// output.h -- manage the output file for gold   -*- C++ -*-

// Copyright (C) 2006-2024 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <[email protected]>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#ifndef GOLD_OUTPUT_H
#define GOLD_OUTPUT_H

#include <algorithm>
#include <list>
#include <vector>

#include "elfcpp.h"
#include "mapfile.h"
#include "layout.h"
#include "reloc-types.h"

namespace gold
{

class General_options;
class Object;
class Symbol;
class Output_merge_base;
class Output_section;
class Relocatable_relocs;
class Target;
template<int size, bool big_endian>
class Sized_target;
template<int size, bool big_endian>
class Sized_relobj;
template<int size, bool big_endian>
class Sized_relobj_file;

// This class represents the output file.

class Output_file
{
public:
 Output_file(const char* name);

 // Indicate that this is a temporary file which should not be
 // output.
 void
 set_is_temporary()
 { this->is_temporary_ = true; }

 // Try to open an existing file. Returns false if the file doesn't
 // exist, has a size of 0 or can't be mmaped.  This method is
 // thread-unsafe.  If BASE_NAME is not NULL, use the contents of
 // that file as the base for incremental linking.
 bool
 open_base_file(const char* base_name, bool writable);

 // Open the output file.  FILE_SIZE is the final size of the file.
 // If the file already exists, it is deleted/truncated.  This method
 // is thread-unsafe.
 void
 open(off_t file_size);

 // Resize the output file.  This method is thread-unsafe.
 void
 resize(off_t file_size);

 // Close the output file (flushing all buffered data) and make sure
 // there are no errors.  This method is thread-unsafe.
 void
 close();

 // Return the size of this file.
 off_t
 filesize()
 { return this->file_size_; }

 // Return the name of this file.
 const char*
 filename()
 { return this->name_; }

 // We currently always use mmap which makes the view handling quite
 // simple.  In the future we may support other approaches.

 // Write data to the output file.
 void
 write(off_t offset, const void* data, size_t len)
 { memcpy(this->base_ + offset, data, len); }

 // Get a buffer to use to write to the file, given the offset into
 // the file and the size.
 unsigned char*
 get_output_view(off_t start, size_t size)
 {
   gold_assert(start >= 0
               && start + static_cast<off_t>(size) <= this->file_size_);
   return this->base_ + start;
 }

 // VIEW must have been returned by get_output_view.  Write the
 // buffer to the file, passing in the offset and the size.
 void
 write_output_view(off_t, size_t, unsigned char*)
 { }

 // Get a read/write buffer.  This is used when we want to write part
 // of the file, read it in, and write it again.
 unsigned char*
 get_input_output_view(off_t start, size_t size)
 { return this->get_output_view(start, size); }

 // Write a read/write buffer back to the file.
 void
 write_input_output_view(off_t, size_t, unsigned char*)
 { }

 // Get a read buffer.  This is used when we just want to read part
 // of the file back it in.
 const unsigned char*
 get_input_view(off_t start, size_t size)
 { return this->get_output_view(start, size); }

 // Release a read bfufer.
 void
 free_input_view(off_t, size_t, const unsigned char*)
 { }

private:
 // Map the file into memory or, if that fails, allocate anonymous
 // memory.
 void
 map();

 // Allocate anonymous memory for the file.
 bool
 map_anonymous();

 // Map the file into memory.
 bool
 map_no_anonymous(bool);

 // Unmap the file from memory (and flush to disk buffers).
 void
 unmap();

 // File name.
 const char* name_;
 // File descriptor.
 int o_;
 // File size.
 off_t file_size_;
 // Base of file mapped into memory.
 unsigned char* base_;
 // True iff base_ points to a memory buffer rather than an output file.
 bool map_is_anonymous_;
 // True if base_ was allocated using new rather than mmap.
 bool map_is_allocated_;
 // True if this is a temporary file which should not be output.
 bool is_temporary_;
};

// An abtract class for data which has to go into the output file.

class Output_data
{
public:
 explicit Output_data()
   : address_(0), data_size_(0), offset_(-1),
     is_address_valid_(false), is_data_size_valid_(false),
     is_offset_valid_(false), is_data_size_fixed_(false),
     has_dynamic_reloc_(false)
 { }

 virtual
 ~Output_data();

