             }
           else if (optimized_type != tls::TLSOPT_TO_LE)
             unsupported_reloc_local(object, r_type);
           break;

         case elfcpp::R_SPARC_TLS_LDO_HIX22:   // Alternate local-dynamic
         case elfcpp::R_SPARC_TLS_LDO_LOX10:
         case elfcpp::R_SPARC_TLS_LDO_ADD:
           break;

         case elfcpp::R_SPARC_TLS_IE_HI22:     // Initial-exec
         case elfcpp::R_SPARC_TLS_IE_LO10:
         case elfcpp::R_SPARC_TLS_IE_LD:
         case elfcpp::R_SPARC_TLS_IE_LDX:
         case elfcpp::R_SPARC_TLS_IE_ADD:
           layout->set_has_static_tls();
           if (optimized_type == tls::TLSOPT_NONE)
             {
               // Create a GOT entry for the tp-relative offset.
               Output_data_got<size, big_endian>* got
                 = target->got_section(symtab, layout);
               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());

               if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_OFFSET))
                 {
                   Reloc_section* rela_dyn = target->rela_dyn_section(layout);
                   unsigned int off = got->add_constant(0);

                   object->set_local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET, off);

                   rela_dyn->add_symbolless_local_addend(object, r_sym,
                                                         (size == 64 ?
                                                          elfcpp::R_SPARC_TLS_TPOFF64 :
                                                          elfcpp::R_SPARC_TLS_TPOFF32),
                                                         got, off, 0);
                 }
             }
           else if (optimized_type != tls::TLSOPT_TO_LE)
             unsupported_reloc_local(object, r_type);
           break;

         case elfcpp::R_SPARC_TLS_LE_HIX22:    // Local-exec
         case elfcpp::R_SPARC_TLS_LE_LOX10:
           layout->set_has_static_tls();
           if (output_is_shared)
             {
               // We need to create a dynamic relocation.
               gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
               Reloc_section* rela_dyn = target->rela_dyn_section(layout);
               rela_dyn->add_symbolless_local_addend(object, r_sym, r_type,
                                                     output_section, data_shndx,
                                                     reloc.get_r_offset(), 0);
             }
           break;
         }
     }
     break;

     // These are relocations which should only be seen by the
     // dynamic linker, and should never be seen here.
   case elfcpp::R_SPARC_COPY:
   case elfcpp::R_SPARC_GLOB_DAT:
   case elfcpp::R_SPARC_JMP_SLOT:
   case elfcpp::R_SPARC_JMP_IREL:
   case elfcpp::R_SPARC_RELATIVE:
   case elfcpp::R_SPARC_IRELATIVE:
   case elfcpp::R_SPARC_TLS_DTPMOD64:
   case elfcpp::R_SPARC_TLS_DTPMOD32:
   case elfcpp::R_SPARC_TLS_DTPOFF64:
   case elfcpp::R_SPARC_TLS_DTPOFF32:
   case elfcpp::R_SPARC_TLS_TPOFF64:
   case elfcpp::R_SPARC_TLS_TPOFF32:
     gold_error(_("%s: unexpected reloc %u in object file"),
                object->name().c_str(), r_type);
     break;

   default:
     unsupported_reloc_local(object, r_type);
     break;
   }
}

// Report an unsupported relocation against a global symbol.

template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::Scan::unsupported_reloc_global(
                       Sized_relobj_file<size, big_endian>* object,
                       unsigned int r_type,
                       Symbol* gsym)
{
 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
            object->name().c_str(), r_type, gsym->demangled_name().c_str());
}

// Scan a relocation for a global symbol.

template<int size, bool big_endian>
inline void
Target_sparc<size, big_endian>::Scan::global(
                               Symbol_table* symtab,
                               Layout* layout,
                               Target_sparc<size, big_endian>* target,
                               Sized_relobj_file<size, big_endian>* object,
                               unsigned int data_shndx,
                               Output_section* output_section,
                               const elfcpp::Rela<size, big_endian>& reloc,
                               unsigned int r_type,
                               Symbol* gsym)
{
 unsigned int orig_r_type = r_type;
 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;

 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
 // section.  We check here to avoid creating a dynamic reloc against
 // _GLOBAL_OFFSET_TABLE_.
 if (!target->has_got_section()
     && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
   target->got_section(symtab, layout);

 r_type &= 0xff;

 // A STT_GNU_IFUNC symbol may require a PLT entry.
 if (is_ifunc
     && this->reloc_needs_plt_for_ifunc(object, r_type))
   target->make_plt_entry(symtab, layout, gsym);

 switch (r_type)
   {
   case elfcpp::R_SPARC_NONE:
   case elfcpp::R_SPARC_REGISTER:
   case elfcpp::R_SPARC_GNU_VTINHERIT:
   case elfcpp::R_SPARC_GNU_VTENTRY:
     break;

   case elfcpp::R_SPARC_PLT64:
   case elfcpp::R_SPARC_PLT32:
   case elfcpp::R_SPARC_HIPLT22:
   case elfcpp::R_SPARC_LOPLT10:
   case elfcpp::R_SPARC_PCPLT32:
   case elfcpp::R_SPARC_PCPLT22:
   case elfcpp::R_SPARC_PCPLT10:
   case elfcpp::R_SPARC_WPLT30:
     // If the symbol is fully resolved, this is just a PC32 reloc.
     // Otherwise we need a PLT entry.
     if (gsym->final_value_is_known())
       break;
     // If building a shared library, we can also skip the PLT entry
     // if the symbol is defined in the output file and is protected
     // or hidden.
     if (gsym->is_defined()
         && !gsym->is_from_dynobj()
         && !gsym->is_preemptible())
       break;
     target->make_plt_entry(symtab, layout, gsym);
     break;

   case elfcpp::R_SPARC_DISP8:
   case elfcpp::R_SPARC_DISP16:
   case elfcpp::R_SPARC_DISP32:
   case elfcpp::R_SPARC_DISP64:
   case elfcpp::R_SPARC_PC_HH22:
   case elfcpp::R_SPARC_PC_HM10:
   case elfcpp::R_SPARC_PC_LM22:
   case elfcpp::R_SPARC_PC10:
   case elfcpp::R_SPARC_PC22:
   case elfcpp::R_SPARC_WDISP30:
   case elfcpp::R_SPARC_WDISP22:
   case elfcpp::R_SPARC_WDISP19:
   case elfcpp::R_SPARC_WDISP16:
   case elfcpp::R_SPARC_WDISP10:
     {
       if (gsym->needs_plt_entry())
         target->make_plt_entry(symtab, layout, gsym);
       // Make a dynamic relocation if necessary.
       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
         {
           if (parameters->options().output_is_executable()
               && gsym->may_need_copy_reloc())
             {
               target->copy_reloc(symtab, layout, object,
                                  data_shndx, output_section, gsym,
                                  reloc);
             }
           else
             {
               Reloc_section* rela_dyn = target->rela_dyn_section(layout);
               check_non_pic(object, r_type);
               rela_dyn->add_global(gsym, orig_r_type, output_section, object,
                                    data_shndx, reloc.get_r_offset(),
                                    reloc.get_r_addend());
             }
         }
     }
     break;

   case elfcpp::R_SPARC_UA64:
   case elfcpp::R_SPARC_64:
   case elfcpp::R_SPARC_HIX22:
   case elfcpp::R_SPARC_LOX10:
   case elfcpp::R_SPARC_H34:
   case elfcpp::R_SPARC_H44:
   case elfcpp::R_SPARC_M44:
   case elfcpp::R_SPARC_L44:
   case elfcpp::R_SPARC_HH22:
   case elfcpp::R_SPARC_HM10:
   case elfcpp::R_SPARC_LM22:
   case elfcpp::R_SPARC_HI22:
   case elfcpp::R_SPARC_LO10:
   case elfcpp::R_SPARC_OLO10:
   case elfcpp::R_SPARC_UA32:
   case elfcpp::R_SPARC_32:
   case elfcpp::R_SPARC_UA16:
   case elfcpp::R_SPARC_16:
   case elfcpp::R_SPARC_11:
   case elfcpp::R_SPARC_10:
   case elfcpp::R_SPARC_8:
   case elfcpp::R_SPARC_7:
   case elfcpp::R_SPARC_6:
   case elfcpp::R_SPARC_5:
     {
       // Make a PLT entry if necessary.
       if (gsym->needs_plt_entry())
         {
           target->make_plt_entry(symtab, layout, gsym);
           // Since this is not a PC-relative relocation, we may be
           // taking the address of a function. In that case we need to
           // set the entry in the dynamic symbol table to the address of
           // the PLT entry.
           if (gsym->is_from_dynobj() && !parameters->options().shared())
             gsym->set_needs_dynsym_value();
         }
       // Make a dynamic relocation if necessary.
       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
         {
           unsigned int r_off = reloc.get_r_offset();

           // The assembler can sometimes emit unaligned relocations
           // for dwarf2 cfi directives.
           switch (r_type)
             {
             case elfcpp::R_SPARC_16:
               if (r_off & 0x1)
                 orig_r_type = r_type = elfcpp::R_SPARC_UA16;
               break;
             case elfcpp::R_SPARC_32:
               if (r_off & 0x3)
                 orig_r_type = r_type = elfcpp::R_SPARC_UA32;
               break;
             case elfcpp::R_SPARC_64:
               if (r_off & 0x7)
                 orig_r_type = r_type = elfcpp::R_SPARC_UA64;
               break;
             case elfcpp::R_SPARC_UA16:
               if (!(r_off & 0x1))
                 orig_r_type = r_type = elfcpp::R_SPARC_16;
               break;
             case elfcpp::R_SPARC_UA32:
               if (!(r_off & 0x3))
                 orig_r_type = r_type = elfcpp::R_SPARC_32;
               break;
             case elfcpp::R_SPARC_UA64:
               if (!(r_off & 0x7))
                 orig_r_type = r_type = elfcpp::R_SPARC_64;
               break;
             }

           if (!parameters->options().output_is_position_independent()
               && gsym->may_need_copy_reloc())
             {
               target->copy_reloc(symtab, layout, object,
                                  data_shndx, output_section, gsym, reloc);
             }
           else if (((size == 64 && r_type == elfcpp::R_SPARC_64)
                     || (size == 32 && r_type == elfcpp::R_SPARC_32))
                    && gsym->type() == elfcpp::STT_GNU_IFUNC
                    && gsym->can_use_relative_reloc(false)
                    && !gsym->is_from_dynobj()
                    && !gsym->is_undefined()
                    && !gsym->is_preemptible())
             {
               // Use an IRELATIVE reloc for a locally defined
               // STT_GNU_IFUNC symbol.  This makes a function
               // address in a PIE executable match the address in a
               // shared library that it links against.
               Reloc_section* rela_dyn =
                 target->rela_ifunc_section(layout);
               unsigned int r_type = elfcpp::R_SPARC_IRELATIVE;
               rela_dyn->add_symbolless_global_addend(gsym, r_type,
                                                      output_section, object,
                                                      data_shndx,
                                                      reloc.get_r_offset(),
                                                      reloc.get_r_addend());
             }
           else if (((size == 64 && r_type == elfcpp::R_SPARC_64)
                     || (size == 32 && r_type == elfcpp::R_SPARC_32))
                    && gsym->can_use_relative_reloc(false))
             {
               Reloc_section* rela_dyn = target->rela_dyn_section(layout);
               rela_dyn->add_global_relative(gsym, elfcpp::R_SPARC_RELATIVE,
                                             output_section, object,
                                             data_shndx, reloc.get_r_offset(),
                                             reloc.get_r_addend(), is_ifunc);
             }
           else
             {
               Reloc_section* rela_dyn = target->rela_dyn_section(layout);

               check_non_pic(object, r_type);
               if (gsym->is_from_dynobj()
                   || gsym->is_undefined()
                   || gsym->is_preemptible())
                 rela_dyn->add_global(gsym, orig_r_type, output_section,
                                      object, data_shndx,
                                      reloc.get_r_offset(),
                                      reloc.get_r_addend());
               else
                 rela_dyn->add_symbolless_global_addend(gsym, orig_r_type,
                                                        output_section,
                                                        object, data_shndx,
                                                        reloc.get_r_offset(),
                                                        reloc.get_r_addend());
             }
         }
     }
     break;

   case elfcpp::R_SPARC_GOTDATA_OP:
   case elfcpp::R_SPARC_GOTDATA_OP_HIX22:
   case elfcpp::R_SPARC_GOTDATA_OP_LOX10:
     if (gsym->is_defined()
         && !gsym->is_from_dynobj()
         && !gsym->is_preemptible()
         && !is_ifunc)
       {
         // We will optimize this into a GOT relative relocation
         // and code transform the GOT load into an addition.
         break;
       }
     // Fall through.
   case elfcpp::R_SPARC_GOT10:
   case elfcpp::R_SPARC_GOT13:
   case elfcpp::R_SPARC_GOT22:
     {
       // The symbol requires a GOT entry.
       Output_data_got<size, big_endian>* got;

       got = target->got_section(symtab, layout);
       if (gsym->final_value_is_known())
         {
           // For a STT_GNU_IFUNC symbol we want the PLT address.
           if (gsym->type() == elfcpp::STT_GNU_IFUNC)
             got->add_global_plt(gsym, GOT_TYPE_STANDARD);
           else
             got->add_global(gsym, GOT_TYPE_STANDARD);
         }
       else
         {
           // If this symbol is not fully resolved, we need to add a
           // GOT entry with a dynamic relocation.
           bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;

           // Use a GLOB_DAT rather than a RELATIVE reloc if:
           //
           // 1) The symbol may be defined in some other module.
           //
           // 2) We are building a shared library and this is a
           // protected symbol; using GLOB_DAT means that the dynamic
           // linker can use the address of the PLT in the main
           // executable when appropriate so that function address
           // comparisons work.
           //
           // 3) This is a STT_GNU_IFUNC symbol in position dependent
           // code, again so that function address comparisons work.
           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
           if (gsym->is_from_dynobj()
               || gsym->is_undefined()
               || gsym->is_preemptible()
               || (gsym->visibility() == elfcpp::STV_PROTECTED
                   && parameters->options().shared())
               || (gsym->type() == elfcpp::STT_GNU_IFUNC
                   && parameters->options().output_is_position_independent()
                   && !gsym->is_forced_local()))
             {
               unsigned int r_type = elfcpp::R_SPARC_GLOB_DAT;

               // If this symbol is forced local, this relocation will
               // not work properly.  That's because ld.so on sparc
               // (and 32-bit powerpc) expects st_value in the r_addend
               // of relocations for STB_LOCAL symbols.  Curiously the
               // BFD linker does not promote global hidden symbols to be
               // STB_LOCAL in the dynamic symbol table like Gold does.
               gold_assert(!gsym->is_forced_local());
               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
                                        r_type);
             }
           else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
             {
               unsigned int off = got->add_constant(0);

               gsym->set_got_offset(GOT_TYPE_STANDARD, off);
               if (is_ifunc)
                 {
                   // Tell the dynamic linker to use the PLT address
                   // when resolving relocations.
                   if (gsym->is_from_dynobj()
                       && !parameters->options().shared())
                     gsym->set_needs_dynsym_value();
                 }
               rela_dyn->add_global_relative(gsym, elfcpp::R_SPARC_RELATIVE,
                                             got, off, 0, is_ifunc);
             }
         }
     }
     break;

     // These are initial tls relocs, which are expected when
     // linking.
   case elfcpp::R_SPARC_TLS_GD_HI22: // Global-dynamic
   case elfcpp::R_SPARC_TLS_GD_LO10:
   case elfcpp::R_SPARC_TLS_GD_ADD:
   case elfcpp::R_SPARC_TLS_GD_CALL:
   case elfcpp::R_SPARC_TLS_LDM_HI22:  // Local-dynamic
   case elfcpp::R_SPARC_TLS_LDM_LO10:
   case elfcpp::R_SPARC_TLS_LDM_ADD:
   case elfcpp::R_SPARC_TLS_LDM_CALL:
   case elfcpp::R_SPARC_TLS_LDO_HIX22: // Alternate local-dynamic
   case elfcpp::R_SPARC_TLS_LDO_LOX10:
   case elfcpp::R_SPARC_TLS_LDO_ADD:
   case elfcpp::R_SPARC_TLS_LE_HIX22:
   case elfcpp::R_SPARC_TLS_LE_LOX10:
   case elfcpp::R_SPARC_TLS_IE_HI22:   // Initial-exec
   case elfcpp::R_SPARC_TLS_IE_LO10:
   case elfcpp::R_SPARC_TLS_IE_LD:
   case elfcpp::R_SPARC_TLS_IE_LDX:
   case elfcpp::R_SPARC_TLS_IE_ADD:
     {
       const bool is_final = gsym->final_value_is_known();
       const tls::Tls_optimization optimized_type
           = optimize_tls_reloc(is_final, r_type);
       switch (r_type)
         {
         case elfcpp::R_SPARC_TLS_GD_HI22: // Global-dynamic
         case elfcpp::R_SPARC_TLS_GD_LO10:
         case elfcpp::R_SPARC_TLS_GD_ADD:
         case elfcpp::R_SPARC_TLS_GD_CALL:
           if (optimized_type == tls::TLSOPT_NONE)
             {
               // Create a pair of GOT entries for the module index and
               // dtv-relative offset.
               Output_data_got<size, big_endian>* got
                   = target->got_section(symtab, layout);
               got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
                                             target->rela_dyn_section(layout),
                                             (size == 64
                                              ? elfcpp::R_SPARC_TLS_DTPMOD64
                                              : elfcpp::R_SPARC_TLS_DTPMOD32),
                                             (size == 64
                                              ? elfcpp::R_SPARC_TLS_DTPOFF64
                                              : elfcpp::R_SPARC_TLS_DTPOFF32));