 // Return the address.  For allocated sections, this is only valid
 // after Layout::finalize is finished.
 uint64_t
 address() const
 {
   gold_assert(this->is_address_valid_);
   return this->address_;
 }

 // Return the size of the data.  For allocated sections, this must
 // be valid after Layout::finalize calls set_address, but need not
 // be valid before then.
 off_t
 data_size() const
 {
   gold_assert(this->is_data_size_valid_);
   return this->data_size_;
 }

 // Get the current data size.
 off_t
 current_data_size() const
 { return this->current_data_size_for_child(); }

 // Return true if data size is fixed.
 bool
 is_data_size_fixed() const
 { return this->is_data_size_fixed_; }

 // Return the file offset.  This is only valid after
 // Layout::finalize is finished.  For some non-allocated sections,
 // it may not be valid until near the end of the link.
 off_t
 offset() const
 {
   gold_assert(this->is_offset_valid_);
   return this->offset_;
 }

 // Reset the address, file offset and data size.  This essentially
 // disables the sanity testing about duplicate and unknown settings.
 void
 reset_address_and_file_offset()
 {
   this->is_address_valid_ = false;
   this->is_offset_valid_ = false;
   if (!this->is_data_size_fixed_)
     this->is_data_size_valid_ = false;
   this->do_reset_address_and_file_offset();
 }

 // As above, but just for data size.
 void
 reset_data_size()
 {
   if (!this->is_data_size_fixed_)
     this->is_data_size_valid_ = false;
 }

 // Return true if address and file offset already have reset values. In
 // other words, calling reset_address_and_file_offset will not change them.
 bool
 address_and_file_offset_have_reset_values() const
 { return this->do_address_and_file_offset_have_reset_values(); }

 // Return the required alignment.
 uint64_t
 addralign() const
 { return this->do_addralign(); }

 // Return whether this has a load address.
 bool
 has_load_address() const
 { return this->do_has_load_address(); }

 // Return the load address.
 uint64_t
 load_address() const
 { return this->do_load_address(); }

 // Return whether this is an Output_section.
 bool
 is_section() const
 { return this->do_is_section(); }

 // Return whether this is an Output_section of the specified type.
 bool
 is_section_type(elfcpp::Elf_Word stt) const
 { return this->do_is_section_type(stt); }

 // Return whether this is an Output_section with the specified flag
 // set.
 bool
 is_section_flag_set(elfcpp::Elf_Xword shf) const
 { return this->do_is_section_flag_set(shf); }

 // Return the output section that this goes in, if there is one.
 Output_section*
 output_section()
 { return this->do_output_section(); }

 const Output_section*
 output_section() const
 { return this->do_output_section(); }

 // Return the output section index, if there is an output section.
 unsigned int
 out_shndx() const
 { return this->do_out_shndx(); }

 // Set the output section index, if this is an output section.
 void
 set_out_shndx(unsigned int shndx)
 { this->do_set_out_shndx(shndx); }

 // Set the address and file offset of this data, and finalize the
 // size of the data.  This is called during Layout::finalize for
 // allocated sections.
 void
 set_address_and_file_offset(uint64_t addr, off_t off)
 {
   this->set_address(addr);
   this->set_file_offset(off);
   this->finalize_data_size();
 }

 // Set the address.
 void
 set_address(uint64_t addr)
 {
   gold_assert(!this->is_address_valid_);
   this->address_ = addr;
   this->is_address_valid_ = true;
 }

 // Set the file offset.
 void
 set_file_offset(off_t off)
 {
   gold_assert(!this->is_offset_valid_);
   this->offset_ = off;
   this->is_offset_valid_ = true;
 }

 // Update the data size without finalizing it.
 void
 pre_finalize_data_size()
 {
   if (!this->is_data_size_valid_)
     {
       // Tell the child class to update the data size.
       this->update_data_size();
     }
 }

 // Finalize the data size.
 void
 finalize_data_size()
 {
   if (!this->is_data_size_valid_)
     {
       // Tell the child class to set the data size.
       this->set_final_data_size();
       gold_assert(this->is_data_size_valid_);
     }
 }

 // Set the TLS offset.  Called only for SHT_TLS sections.
 void
 set_tls_offset(uint64_t tls_base)
 { this->do_set_tls_offset(tls_base); }