               // Emit R_SPARC_WPLT30 against "__tls_get_addr"
               if (r_type == elfcpp::R_SPARC_TLS_GD_CALL)
                 generate_tls_call(symtab, layout, target);
             }
           else if (optimized_type == tls::TLSOPT_TO_IE)
             {
               // Create a GOT entry for the tp-relative offset.
               Output_data_got<size, big_endian>* got
                   = target->got_section(symtab, layout);
               got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
                                        target->rela_dyn_section(layout),
                                        (size == 64 ?
                                         elfcpp::R_SPARC_TLS_TPOFF64 :
                                         elfcpp::R_SPARC_TLS_TPOFF32));
             }
           else if (optimized_type != tls::TLSOPT_TO_LE)
             unsupported_reloc_global(object, r_type, gsym);
           break;

         case elfcpp::R_SPARC_TLS_LDM_HI22:    // Local-dynamic
         case elfcpp::R_SPARC_TLS_LDM_LO10:
         case elfcpp::R_SPARC_TLS_LDM_ADD:
         case elfcpp::R_SPARC_TLS_LDM_CALL:
           if (optimized_type == tls::TLSOPT_NONE)
             {
               // Create a GOT entry for the module index.
               target->got_mod_index_entry(symtab, layout, object);

               if (r_type == elfcpp::R_SPARC_TLS_LDM_CALL)
                 generate_tls_call(symtab, layout, target);
             }
           else if (optimized_type != tls::TLSOPT_TO_LE)
             unsupported_reloc_global(object, r_type, gsym);
           break;

         case elfcpp::R_SPARC_TLS_LDO_HIX22:   // Alternate local-dynamic
         case elfcpp::R_SPARC_TLS_LDO_LOX10:
         case elfcpp::R_SPARC_TLS_LDO_ADD:
           break;

         case elfcpp::R_SPARC_TLS_LE_HIX22:
         case elfcpp::R_SPARC_TLS_LE_LOX10:
           layout->set_has_static_tls();
           if (parameters->options().shared())
             {
               Reloc_section* rela_dyn = target->rela_dyn_section(layout);
               rela_dyn->add_symbolless_global_addend(gsym, orig_r_type,
                                                      output_section, object,
                                                      data_shndx, reloc.get_r_offset(),
                                                      0);
             }
           break;

         case elfcpp::R_SPARC_TLS_IE_HI22:     // Initial-exec
         case elfcpp::R_SPARC_TLS_IE_LO10:
         case elfcpp::R_SPARC_TLS_IE_LD:
         case elfcpp::R_SPARC_TLS_IE_LDX:
         case elfcpp::R_SPARC_TLS_IE_ADD:
           layout->set_has_static_tls();
           if (optimized_type == tls::TLSOPT_NONE)
             {
               // Create a GOT entry for the tp-relative offset.
               Output_data_got<size, big_endian>* got
                 = target->got_section(symtab, layout);
               got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
                                        target->rela_dyn_section(layout),
                                        (size == 64
                                         ? elfcpp::R_SPARC_TLS_TPOFF64
                                         : elfcpp::R_SPARC_TLS_TPOFF32));
             }
           else if (optimized_type != tls::TLSOPT_TO_LE)
             unsupported_reloc_global(object, r_type, gsym);
           break;
         }
     }
     break;

     // These are relocations which should only be seen by the
     // dynamic linker, and should never be seen here.
   case elfcpp::R_SPARC_COPY:
   case elfcpp::R_SPARC_GLOB_DAT:
   case elfcpp::R_SPARC_JMP_SLOT:
   case elfcpp::R_SPARC_JMP_IREL:
   case elfcpp::R_SPARC_RELATIVE:
   case elfcpp::R_SPARC_IRELATIVE:
   case elfcpp::R_SPARC_TLS_DTPMOD64:
   case elfcpp::R_SPARC_TLS_DTPMOD32:
   case elfcpp::R_SPARC_TLS_DTPOFF64:
   case elfcpp::R_SPARC_TLS_DTPOFF32:
   case elfcpp::R_SPARC_TLS_TPOFF64:
   case elfcpp::R_SPARC_TLS_TPOFF32:
     gold_error(_("%s: unexpected reloc %u in object file"),
                object->name().c_str(), r_type);
     break;

   default:
     unsupported_reloc_global(object, r_type, gsym);
     break;
   }
}

// Make a new symbol table entry.
// STT_SPARC_REGISTER symbols require special handling,
// so we intercept these symbols and keep track of them separately.
// We will resolve register symbols here and output them at symbol
// finalization time.

template<int size, bool big_endian>
Sized_symbol<size>*
Target_sparc<size, big_endian>::make_symbol(const char* name,
                                           elfcpp::STT type,
                                           Object* object,
                                           unsigned int shndx,
                                           uint64_t value)
{
 // REGISTER symbols are used only on SPARC-64.
 if (size == 64 && type == elfcpp::STT_SPARC_REGISTER)
   {
     // Ignore REGISTER symbols in dynamic objects.
     if (object->is_dynamic())
       return NULL;
     // Only registers 2, 3, 6, and 7 can be declared global.
     int reg = value;
     switch (reg)
       {
       case 2: case 3:
         reg -= 2;
         break;
       case 6: case 7:
         reg -= 4;
         break;
       default:
         gold_error(_("%s: only registers %%g[2367] can be declared "
                      "using STT_REGISTER"),
                    object->name().c_str());
         return NULL;
       }
     Register_symbol& rsym = this->register_syms_[reg];
     if (rsym.name == NULL)
       {
         rsym.name = name;
         rsym.shndx = shndx;
         rsym.obj = object;
       }
     else
       {
         if (strcmp(rsym.name, name) != 0)
           {
             gold_error(_("%s: register %%g%d declared as '%s'; "
                          "previously declared as '%s' in %s"),
                        object->name().c_str(),
                        static_cast<int>(value),
                        *name ? name : "#scratch",
                        *rsym.name ? rsym.name : "#scratch",
                        rsym.obj->name().c_str());
             return NULL;
           }
       }
     return NULL;
   }
 return new Sized_symbol<size>();
}

// Process relocations for gc.

template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::gc_process_relocs(
                       Symbol_table* symtab,
                       Layout* layout,
                       Sized_relobj_file<size, big_endian>* object,
                       unsigned int data_shndx,
                       unsigned int,
                       const unsigned char* prelocs,
                       size_t reloc_count,
                       Output_section* output_section,
                       bool needs_special_offset_handling,
                       size_t local_symbol_count,
                       const unsigned char* plocal_symbols)
{
 typedef Target_sparc<size, big_endian> Sparc;
 typedef typename Target_sparc<size, big_endian>::Scan Scan;
 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
     Classify_reloc;

 gold::gc_process_relocs<size, big_endian, Sparc, Scan, Classify_reloc>(
   symtab,
   layout,
   this,
   object,
   data_shndx,
   prelocs,
   reloc_count,
   output_section,
   needs_special_offset_handling,
   local_symbol_count,
   plocal_symbols);
}

// Scan relocations for a section.

template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::scan_relocs(
                       Symbol_table* symtab,
                       Layout* layout,
                       Sized_relobj_file<size, big_endian>* object,
                       unsigned int data_shndx,
                       unsigned int sh_type,
                       const unsigned char* prelocs,
                       size_t reloc_count,
                       Output_section* output_section,
                       bool needs_special_offset_handling,
                       size_t local_symbol_count,
                       const unsigned char* plocal_symbols)
{
 typedef Target_sparc<size, big_endian> Sparc;
 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
     Classify_reloc;

 if (sh_type == elfcpp::SHT_REL)
   {
     gold_error(_("%s: unsupported REL reloc section"),
                object->name().c_str());
     return;
   }

 gold::scan_relocs<size, big_endian, Sparc, Scan, Classify_reloc>(
   symtab,
   layout,
   this,
   object,
   data_shndx,
   prelocs,
   reloc_count,
   output_section,
   needs_special_offset_handling,
   local_symbol_count,
   plocal_symbols);
}

// Finalize the sections.

template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::do_finalize_sections(
   Layout* layout,
   const Input_objects*,
   Symbol_table* symtab)
{
 if (this->plt_)
   this->plt_->emit_pending_ifunc_relocs();

 // Fill in some more dynamic tags.
 const Reloc_section* rel_plt = (this->plt_ == NULL
                                 ? NULL
                                 : this->plt_->rel_plt());
 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
                                 this->rela_dyn_, true, true, false);

 // Emit any relocs we saved in an attempt to avoid generating COPY
 // relocs.
 if (this->copy_relocs_.any_saved_relocs())
   this->copy_relocs_.emit(this->rela_dyn_section(layout));

 if (parameters->doing_static_link()
     && (this->plt_ == NULL || !this->plt_->has_ifunc_section()))
   {
     // If linking statically, make sure that the __rela_iplt symbols
     // were defined if necessary, even if we didn't create a PLT.
     static const Define_symbol_in_segment syms[] =
       {
         {
           "__rela_iplt_start",        // name
           elfcpp::PT_LOAD,            // segment_type
           elfcpp::PF_W,               // segment_flags_set
           elfcpp::PF(0),              // segment_flags_clear
           0,                          // value
           0,                          // size
           elfcpp::STT_NOTYPE,         // type
           elfcpp::STB_GLOBAL,         // binding
           elfcpp::STV_HIDDEN,         // visibility
           0,                          // nonvis
           Symbol::SEGMENT_START,      // offset_from_base
           true                        // only_if_ref
         },
         {
           "__rela_iplt_end",          // name
           elfcpp::PT_LOAD,            // segment_type
           elfcpp::PF_W,               // segment_flags_set
           elfcpp::PF(0),              // segment_flags_clear
           0,                          // value
           0,                          // size
           elfcpp::STT_NOTYPE,         // type
           elfcpp::STB_GLOBAL,         // binding
           elfcpp::STV_HIDDEN,         // visibility
           0,                          // nonvis
           Symbol::SEGMENT_START,      // offset_from_base
           true                        // only_if_ref
         }
       };

     symtab->define_symbols(layout, 2, syms,
                            layout->script_options()->saw_sections_clause());
   }

 for (int reg = 0; reg < 4; ++reg)
   {
     Register_symbol& rsym = this->register_syms_[reg];
     if (rsym.name != NULL)
       {
         int value = reg < 3 ? reg + 2 : reg + 4;
         Sized_symbol<size>* sym = new Sized_symbol<size>();
         if (rsym.shndx == elfcpp::SHN_UNDEF)
           sym->init_undefined(rsym.name, NULL, value,
                               elfcpp::STT_SPARC_REGISTER, elfcpp::STB_GLOBAL,
                               elfcpp::STV_DEFAULT, 0);
         else
           sym->init_constant(rsym.name, NULL, value, 0,
                              elfcpp::STT_SPARC_REGISTER, elfcpp::STB_GLOBAL,
                              elfcpp::STV_DEFAULT, 0, false);
         symtab->add_target_global_symbol(sym);
         layout->add_target_specific_dynamic_tag(elfcpp::DT_SPARC_REGISTER,
                                                 value);
       }
   }
}

// Perform a relocation.

template<int size, bool big_endian>
inline bool
Target_sparc<size, big_endian>::Relocate::relocate(
                       const Relocate_info<size, big_endian>* relinfo,
                       unsigned int,
                       Target_sparc* target,
                       Output_section*,
                       size_t relnum,
                       const unsigned char* preloc,
                       const Sized_symbol<size>* gsym,
                       const Symbol_value<size>* psymval,
                       unsigned char* view,
                       typename elfcpp::Elf_types<size>::Elf_Addr address,
                       section_size_type view_size)
{
 const elfcpp::Rela<size, big_endian> rela(preloc);
 unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
 bool orig_is_ifunc = psymval->is_ifunc_symbol();
 r_type &= 0xff;

 if (this->ignore_gd_add_)
   {
     if (r_type != elfcpp::R_SPARC_TLS_GD_ADD)
       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
                              _("missing expected TLS relocation"));
     else
       {
         this->ignore_gd_add_ = false;
         return false;
       }
   }

 if (view == NULL)
   return true;

 if (this->reloc_adjust_addr_ == view)
   view -= 4;

 typedef Sparc_relocate_functions<size, big_endian> Reloc;
 const Sized_relobj_file<size, big_endian>* object = relinfo->object;

 // Pick the value to use for symbols defined in shared objects.
 Symbol_value<size> symval;
 if (gsym != NULL
     && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
   {
     elfcpp::Elf_Xword value;

     value = target->plt_address_for_global(gsym);

     symval.set_output_value(value);

     psymval = &symval;
   }
 else if (gsym == NULL && orig_is_ifunc)
   {
     unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
     if (object->local_has_plt_offset(r_sym))
       {
         symval.set_output_value(target->plt_address_for_local(object, r_sym));
         psymval = &symval;
       }
   }

 const elfcpp::Elf_Xword addend = rela.get_r_addend();

 // Get the GOT offset if needed.  Unlike i386 and x86_64, our GOT
 // pointer points to the beginning, not the end, of the table.
 // So we just use the plain offset.
 unsigned int got_offset = 0;
 bool gdop_valid = false;
 switch (r_type)
   {
   case elfcpp::R_SPARC_GOTDATA_OP:
   case elfcpp::R_SPARC_GOTDATA_OP_HIX22:
   case elfcpp::R_SPARC_GOTDATA_OP_LOX10:
     // If this is local, we did not create a GOT entry because we
     // intend to transform this into a GOT relative relocation.
     if (gsym == NULL
         || (gsym->is_defined()
             && !gsym->is_from_dynobj()
             && !gsym->is_preemptible()
             && !orig_is_ifunc))
       {
         got_offset = psymval->value(object, addend) - target->got_address();
         gdop_valid = true;
         break;
       }
     // Fall through.
   case elfcpp::R_SPARC_GOT10:
   case elfcpp::R_SPARC_GOT13:
   case elfcpp::R_SPARC_GOT22:
     if (gsym != NULL)
       {
         gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
         got_offset = gsym->got_offset(GOT_TYPE_STANDARD);
       }
     else
       {
         unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
         gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
         got_offset = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
       }
     break;

   default:
     break;
   }

 switch (r_type)
   {
   case elfcpp::R_SPARC_NONE:
   case elfcpp::R_SPARC_REGISTER:
   case elfcpp::R_SPARC_GNU_VTINHERIT:
   case elfcpp::R_SPARC_GNU_VTENTRY:
     break;

   case elfcpp::R_SPARC_8:
     Relocate_functions<size, big_endian>::rela8(view, object,
                                                 psymval, addend);
     break;

   case elfcpp::R_SPARC_16:
     if (rela.get_r_offset() & 0x1)
       {
         // The assembler can sometimes emit unaligned relocations
         // for dwarf2 cfi directives.
         Reloc::ua16(view, object, psymval, addend);
       }
     else
       Relocate_functions<size, big_endian>::rela16(view, object,
                                                    psymval, addend);
     break;

   case elfcpp::R_SPARC_32:
     if (!parameters->options().output_is_position_independent())
       {
         if (rela.get_r_offset() & 0x3)
           {
             // The assembler can sometimes emit unaligned relocations
             // for dwarf2 cfi directives.
             Reloc::ua32(view, object, psymval, addend);
           }
         else
           Relocate_functions<size, big_endian>::rela32(view, object,
                                                        psymval, addend);
       }
     break;

   case elfcpp::R_SPARC_DISP8:
     Reloc::disp8(view, object, psymval, addend, address);
     break;

   case elfcpp::R_SPARC_DISP16:
     Reloc::disp16(view, object, psymval, addend, address);
     break;

   case elfcpp::R_SPARC_DISP32:
     Reloc::disp32(view, object, psymval, addend, address);
     break;

   case elfcpp::R_SPARC_DISP64:
     Reloc::disp64(view, object, psymval, addend, address);
     break;

   case elfcpp::R_SPARC_WDISP30:
   case elfcpp::R_SPARC_WPLT30:
     Reloc::wdisp30(view, object, psymval, addend, address);
     if (target->may_relax())
       relax_call(target, view, rela, view_size);
     break;

   case elfcpp::R_SPARC_WDISP22:
     Reloc::wdisp22(view, object, psymval, addend, address);
     break;

   case elfcpp::R_SPARC_WDISP19:
     Reloc::wdisp19(view, object, psymval, addend, address);
     break;

   case elfcpp::R_SPARC_WDISP16:
     Reloc::wdisp16(view, object, psymval, addend, address);
     break;

   case elfcpp::R_SPARC_WDISP10:
     Reloc::wdisp10(view, object, psymval, addend, address);
     break;

   case elfcpp::R_SPARC_HI22:
     Reloc::hi22(view, object, psymval, addend);
     break;

   case elfcpp::R_SPARC_22:
     Reloc::rela32_22(view, object, psymval, addend);
     break;

   case elfcpp::R_SPARC_13:
     Reloc::rela32_13(view, object, psymval, addend);
     break;

   case elfcpp::R_SPARC_LO10:
     Reloc::lo10(view, object, psymval, addend);
     break;

   case elfcpp::R_SPARC_GOTDATA_OP_LOX10:
     if (gdop_valid)
       {
         Reloc::gdop_lox10(view, got_offset);
         break;
       }
     // Fall through.
   case elfcpp::R_SPARC_GOT10:
     Reloc::lo10(view, got_offset, addend);
     break;

   case elfcpp::R_SPARC_GOTDATA_OP:
     if (gdop_valid)
       {
         typedef typename elfcpp::Swap<32, true>::Valtype Insntype;
         Insntype* wv = reinterpret_cast<Insntype*>(view);
         Insntype val;