 // Return the TLS offset, relative to the base of the TLS segment.
 // Valid only for SHT_TLS sections.
 uint64_t
 tls_offset() const
 { return this->do_tls_offset(); }

 // Write the data to the output file.  This is called after
 // Layout::finalize is complete.
 void
 write(Output_file* file)
 { this->do_write(file); }

 // This is called by Layout::finalize to note that the sizes of
 // allocated sections must now be fixed.
 static void
 layout_complete()
 { Output_data::allocated_sizes_are_fixed = true; }

 // Used to check that layout has been done.
 static bool
 is_layout_complete()
 { return Output_data::allocated_sizes_are_fixed; }

 // Note that a dynamic reloc has been applied to this data.
 void
 add_dynamic_reloc()
 { this->has_dynamic_reloc_ = true; }

 // Return whether a dynamic reloc has been applied.
 bool
 has_dynamic_reloc() const
 { return this->has_dynamic_reloc_; }

 // Whether the address is valid.
 bool
 is_address_valid() const
 { return this->is_address_valid_; }

 // Whether the file offset is valid.
 bool
 is_offset_valid() const
 { return this->is_offset_valid_; }

 // Whether the data size is valid.
 bool
 is_data_size_valid() const
 { return this->is_data_size_valid_; }

 // Print information to the map file.
 void
 print_to_mapfile(Mapfile* mapfile) const
 { return this->do_print_to_mapfile(mapfile); }

protected:
 // Functions that child classes may or in some cases must implement.

 // Write the data to the output file.
 virtual void
 do_write(Output_file*) = 0;

 // Return the required alignment.
 virtual uint64_t
 do_addralign() const = 0;

 // Return whether this has a load address.
 virtual bool
 do_has_load_address() const
 { return false; }

 // Return the load address.
 virtual uint64_t
 do_load_address() const
 { gold_unreachable(); }

 // Return whether this is an Output_section.
 virtual bool
 do_is_section() const
 { return false; }

 // Return whether this is an Output_section of the specified type.
 // This only needs to be implement by Output_section.
 virtual bool
 do_is_section_type(elfcpp::Elf_Word) const
 { return false; }

 // Return whether this is an Output_section with the specific flag
 // set.  This only needs to be implemented by Output_section.
 virtual bool
 do_is_section_flag_set(elfcpp::Elf_Xword) const
 { return false; }

 // Return the output section, if there is one.
 virtual Output_section*
 do_output_section()
 { return NULL; }

 virtual const Output_section*
 do_output_section() const
 { return NULL; }

 // Return the output section index, if there is an output section.
 virtual unsigned int
 do_out_shndx() const
 { gold_unreachable(); }

 // Set the output section index, if this is an output section.
 virtual void
 do_set_out_shndx(unsigned int)
 { gold_unreachable(); }

 // This is a hook for derived classes to set the preliminary data size.
 // This is called by pre_finalize_data_size, normally called during
 // Layout::finalize, before the section address is set, and is used
 // during an incremental update, when we need to know the size of a
 // section before allocating space in the output file.  For classes
 // where the current data size is up to date, this default version of
 // the method can be inherited.
 virtual void
 update_data_size()
 { }

 // This is a hook for derived classes to set the data size.  This is
 // called by finalize_data_size, normally called during
 // Layout::finalize, when the section address is set.
 virtual void
 set_final_data_size()
 { gold_unreachable(); }

 // A hook for resetting the address and file offset.
 virtual void
 do_reset_address_and_file_offset()
 { }

 // Return true if address and file offset already have reset values. In
 // other words, calling reset_address_and_file_offset will not change them.
 // A child class overriding do_reset_address_and_file_offset may need to
 // also override this.
 virtual bool
 do_address_and_file_offset_have_reset_values() const
 { return !this->is_address_valid_ && !this->is_offset_valid_; }

 // Set the TLS offset.  Called only for SHT_TLS sections.
 virtual void
 do_set_tls_offset(uint64_t)
 { gold_unreachable(); }

 // Return the TLS offset, relative to the base of the TLS segment.
 // Valid only for SHT_TLS sections.
 virtual uint64_t
 do_tls_offset() const
 { gold_unreachable(); }

 // Print to the map file.  This only needs to be implemented by
 // classes which may appear in a PT_LOAD segment.
 virtual void
 do_print_to_mapfile(Mapfile*) const
 { gold_unreachable(); }

 // Functions that child classes may call.