         // {ld,ldx} [%rs1 + %rs2], %rd --> add %rs1, %rs2, %rd
         val = elfcpp::Swap<32, true>::readval(wv);
         val = 0x80000000 | (val & 0x3e07c01f);
         elfcpp::Swap<32, true>::writeval(wv, val);
       }
     break;

   case elfcpp::R_SPARC_GOT13:
     Reloc::rela32_13(view, got_offset, addend);
     break;

   case elfcpp::R_SPARC_GOTDATA_OP_HIX22:
     if (gdop_valid)
       {
         Reloc::gdop_hix22(view, got_offset);
         break;
       }
     // Fall through.
   case elfcpp::R_SPARC_GOT22:
     Reloc::hi22(view, got_offset, addend);
     break;

   case elfcpp::R_SPARC_PC10:
     Reloc::pc10(view, object, psymval, addend, address);
     break;

   case elfcpp::R_SPARC_PC22:
     Reloc::pc22(view, object, psymval, addend, address);
     break;

   case elfcpp::R_SPARC_TLS_DTPOFF32:
   case elfcpp::R_SPARC_UA32:
     Reloc::ua32(view, object, psymval, addend);
     break;

   case elfcpp::R_SPARC_PLT64:
     Relocate_functions<size, big_endian>::rela64(view, object,
                                                  psymval, addend);
     break;

   case elfcpp::R_SPARC_PLT32:
     Relocate_functions<size, big_endian>::rela32(view, object,
                                                  psymval, addend);
     break;

   case elfcpp::R_SPARC_HIPLT22:
     Reloc::hi22(view, object, psymval, addend);
     break;

   case elfcpp::R_SPARC_LOPLT10:
     Reloc::lo10(view, object, psymval, addend);
     break;

   case elfcpp::R_SPARC_PCPLT32:
     Reloc::disp32(view, object, psymval, addend, address);
     break;

   case elfcpp::R_SPARC_PCPLT22:
     Reloc::pcplt22(view, object, psymval, addend, address);
     break;

   case elfcpp::R_SPARC_PCPLT10:
     Reloc::lo10(view, object, psymval, addend, address);
     break;

   case elfcpp::R_SPARC_64:
     if (!parameters->options().output_is_position_independent())
       {
         if (rela.get_r_offset() & 0x7)
           {
             // The assembler can sometimes emit unaligned relocations
             // for dwarf2 cfi directives.
             Reloc::ua64(view, object, psymval, addend);
           }
         else
           Relocate_functions<size, big_endian>::rela64(view, object,
                                                        psymval, addend);
       }
     break;

   case elfcpp::R_SPARC_OLO10:
     {
       unsigned int addend2 = rela.get_r_info() & 0xffffffff;
       addend2 = ((addend2 >> 8) ^ 0x800000) - 0x800000;
       Reloc::olo10(view, object, psymval, addend, addend2);
     }
     break;

   case elfcpp::R_SPARC_HH22:
     Reloc::hh22(view, object, psymval, addend);
     break;

   case elfcpp::R_SPARC_PC_HH22:
     Reloc::pc_hh22(view, object, psymval, addend, address);
     break;

   case elfcpp::R_SPARC_HM10:
     Reloc::hm10(view, object, psymval, addend);
     break;

   case elfcpp::R_SPARC_PC_HM10:
     Reloc::pc_hm10(view, object, psymval, addend, address);
     break;

   case elfcpp::R_SPARC_LM22:
     Reloc::hi22(view, object, psymval, addend);
     break;

   case elfcpp::R_SPARC_PC_LM22:
     Reloc::pcplt22(view, object, psymval, addend, address);
     break;

   case elfcpp::R_SPARC_11:
     Reloc::rela32_11(view, object, psymval, addend);
     break;

   case elfcpp::R_SPARC_10:
     Reloc::rela32_10(view, object, psymval, addend);
     break;

   case elfcpp::R_SPARC_7:
     Reloc::rela32_7(view, object, psymval, addend);
     break;

   case elfcpp::R_SPARC_6:
     Reloc::rela32_6(view, object, psymval, addend);
     break;

   case elfcpp::R_SPARC_5:
     Reloc::rela32_5(view, object, psymval, addend);
     break;

   case elfcpp::R_SPARC_HIX22:
     Reloc::hix22(view, object, psymval, addend);
     break;

   case elfcpp::R_SPARC_LOX10:
     Reloc::lox10(view, object, psymval, addend);
     break;

   case elfcpp::R_SPARC_H34:
     Reloc::h34(view, object, psymval, addend);
     break;

   case elfcpp::R_SPARC_H44:
     Reloc::h44(view, object, psymval, addend);
     break;

   case elfcpp::R_SPARC_M44:
     Reloc::m44(view, object, psymval, addend);
     break;

   case elfcpp::R_SPARC_L44:
     Reloc::l44(view, object, psymval, addend);
     break;

   case elfcpp::R_SPARC_TLS_DTPOFF64:
   case elfcpp::R_SPARC_UA64:
     Reloc::ua64(view, object, psymval, addend);
     break;

   case elfcpp::R_SPARC_UA16:
     Reloc::ua16(view, object, psymval, addend);
     break;

   case elfcpp::R_SPARC_TLS_GD_HI22:
   case elfcpp::R_SPARC_TLS_GD_LO10:
   case elfcpp::R_SPARC_TLS_GD_ADD:
   case elfcpp::R_SPARC_TLS_GD_CALL:
   case elfcpp::R_SPARC_TLS_LDM_HI22:
   case elfcpp::R_SPARC_TLS_LDM_LO10:
   case elfcpp::R_SPARC_TLS_LDM_ADD:
   case elfcpp::R_SPARC_TLS_LDM_CALL:
   case elfcpp::R_SPARC_TLS_LDO_HIX22:
   case elfcpp::R_SPARC_TLS_LDO_LOX10:
   case elfcpp::R_SPARC_TLS_LDO_ADD:
   case elfcpp::R_SPARC_TLS_IE_HI22:
   case elfcpp::R_SPARC_TLS_IE_LO10:
   case elfcpp::R_SPARC_TLS_IE_LD:
   case elfcpp::R_SPARC_TLS_IE_LDX:
   case elfcpp::R_SPARC_TLS_IE_ADD:
   case elfcpp::R_SPARC_TLS_LE_HIX22:
   case elfcpp::R_SPARC_TLS_LE_LOX10:
     this->relocate_tls(relinfo, target, relnum, rela,
                        r_type, gsym, psymval, view,
                        address, view_size);
     break;

   case elfcpp::R_SPARC_COPY:
   case elfcpp::R_SPARC_GLOB_DAT:
   case elfcpp::R_SPARC_JMP_SLOT:
   case elfcpp::R_SPARC_JMP_IREL:
   case elfcpp::R_SPARC_RELATIVE:
   case elfcpp::R_SPARC_IRELATIVE:
     // These are outstanding tls relocs, which are unexpected when
     // linking.
   case elfcpp::R_SPARC_TLS_DTPMOD64:
   case elfcpp::R_SPARC_TLS_DTPMOD32:
   case elfcpp::R_SPARC_TLS_TPOFF64:
   case elfcpp::R_SPARC_TLS_TPOFF32:
     gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
                            _("unexpected reloc %u in object file"),
                            r_type);
     break;

   default:
     gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
                            _("unsupported reloc %u"),
                            r_type);
     break;
   }

 return true;
}

// Perform a TLS relocation.

template<int size, bool big_endian>
inline void
Target_sparc<size, big_endian>::Relocate::relocate_tls(
                       const Relocate_info<size, big_endian>* relinfo,
                       Target_sparc<size, big_endian>* target,
                       size_t relnum,
                       const elfcpp::Rela<size, big_endian>& rela,
                       unsigned int r_type,
                       const Sized_symbol<size>* gsym,
                       const Symbol_value<size>* psymval,
                       unsigned char* view,
                       typename elfcpp::Elf_types<size>::Elf_Addr address,
                       section_size_type)
{
 Output_segment* tls_segment = relinfo->layout->tls_segment();
 typedef Sparc_relocate_functions<size, big_endian> Reloc;
 const Sized_relobj_file<size, big_endian>* object = relinfo->object;
 typedef typename elfcpp::Swap<32, true>::Valtype Insntype;

 const elfcpp::Elf_Xword addend = rela.get_r_addend();
 typename elfcpp::Elf_types<size>::Elf_Addr value = psymval->value(object, 0);

 const bool is_final =
   (gsym == NULL
    ? !parameters->options().shared()
    : gsym->final_value_is_known());
 const tls::Tls_optimization optimized_type
     = optimize_tls_reloc(is_final, r_type);

 switch (r_type)
   {
   case elfcpp::R_SPARC_TLS_GD_HI22:
   case elfcpp::R_SPARC_TLS_GD_LO10:
   case elfcpp::R_SPARC_TLS_GD_ADD:
   case elfcpp::R_SPARC_TLS_GD_CALL:
     if (optimized_type == tls::TLSOPT_TO_LE)
       {
         Insntype* wv = reinterpret_cast<Insntype*>(view);
         Insntype val;

         value -= tls_segment->memsz();

         switch (r_type)
           {
           case elfcpp::R_SPARC_TLS_GD_HI22:
             // TLS_GD_HI22 --> TLS_LE_HIX22
             Reloc::hix22(view, value, addend);
             break;

           case elfcpp::R_SPARC_TLS_GD_LO10:
             // TLS_GD_LO10 --> TLS_LE_LOX10
             Reloc::lox10(view, value, addend);
             break;

           case elfcpp::R_SPARC_TLS_GD_ADD:
             // add %reg1, %reg2, %reg3 --> mov %g7, %reg2, %reg3
             val = elfcpp::Swap<32, true>::readval(wv);
             val = (val & ~0x7c000) | 0x1c000;
             elfcpp::Swap<32, true>::writeval(wv, val);
             break;
           case elfcpp::R_SPARC_TLS_GD_CALL:
             // call __tls_get_addr --> nop
             elfcpp::Swap<32, true>::writeval(wv, sparc_nop);
             break;
           }
         break;
       }
     else
       {
         unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
                                  ? GOT_TYPE_TLS_OFFSET
                                  : GOT_TYPE_TLS_PAIR);
         if (gsym != NULL)
           {
             gold_assert(gsym->has_got_offset(got_type));
             value = gsym->got_offset(got_type);
           }
         else
           {
             unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
             gold_assert(object->local_has_got_offset(r_sym, got_type));
             value = object->local_got_offset(r_sym, got_type);
           }
         if (optimized_type == tls::TLSOPT_TO_IE)
           {
             Insntype* wv = reinterpret_cast<Insntype*>(view);
             Insntype val;

             switch (r_type)
               {
               case elfcpp::R_SPARC_TLS_GD_HI22:
                 // TLS_GD_HI22 --> TLS_IE_HI22
                 Reloc::hi22(view, value, addend);
                 break;

               case elfcpp::R_SPARC_TLS_GD_LO10:
                 // TLS_GD_LO10 --> TLS_IE_LO10
                 Reloc::lo10(view, value, addend);
                 break;

               case elfcpp::R_SPARC_TLS_GD_ADD:
                 // add %reg1, %reg2, %reg3 --> ld [%reg1 + %reg2], %reg3
                 val = elfcpp::Swap<32, true>::readval(wv);

                 if (size == 64)
                   val |= 0xc0580000;
                 else
                   val |= 0xc0000000;

                 elfcpp::Swap<32, true>::writeval(wv, val);
                 break;

               case elfcpp::R_SPARC_TLS_GD_CALL:
                 // The compiler can put the TLS_GD_ADD instruction
                 // into the delay slot of the call.  If so, we need
                 // to transpose the two instructions so that the
                 // new sequence works properly.
                 //
                 // The test we use is if the instruction in the
                 // delay slot is an add with destination register
                 // equal to %o0
                 val = elfcpp::Swap<32, true>::readval(wv + 1);
                 if ((val & 0x81f80000) == 0x80000000
                     && ((val >> 25) & 0x1f) == 0x8)
                   {
                     if (size == 64)
                       val |= 0xc0580000;
                     else
                       val |= 0xc0000000;

                     elfcpp::Swap<32, true>::writeval(wv, val);

                     wv += 1;
                     this->ignore_gd_add_ = true;
                   }
                 else
                   {
                     // Even if the delay slot isn't the TLS_GD_ADD
                     // instruction, we still have to handle the case
                     // where it sets up %o0 in some other way.
                     elfcpp::Swap<32, true>::writeval(wv, val);
                     wv += 1;
                     this->reloc_adjust_addr_ = view + 4;
                   }
                 // call __tls_get_addr --> add %g7, %o0, %o0
                 elfcpp::Swap<32, true>::writeval(wv, 0x9001c008);
                 break;
               }
             break;
           }
         else if (optimized_type == tls::TLSOPT_NONE)
           {
             switch (r_type)
               {
               case elfcpp::R_SPARC_TLS_GD_HI22:
                 Reloc::hi22(view, value, addend);
                 break;
               case elfcpp::R_SPARC_TLS_GD_LO10:
                 Reloc::lo10(view, value, addend);
                 break;
               case elfcpp::R_SPARC_TLS_GD_ADD:
                 break;
               case elfcpp::R_SPARC_TLS_GD_CALL:
                 {
                   Symbol_value<size> symval;
                   elfcpp::Elf_Xword value;
                   Symbol* tsym;

                   tsym = target->tls_get_addr_sym_;
                   gold_assert(tsym);
                   value = (target->plt_section()->address() +
                            tsym->plt_offset());
                   symval.set_output_value(value);
                   Reloc::wdisp30(view, object, &symval, addend, address);
                 }
                 break;
               }
             break;
           }
       }
     gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
                            _("unsupported reloc %u"),
                            r_type);
     break;

   case elfcpp::R_SPARC_TLS_LDM_HI22:
   case elfcpp::R_SPARC_TLS_LDM_LO10:
   case elfcpp::R_SPARC_TLS_LDM_ADD:
   case elfcpp::R_SPARC_TLS_LDM_CALL:
     if (optimized_type == tls::TLSOPT_TO_LE)
       {
         Insntype* wv = reinterpret_cast<Insntype*>(view);

         switch (r_type)
           {
           case elfcpp::R_SPARC_TLS_LDM_HI22:
           case elfcpp::R_SPARC_TLS_LDM_LO10:
           case elfcpp::R_SPARC_TLS_LDM_ADD:
             elfcpp::Swap<32, true>::writeval(wv, sparc_nop);
             break;

           case elfcpp::R_SPARC_TLS_LDM_CALL:
             elfcpp::Swap<32, true>::writeval(wv, sparc_mov_g0_o0);
             break;
           }
         break;
       }
     else if (optimized_type == tls::TLSOPT_NONE)
       {
         // Relocate the field with the offset of the GOT entry for
         // the module index.
         unsigned int got_offset;

         got_offset = target->got_mod_index_entry(NULL, NULL, NULL);
         switch (r_type)
           {
           case elfcpp::R_SPARC_TLS_LDM_HI22:
             Reloc::hi22(view, got_offset, addend);
             break;
           case elfcpp::R_SPARC_TLS_LDM_LO10:
             Reloc::lo10(view, got_offset, addend);
             break;
           case elfcpp::R_SPARC_TLS_LDM_ADD:
             break;
           case elfcpp::R_SPARC_TLS_LDM_CALL:
             {
               Symbol_value<size> symval;
               elfcpp::Elf_Xword value;
               Symbol* tsym;

               tsym = target->tls_get_addr_sym_;
               gold_assert(tsym);
               value = (target->plt_section()->address() +
                        tsym->plt_offset());
               symval.set_output_value(value);
               Reloc::wdisp30(view, object, &symval, addend, address);
             }
             break;
           }
         break;
       }
     gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
                            _("unsupported reloc %u"),
                            r_type);
     break;