 // Reset the address.  The Output_section class needs this when an
 // SHF_ALLOC input section is added to an output section which was
 // formerly not SHF_ALLOC.
 void
 mark_address_invalid()
 { this->is_address_valid_ = false; }

 // Set the size of the data.
 void
 set_data_size(off_t data_size)
 {
   gold_assert(!this->is_data_size_valid_
               && !this->is_data_size_fixed_);
   this->data_size_ = data_size;
   this->is_data_size_valid_ = true;
 }

 // Fix the data size.  Once it is fixed, it cannot be changed
 // and the data size remains always valid.
 void
 fix_data_size()
 {
   gold_assert(this->is_data_size_valid_);
   this->is_data_size_fixed_ = true;
 }

 // Get the current data size--this is for the convenience of
 // sections which build up their size over time.
 off_t
 current_data_size_for_child() const
 { return this->data_size_; }

 // Set the current data size--this is for the convenience of
 // sections which build up their size over time.
 void
 set_current_data_size_for_child(off_t data_size)
 {
   gold_assert(!this->is_data_size_valid_);
   this->data_size_ = data_size;
 }

 // Return default alignment for the target size.
 static uint64_t
 default_alignment();

 // Return default alignment for a specified size--32 or 64.
 static uint64_t
 default_alignment_for_size(int size);

private:
 Output_data(const Output_data&);
 Output_data& operator=(const Output_data&);

 // This is used for verification, to make sure that we don't try to
 // change any sizes of allocated sections after we set the section
 // addresses.
 static bool allocated_sizes_are_fixed;

 // Memory address in output file.
 uint64_t address_;
 // Size of data in output file.
 off_t data_size_;
 // File offset of contents in output file.
 off_t offset_;
 // Whether address_ is valid.
 bool is_address_valid_ : 1;
 // Whether data_size_ is valid.
 bool is_data_size_valid_ : 1;
 // Whether offset_ is valid.
 bool is_offset_valid_ : 1;
 // Whether data size is fixed.
 bool is_data_size_fixed_ : 1;
 // Whether any dynamic relocs have been applied to this section.
 bool has_dynamic_reloc_ : 1;
};

// Output the section headers.

class Output_section_headers : public Output_data
{
public:
 Output_section_headers(const Layout*,
                        const Layout::Segment_list*,
                        const Layout::Section_list*,
                        const Layout::Section_list*,
                        const Stringpool*,
                        const Output_section*);

protected:
 // Write the data to the file.
 void
 do_write(Output_file*);

 // Return the required alignment.
 uint64_t
 do_addralign() const
 { return Output_data::default_alignment(); }

 // Write to a map file.
 void
 do_print_to_mapfile(Mapfile* mapfile) const
 { mapfile->print_output_data(this, _("** section headers")); }

 // Update the data size.
 void
 update_data_size()
 { this->set_data_size(this->do_size()); }

 // Set final data size.
 void
 set_final_data_size()
 { this->set_data_size(this->do_size()); }

private:
 // Write the data to the file with the right size and endianness.
 template<int size, bool big_endian>
 void
 do_sized_write(Output_file*);

 // Compute data size.
 off_t
 do_size() const;

 const Layout* layout_;
 const Layout::Segment_list* segment_list_;
 const Layout::Section_list* section_list_;
 const Layout::Section_list* unattached_section_list_;
 const Stringpool* secnamepool_;
 const Output_section* shstrtab_section_;
};

// Output the segment headers.

class Output_segment_headers : public Output_data
{
public:
 Output_segment_headers(const Layout::Segment_list& segment_list);

protected:
 // Write the data to the file.
 void
 do_write(Output_file*);

 // Return the required alignment.
 uint64_t
 do_addralign() const
 { return Output_data::default_alignment(); }

 // Write to a map file.
 void
 do_print_to_mapfile(Mapfile* mapfile) const
 { mapfile->print_output_data(this, _("** segment headers")); }

 // Set final data size.
 void
 set_final_data_size()
 { this->set_data_size(this->do_size()); }

private:
 // Write the data to the file with the right size and endianness.
 template<int size, bool big_endian>
 void
 do_sized_write(Output_file*);

 // Compute the current size.
 off_t
 do_size() const;

 const Layout::Segment_list& segment_list_;
};

// Output the ELF file header.

class Output_file_header : public Output_data
{
public:
 Output_file_header(Target*,
                    const Symbol_table*,
                    const Output_segment_headers*);

 // Add information about the section headers.  We lay out the ELF
 // file header before we create the section headers.
 void set_section_info(const Output_section_headers*,
                       const Output_section* shstrtab);

protected:
 // Write the data to the file.
 void
 do_write(Output_file*);

 // Return the required alignment.
 uint64_t
 do_addralign() const
 { return Output_data::default_alignment(); }

 // Write to a map file.
 void
 do_print_to_mapfile(Mapfile* mapfile) const
 { mapfile->print_output_data(this, _("** file header")); }

 // Set final data size.
 void
 set_final_data_size(void)
 { this->set_data_size(this->do_size()); }

private:
 // Write the data to the file with the right size and endianness.
 template<int size, bool big_endian>
 void
 do_sized_write(Output_file*);

 // Return the value to use for the entry address.
 template<int size>
 typename elfcpp::Elf_types<size>::Elf_Addr
 entry();

 // Compute the current data size.
 off_t
 do_size() const;

 Target* target_;
 const Symbol_table* symtab_;
 const Output_segment_headers* segment_header_;
 const Output_section_headers* section_header_;
 const Output_section* shstrtab_;
};

// Output sections are mainly comprised of input sections.  However,
// there are cases where we have data to write out which is not in an
// input section.  Output_section_data is used in such cases.  This is
// an abstract base class.

class Output_section_data : public Output_data
{
public:
 Output_section_data(off_t data_size, uint64_t addralign,
                     bool is_data_size_fixed)
   : Output_data(), output_section_(NULL), addralign_(addralign)
 {
   this->set_data_size(data_size);
   if (is_data_size_fixed)
     this->fix_data_size();
 }

 Output_section_data(uint64_t addralign)
   : Output_data(), output_section_(NULL), addralign_(addralign)
 { }

 // Return the output section.
 Output_section*
 output_section()
 { return this->output_section_; }

 const Output_section*
 output_section() const
 { return this->output_section_; }

 // Record the output section.
 void
 set_output_section(Output_section* os);

 // Add an input section, for SHF_MERGE sections.  This returns true
 // if the section was handled.
 bool
 add_input_section(Relobj* object, unsigned int shndx)
 { return this->do_add_input_section(object, shndx); }

 // Given an input OBJECT, an input section index SHNDX within that
 // object, and an OFFSET relative to the start of that input
 // section, return whether or not the corresponding offset within
 // the output section is known.  If this function returns true, it
 // sets *POUTPUT to the output offset.  The value -1 indicates that
 // this input offset is being discarded.
 bool
 output_offset(const Relobj* object, unsigned int shndx,
               section_offset_type offset,
               section_offset_type* poutput) const
 { return this->do_output_offset(object, shndx, offset, poutput); }

 // Write the contents to a buffer.  This is used for sections which
 // require postprocessing, such as compression.
 void
 write_to_buffer(unsigned char* buffer)
 { this->do_write_to_buffer(buffer); }

 // Print merge stats to stderr.  This should only be called for
 // SHF_MERGE sections.
 void
 print_merge_stats(const char* section_name)
 { this->do_print_merge_stats(section_name); }

protected:
 // The child class must implement do_write.

 // The child class may implement specific adjustments to the output
 // section.
 virtual void
 do_adjust_output_section(Output_section*)
 { }

 // May be implemented by child class.  Return true if the section
 // was handled.
 virtual bool
 do_add_input_section(Relobj*, unsigned int)
 { gold_unreachable(); }

 // The child class may implement output_offset.
 virtual bool
 do_output_offset(const Relobj*, unsigned int, section_offset_type,
                  section_offset_type*) const
 { return false; }

 // The child class may implement write_to_buffer.  Most child
 // classes can not appear in a compressed section, and they do not
 // implement this.
 virtual void
 do_write_to_buffer(unsigned char*)
 { gold_unreachable(); }

 // Print merge statistics.
 virtual void
 do_print_merge_stats(const char*)
 { gold_unreachable(); }

 // Return the required alignment.
 uint64_t
 do_addralign() const
 { return this->addralign_; }

 // Return the output section.
 Output_section*
 do_output_section()
 { return this->output_section_; }

 const Output_section*
 do_output_section() const
 { return this->output_section_; }