     // These relocs can appear in debugging sections, in which case
     // we won't see the TLS_LDM relocs.  The local_dynamic_type
     // field tells us this.
   case elfcpp::R_SPARC_TLS_LDO_HIX22:
     if (optimized_type == tls::TLSOPT_TO_LE)
       {
         value -= tls_segment->memsz();
         Reloc::hix22(view, value, addend);
       }
     else
       Reloc::ldo_hix22(view, value, addend);
     break;
   case elfcpp::R_SPARC_TLS_LDO_LOX10:
     if (optimized_type == tls::TLSOPT_TO_LE)
       {
         value -= tls_segment->memsz();
         Reloc::lox10(view, value, addend);
       }
     else
       Reloc::ldo_lox10(view, value, addend);
     break;
   case elfcpp::R_SPARC_TLS_LDO_ADD:
     if (optimized_type == tls::TLSOPT_TO_LE)
       {
         Insntype* wv = reinterpret_cast<Insntype*>(view);
         Insntype val;

         // add %reg1, %reg2, %reg3 --> add %g7, %reg2, %reg3
         val = elfcpp::Swap<32, true>::readval(wv);
         val = (val & ~0x7c000) | 0x1c000;
         elfcpp::Swap<32, true>::writeval(wv, val);
       }
     break;

     // When optimizing IE --> LE, the only relocation that is handled
     // differently is R_SPARC_TLS_IE_LD, it is rewritten from
     // 'ld{,x} [rs1 + rs2], rd' into 'mov rs2, rd' or simply a NOP is
     // rs2 and rd are the same.
   case elfcpp::R_SPARC_TLS_IE_LD:
   case elfcpp::R_SPARC_TLS_IE_LDX:
     if (optimized_type == tls::TLSOPT_TO_LE)
       {
         Insntype* wv = reinterpret_cast<Insntype*>(view);
         Insntype val = elfcpp::Swap<32, true>::readval(wv);
         Insntype rs2 = val & 0x1f;
         Insntype rd = (val >> 25) & 0x1f;

         if (rs2 == rd)
           val = sparc_nop;
         else
           val = sparc_mov | (val & 0x3e00001f);

         elfcpp::Swap<32, true>::writeval(wv, val);
       }
     break;

   case elfcpp::R_SPARC_TLS_IE_HI22:
   case elfcpp::R_SPARC_TLS_IE_LO10:
     if (optimized_type == tls::TLSOPT_TO_LE)
       {
         value -= tls_segment->memsz();
         switch (r_type)
           {
           case elfcpp::R_SPARC_TLS_IE_HI22:
             // IE_HI22 --> LE_HIX22
             Reloc::hix22(view, value, addend);
             break;
           case elfcpp::R_SPARC_TLS_IE_LO10:
             // IE_LO10 --> LE_LOX10
             Reloc::lox10(view, value, addend);
             break;
           }
         break;
       }
     else if (optimized_type == tls::TLSOPT_NONE)
       {
         // Relocate the field with the offset of the GOT entry for
         // the tp-relative offset of the symbol.
         if (gsym != NULL)
           {
             gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
             value = gsym->got_offset(GOT_TYPE_TLS_OFFSET);
           }
         else
           {
             unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
             gold_assert(object->local_has_got_offset(r_sym,
                                                      GOT_TYPE_TLS_OFFSET));
             value = object->local_got_offset(r_sym,
                                              GOT_TYPE_TLS_OFFSET);
           }
         switch (r_type)
           {
           case elfcpp::R_SPARC_TLS_IE_HI22:
             Reloc::hi22(view, value, addend);
             break;
           case elfcpp::R_SPARC_TLS_IE_LO10:
             Reloc::lo10(view, value, addend);
             break;
           }
         break;
       }
     gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
                            _("unsupported reloc %u"),
                            r_type);
     break;

   case elfcpp::R_SPARC_TLS_IE_ADD:
     // This seems to be mainly so that we can find the addition
     // instruction if there is one.  There doesn't seem to be any
     // actual relocation to apply.
     break;

   case elfcpp::R_SPARC_TLS_LE_HIX22:
     // If we're creating a shared library, a dynamic relocation will
     // have been created for this location, so do not apply it now.
     if (!parameters->options().shared())
       {
         value -= tls_segment->memsz();
         Reloc::hix22(view, value, addend);
       }
     break;

   case elfcpp::R_SPARC_TLS_LE_LOX10:
     // If we're creating a shared library, a dynamic relocation will
     // have been created for this location, so do not apply it now.
     if (!parameters->options().shared())
       {
         value -= tls_segment->memsz();
         Reloc::lox10(view, value, addend);
       }
     break;
   }
}

// Relax a call instruction.

template<int size, bool big_endian>
inline void
Target_sparc<size, big_endian>::Relocate::relax_call(
   Target_sparc<size, big_endian>* target,
   unsigned char* view,
   const elfcpp::Rela<size, big_endian>& rela,
   section_size_type view_size)
{
 typedef typename elfcpp::Swap<32, true>::Valtype Insntype;
 Insntype *wv = reinterpret_cast<Insntype*>(view);
 Insntype call_insn, delay_insn, set_insn;
 uint32_t op3, reg, off;

 // This code tries to relax call instructions that meet
 // certain criteria.
 //
 // The first criteria is that the call must be such that the return
 // address which the call writes into %o7 is unused.  Two sequences
 // meet this criteria, and are used to implement tail calls.
 //
 // Leaf function tail call:
 //
 // or %o7, %g0, %ANY_REG
 // call FUNC
 //  or %ANY_REG, %g0, %o7
 //
 // Non-leaf function tail call:
 //
 // call FUNC
 //  restore
 //
 // The second criteria is that the call destination is close.  If
 // the displacement can fit in a signed 22-bit immediate field of a
 // pre-V9 branch, we can do it.  If we are generating a 64-bit
 // object or a 32-bit object with ELF machine type EF_SPARC32PLUS,
 // and the displacement fits in a signed 19-bit immediate field,
 // then we can use a V9 branch.

 // Make sure the delay instruction can be safely accessed.
 if (rela.get_r_offset() + 8 > view_size)
   return;

 call_insn = elfcpp::Swap<32, true>::readval(wv);
 delay_insn = elfcpp::Swap<32, true>::readval(wv + 1);

 // Make sure it is really a call instruction.
 if (((call_insn >> 30) & 0x3) != 1)
   return;

 if (((delay_insn >> 30) & 0x3) != 2)
   return;

 // Accept only a restore or an integer arithmetic operation whose
 // sole side effect is to write the %o7 register (and perhaps set
 // the condition codes, which are considered clobbered across
 // function calls).
 //
 // For example, we don't want to match a tagged addition or
 // subtraction.  We also don't want to match something like a
 // divide.
 //
 // Specifically we accept add{,cc}, and{,cc}, or{,cc},
 // xor{,cc}, sub{,cc}, andn{,cc}, orn{,cc}, and xnor{,cc}.

 op3 = (delay_insn >> 19) & 0x3f;
 reg = (delay_insn >> 25) & 0x1f;
 if (op3 != 0x3d
     && ((op3 & 0x28) != 0 || reg != 15))
   return;

 // For non-restore instructions, make sure %o7 isn't
 // an input.
 if (op3 != 0x3d)
   {
     // First check RS1
     reg = (delay_insn >> 14) & 0x1f;
     if (reg == 15)
       return;

     // And if non-immediate, check RS2
     if (((delay_insn >> 13) & 1) == 0)
       {
         reg = (delay_insn & 0x1f);
         if (reg == 15)
           return;
       }
   }

 // Now check the branch distance.  We are called after the
 // call has been relocated, so we just have to peek at the
 // offset contained in the instruction.
 off = call_insn & 0x3fffffff;
 if ((off & 0x3fe00000) != 0
     && (off & 0x3fe00000) != 0x3fe00000)
   return;

 if ((size == 64 || target->elf_machine_ == elfcpp::EM_SPARC32PLUS)
     && ((off & 0x3c0000) == 0
         || (off & 0x3c0000) == 0x3c0000))
   {
     // ba,pt %xcc, FUNC
     call_insn = 0x10680000 | (off & 0x07ffff);
   }
 else
   {
     // ba FUNC
     call_insn = 0x10800000 | (off & 0x3fffff);
   }
 elfcpp::Swap<32, true>::writeval(wv, call_insn);