 // Return the section index of the output section.
 unsigned int
 do_out_shndx() const;

 // Set the alignment.
 void
 set_addralign(uint64_t addralign);

private:
 // The output section for this section.
 Output_section* output_section_;
 // The required alignment.
 uint64_t addralign_;
};

// Some Output_section_data classes build up their data step by step,
// rather than all at once.  This class provides an interface for
// them.

class Output_section_data_build : public Output_section_data
{
public:
 Output_section_data_build(uint64_t addralign)
   : Output_section_data(addralign)
 { }

 Output_section_data_build(off_t data_size, uint64_t addralign)
   : Output_section_data(data_size, addralign, false)
 { }

 // Set the current data size.
 void
 set_current_data_size(off_t data_size)
 { this->set_current_data_size_for_child(data_size); }

protected:
 // Set the final data size.
 virtual void
 set_final_data_size()
 { this->set_data_size(this->current_data_size_for_child()); }
};

// A simple case of Output_data in which we have constant data to
// output.

class Output_data_const : public Output_section_data
{
public:
 Output_data_const(const std::string& data, uint64_t addralign)
   : Output_section_data(data.size(), addralign, true), data_(data)
 { }

 Output_data_const(const char* p, off_t len, uint64_t addralign)
   : Output_section_data(len, addralign, true), data_(p, len)
 { }

 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
   : Output_section_data(len, addralign, true),
     data_(reinterpret_cast<const char*>(p), len)
 { }

protected:
 // Write the data to the output file.
 void
 do_write(Output_file*);

 // Write the data to a buffer.
 void
 do_write_to_buffer(unsigned char* buffer)
 { memcpy(buffer, this->data_.data(), this->data_.size()); }

 // Write to a map file.
 void
 do_print_to_mapfile(Mapfile* mapfile) const
 { mapfile->print_output_data(this, _("** fill")); }

private:
 std::string data_;
};

// Another version of Output_data with constant data, in which the
// buffer is allocated by the caller.

class Output_data_const_buffer : public Output_section_data
{
public:
 Output_data_const_buffer(const unsigned char* p, off_t len,
                          uint64_t addralign, const char* map_name)
   : Output_section_data(len, addralign, true),
     p_(p), map_name_(map_name)
 { }

protected:
 // Write the data the output file.
 void
 do_write(Output_file*);

 // Write the data to a buffer.
 void
 do_write_to_buffer(unsigned char* buffer)
 { memcpy(buffer, this->p_, this->data_size()); }

 // Write to a map file.
 void
 do_print_to_mapfile(Mapfile* mapfile) const
 { mapfile->print_output_data(this, _(this->map_name_)); }

private:
 // The data to output.
 const unsigned char* p_;
 // Name to use in a map file.  Maps are a rarely used feature, but
 // the space usage is minor as aren't very many of these objects.
 const char* map_name_;
};

// A place holder for a fixed amount of data written out via some
// other mechanism.

class Output_data_fixed_space : public Output_section_data
{
public:
 Output_data_fixed_space(off_t data_size, uint64_t addralign,
                         const char* map_name)
   : Output_section_data(data_size, addralign, true),
     map_name_(map_name)
 { }

protected:
 // Write out the data--the actual data must be written out
 // elsewhere.
 void
 do_write(Output_file*)
 { }

 // Write to a map file.
 void
 do_print_to_mapfile(Mapfile* mapfile) const
 { mapfile->print_output_data(this, _(this->map_name_)); }

private:
 // Name to use in a map file.  Maps are a rarely used feature, but
 // the space usage is minor as aren't very many of these objects.
 const char* map_name_;
};

// A place holder for variable sized data written out via some other
// mechanism.

class Output_data_space : public Output_section_data_build
{
public:
 explicit Output_data_space(uint64_t addralign, const char* map_name)
   : Output_section_data_build(addralign),
     map_name_(map_name)
 { }

 explicit Output_data_space(off_t data_size, uint64_t addralign,
                            const char* map_name)
   : Output_section_data_build(data_size, addralign),
     map_name_(map_name)
 { }

 // Set the alignment.
 void
 set_space_alignment(uint64_t align)
 { this->set_addralign(align); }

protected:
 // Write out the data--the actual data must be written out
 // elsewhere.
 void
 do_write(Output_file*)
 { }

 // Write to a map file.
 void
 do_print_to_mapfile(Mapfile* mapfile) const
 { mapfile->print_output_data(this, _(this->map_name_)); }

private:
 // Name to use in a map file.  Maps are a rarely used feature, but
 // the space usage is minor as aren't very many of these objects.
 const char* map_name_;
};

// Fill fixed space with zeroes.  This is just like
// Output_data_fixed_space, except that the map name is known.

class Output_data_zero_fill : public Output_section_data
{
public:
 Output_data_zero_fill(off_t data_size, uint64_t addralign)
   : Output_section_data(data_size, addralign, true)
 { }

protected:
 // There is no data to write out.
 void
 do_write(Output_file*)
 { }

 // Write to a map file.
 void
 do_print_to_mapfile(Mapfile* mapfile) const
 { mapfile->print_output_data(this, "** zero fill"); }
};

// A string table which goes into an output section.

class Output_data_strtab : public Output_section_data
{
public:
 Output_data_strtab(Stringpool* strtab)
   : Output_section_data(1), strtab_(strtab)
 { }

protected:
 // This is called to update the section size prior to assigning
 // the address and file offset.
 void
 update_data_size()
 { this->set_final_data_size(); }

 // This is called to set the address and file offset.  Here we make
 // sure that the Stringpool is finalized.
 void
 set_final_data_size();

 // Write out the data.
 void
 do_write(Output_file*);

 // Write the data to a buffer.
 void
 do_write_to_buffer(unsigned char* buffer)
 { this->strtab_->write_to_buffer(buffer, this->data_size()); }

 // Write to a map file.
 void
 do_print_to_mapfile(Mapfile* mapfile) const
 { mapfile->print_output_data(this, _("** string table")); }

private:
 Stringpool* strtab_;
};

// This POD class is used to represent a single reloc in the output
// file.  This could be a private class within Output_data_reloc, but
// the templatization is complex enough that I broke it out into a
// separate class.  The class is templatized on either elfcpp::SHT_REL
// or elfcpp::SHT_RELA, and also on whether this is a dynamic
// relocation or an ordinary relocation.

// A relocation can be against a global symbol, a local symbol, a
// local section symbol, an output section, or the undefined symbol at
// index 0.  We represent the latter by using a NULL global symbol.

template<int sh_type, bool dynamic, int size, bool big_endian>
class Output_reloc;

template<bool dynamic, int size, bool big_endian>
class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
{
public:
 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;

 static const Address invalid_address = static_cast<Address>(0) - 1;

 // An uninitialized entry.  We need this because we want to put
 // instances of this class into an STL container.
 Output_reloc()
   : local_sym_index_(INVALID_CODE)
 { }

 // We have a bunch of different constructors.  They come in pairs
 // depending on how the address of the relocation is specified.  It
 // can either be an offset in an Output_data or an offset in an
 // input section.

 // A reloc against a global symbol.

 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
              Address address, bool is_relative, bool is_symbolless,
              bool use_plt_offset);

 Output_reloc(Symbol* gsym, unsigned int type,
              Sized_relobj<size, big_endian>* relobj,
              unsigned int shndx, Address address, bool is_relative,
              bool is_symbolless, bool use_plt_offset);

 // A reloc against a local symbol or local section symbol.

 Output_reloc(Sized_relobj<size, big_endian>* relobj,
              unsigned int local_sym_index, unsigned int type,
              Output_data* od, Address address, bool is_relative,
              bool is_symbolless, bool is_section_symbol,
              bool use_plt_offset);

 Output_reloc(Sized_relobj<size, big_endian>* relobj,
              unsigned int local_sym_index, unsigned int type,
              unsigned int shndx, Address address, bool is_relative,
              bool is_symbolless, bool is_section_symbol,
              bool use_plt_offset);

 // A reloc against the STT_SECTION symbol of an output section.

 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
              Address address, bool is_relative);

 Output_reloc(Output_section* os, unsigned int type,
              Sized_relobj<size, big_endian>* relobj, unsigned int shndx,
              Address address, bool is_relative);

 // An absolute or relative relocation with no symbol.

 Output_reloc(unsigned int type, Output_data* od, Address address,
              bool is_relative);

 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
              unsigned int shndx, Address address, bool is_relative);

 // A target specific relocation.  The target will be called to get
 // the symbol index, passing ARG.  The type and offset will be set
 // as for other relocation types.