 // See if we can NOP out the delay slot instruction.  We peek
 // at the instruction before the call to make sure we're dealing
 // with exactly the:
 //
 // or %o7, %g0, %ANY_REG
 // call
 //  or %ANY_REG, %g0, %o7
 //
 // case.  Otherwise this might be a tricky piece of hand written
 // assembler calculating %o7 in some non-trivial way, and therefore
 // we can't be sure that NOP'ing out the delay slot is safe.
 if (op3 == 0x02
     && rela.get_r_offset() >= 4)
   {
     if ((delay_insn & ~(0x1f << 14)) != 0x9e100000)
       return;

     set_insn = elfcpp::Swap<32, true>::readval(wv - 1);
     if ((set_insn & ~(0x1f << 25)) != 0x8013c000)
       return;

     reg = (set_insn >> 25) & 0x1f;
     if (reg == 0 || reg == 15)
       return;
     if (reg != ((delay_insn >> 14) & 0x1f))
       return;

     // All tests pass, nop it out.
     elfcpp::Swap<32, true>::writeval(wv + 1, sparc_nop);
   }
}

// Relocate section data.

template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::relocate_section(
                       const Relocate_info<size, big_endian>* relinfo,
                       unsigned int sh_type,
                       const unsigned char* prelocs,
                       size_t reloc_count,
                       Output_section* output_section,
                       bool needs_special_offset_handling,
                       unsigned char* view,
                       typename elfcpp::Elf_types<size>::Elf_Addr address,
                       section_size_type view_size,
                       const Reloc_symbol_changes* reloc_symbol_changes)
{
 typedef Target_sparc<size, big_endian> Sparc;
 typedef typename Target_sparc<size, big_endian>::Relocate Sparc_relocate;
 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
     Classify_reloc;

 gold_assert(sh_type == elfcpp::SHT_RELA);

 gold::relocate_section<size, big_endian, Sparc, Sparc_relocate,
                        gold::Default_comdat_behavior, Classify_reloc>(
   relinfo,
   this,
   prelocs,
   reloc_count,
   output_section,
   needs_special_offset_handling,
   view,
   address,
   view_size,
   reloc_symbol_changes);
}

// Scan the relocs during a relocatable link.

template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::scan_relocatable_relocs(
                       Symbol_table* symtab,
                       Layout* layout,
                       Sized_relobj_file<size, big_endian>* object,
                       unsigned int data_shndx,
                       unsigned int sh_type,
                       const unsigned char* prelocs,
                       size_t reloc_count,
                       Output_section* output_section,
                       bool needs_special_offset_handling,
                       size_t local_symbol_count,
                       const unsigned char* plocal_symbols,
                       Relocatable_relocs* rr)
{
 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
     Classify_reloc;
 typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
     Scan_relocatable_relocs;

 gold_assert(sh_type == elfcpp::SHT_RELA);

 gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
   symtab,
   layout,
   object,
   data_shndx,
   prelocs,
   reloc_count,
   output_section,
   needs_special_offset_handling,
   local_symbol_count,
   plocal_symbols,
   rr);
}

// Scan the relocs for --emit-relocs.

template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::emit_relocs_scan(
   Symbol_table* symtab,
   Layout* layout,
   Sized_relobj_file<size, big_endian>* object,
   unsigned int data_shndx,
   unsigned int sh_type,
   const unsigned char* prelocs,
   size_t reloc_count,
   Output_section* output_section,
   bool needs_special_offset_handling,
   size_t local_symbol_count,
   const unsigned char* plocal_syms,
   Relocatable_relocs* rr)
{
 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
     Classify_reloc;
 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
     Emit_relocs_strategy;

 gold_assert(sh_type == elfcpp::SHT_RELA);

 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
   symtab,
   layout,
   object,
   data_shndx,
   prelocs,
   reloc_count,
   output_section,
   needs_special_offset_handling,
   local_symbol_count,
   plocal_syms,
   rr);
}

// Emit relocations for a section.

template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::relocate_relocs(
   const Relocate_info<size, big_endian>* relinfo,
   unsigned int sh_type,
   const unsigned char* prelocs,
   size_t reloc_count,
   Output_section* output_section,
   typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
   unsigned char* view,
   typename elfcpp::Elf_types<size>::Elf_Addr view_address,
   section_size_type view_size,
   unsigned char* reloc_view,
   section_size_type reloc_view_size)
{
 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
     Classify_reloc;

 gold_assert(sh_type == elfcpp::SHT_RELA);

 gold::relocate_relocs<size, big_endian, Classify_reloc>(
   relinfo,
   prelocs,
   reloc_count,
   output_section,
   offset_in_output_section,
   view,
   view_address,
   view_size,
   reloc_view,
   reloc_view_size);
}

// Return the value to use for a dynamic which requires special
// treatment.  This is how we support equality comparisons of function
// pointers across shared library boundaries, as described in the
// processor specific ABI supplement.

template<int size, bool big_endian>
uint64_t
Target_sparc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
{
 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
 return this->plt_section()->address() + gsym->plt_offset();
}

// do_make_elf_object to override the same function in the base class.
// We need to use a target-specific sub-class of
// Sized_relobj_file<size, big_endian> to process SPARC specific bits
// of the ELF headers.  Hence we need to have our own ELF object creation.

template<int size, bool big_endian>
Object*
Target_sparc<size, big_endian>::do_make_elf_object(
   const std::string& name,
   Input_file* input_file,
   off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
{
 elfcpp::Elf_Half machine = ehdr.get_e_machine();
 elfcpp::Elf_Word flags = ehdr.get_e_flags();
 elfcpp::Elf_Word omm, mm;

 switch (machine)
   {
   case elfcpp::EM_SPARC32PLUS:
     this->elf_machine_ = elfcpp::EM_SPARC32PLUS;
     break;

   case elfcpp::EM_SPARC:
   case elfcpp::EM_SPARCV9:
     break;

   default:
     break;
   }

 if (!this->elf_flags_set_)
   {
     this->elf_flags_ = flags;
     this->elf_flags_set_ = true;
   }
 else
   {
     // Accumulate cpu feature bits.
     this->elf_flags_ |= (flags & (elfcpp::EF_SPARC_32PLUS
                                   | elfcpp::EF_SPARC_SUN_US1
                                   | elfcpp::EF_SPARC_HAL_R1
                                   | elfcpp::EF_SPARC_SUN_US3));

     // Bump the memory model setting to the most restrictive
     // one we encounter.
     omm = (this->elf_flags_ & elfcpp::EF_SPARCV9_MM);
     mm = (flags & elfcpp::EF_SPARCV9_MM);
     if (omm != mm)
       {
         if (mm == elfcpp::EF_SPARCV9_TSO)
           {
             this->elf_flags_ &= ~elfcpp::EF_SPARCV9_MM;
             this->elf_flags_ |= elfcpp::EF_SPARCV9_TSO;
           }
         else if (mm == elfcpp::EF_SPARCV9_PSO
                  && omm == elfcpp::EF_SPARCV9_RMO)
           {
             this->elf_flags_ &= ~elfcpp::EF_SPARCV9_MM;
             this->elf_flags_ |= elfcpp::EF_SPARCV9_PSO;
           }
       }
   }

 // Validate that the little-endian flag matches how we've
 // been instantiated.
 if (!(flags & elfcpp::EF_SPARC_LEDATA) != big_endian)
   {
     if (big_endian)
       gold_error(_("%s: little endian elf flag set on BE object"),
                    name.c_str());
     else
       gold_error(_("%s: little endian elf flag clear on LE object"),
                    name.c_str());
   }

 return Target::do_make_elf_object(name, input_file, offset, ehdr);
}

// Adjust ELF file header.

template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::do_adjust_elf_header(
   unsigned char* view,
   int len)
{
 elfcpp::Ehdr_write<size, big_endian> oehdr(view);

 oehdr.put_e_machine(this->elf_machine_);
 oehdr.put_e_flags(this->elf_flags_);

 Sized_target<size, big_endian>::do_adjust_elf_header(view, len);
}

// The selector for sparc object files.

template<int size, bool big_endian>
class Target_selector_sparc : public Target_selector
{
public:
 Target_selector_sparc()
   : Target_selector(elfcpp::EM_NONE, size, big_endian,
                     (size == 64 ? "elf64-sparc" : "elf32-sparc"),
                     (size == 64 ? "elf64_sparc" : "elf32_sparc"))
 { }

 virtual Target*
 do_recognize(Input_file*, off_t, int machine, int, int)
 {
   switch (size)
     {
     case 64:
       if (machine != elfcpp::EM_SPARCV9)
         return NULL;
       break;

     case 32:
       if (machine != elfcpp::EM_SPARC
           && machine != elfcpp::EM_SPARC32PLUS)
         return NULL;
       break;

     default:
       return NULL;
     }

   return this->instantiate_target();
 }

 virtual Target*
 do_instantiate_target()
 { return new Target_sparc<size, big_endian>(); }
};

Target_selector_sparc<32, true> target_selector_sparc32;
Target_selector_sparc<64, true> target_selector_sparc64;

} // End anonymous namespace.