 Output_reloc(unsigned int type, void* arg, Output_data* od,
              Address address);

 Output_reloc(unsigned int type, void* arg,
              Sized_relobj<size, big_endian>* relobj,
              unsigned int shndx, Address address);

 // Return the reloc type.
 unsigned int
 type() const
 { return this->type_; }

 // Return whether this is a RELATIVE relocation.
 bool
 is_relative() const
 { return this->is_relative_; }

 // Return whether this is a relocation which should not use
 // a symbol, but which obtains its addend from a symbol.
 bool
 is_symbolless() const
 { return this->is_symbolless_; }

 // Return whether this is against a local section symbol.
 bool
 is_local_section_symbol() const
 {
   return (this->local_sym_index_ != GSYM_CODE
           && this->local_sym_index_ != SECTION_CODE
           && this->local_sym_index_ != INVALID_CODE
           && this->local_sym_index_ != TARGET_CODE
           && this->is_section_symbol_);
 }

 // Return whether this is a target specific relocation.
 bool
 is_target_specific() const
 { return this->local_sym_index_ == TARGET_CODE; }

 // Return the argument to pass to the target for a target specific
 // relocation.
 void*
 target_arg() const
 {
   gold_assert(this->local_sym_index_ == TARGET_CODE);
   return this->u1_.arg;
 }

 // For a local section symbol, return the offset of the input
 // section within the output section.  ADDEND is the addend being
 // applied to the input section.
 Address
 local_section_offset(Addend addend) const;

 // Get the value of the symbol referred to by a Rel relocation when
 // we are adding the given ADDEND.
 Address
 symbol_value(Addend addend) const;

 // If this relocation is against an input section, return the
 // relocatable object containing the input section.
 Sized_relobj<size, big_endian>*
 get_relobj() const
 {
   if (this->shndx_ == INVALID_CODE)
     return NULL;
   return this->u2_.relobj;
 }

 // Write the reloc entry to an output view.
 void
 write(unsigned char* pov) const;

 // Write the offset and info fields to Write_rel.
 template<typename Write_rel>
 void write_rel(Write_rel*) const;

 // This is used when sorting dynamic relocs.  Return -1 to sort this
 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
 int
 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
   const;

 // Return whether this reloc should be sorted before the argument
 // when sorting dynamic relocs.
 bool
 sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
             r2) const
 { return this->compare(r2) < 0; }

 // Return the symbol index.
 unsigned int
 get_symbol_index() const;

 // Return the output address.
 Address
 get_address() const;

private:
 // Record that we need a dynamic symbol index.
 void
 set_needs_dynsym_index();

 // Codes for local_sym_index_.
 enum
 {
   // Global symbol.
   GSYM_CODE = -1U,
   // Output section.
   SECTION_CODE = -2U,
   // Target specific.
   TARGET_CODE = -3U,
   // Invalid uninitialized entry.
   INVALID_CODE = -4U
 };

 union
 {
   // For a local symbol or local section symbol
   // (this->local_sym_index_ >= 0), the object.  We will never
   // generate a relocation against a local symbol in a dynamic
   // object; that doesn't make sense.  And our callers will always
   // be templatized, so we use Sized_relobj here.
   Sized_relobj<size, big_endian>* relobj;
   // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
   // symbol.  If this is NULL, it indicates a relocation against the
   // undefined 0 symbol.
   Symbol* gsym;
   // For a relocation against an output section
   // (this->local_sym_index_ == SECTION_CODE), the output section.
   Output_section* os;
   // For a target specific relocation, an argument to pass to the
   // target.
   void* arg;
 } u1_;
 union
 {
   // If this->shndx_ is not INVALID CODE, the object which holds the
   // input section being used to specify the reloc address.
   Sized_relobj<size, big_endian>* relobj;
   // If this->shndx_ is INVALID_CODE, the output data being used to
   // specify the reloc address.  This may be NULL if the reloc
   // address is absolute.
   Output_data* od;
 } u2_;
 // The address offset within the input section or the Output_data.
 Address address_;
 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
 // relocation against an output section, or TARGET_CODE for a target
 // specific relocation, or INVALID_CODE for an uninitialized value.
 // Otherwise, for a local symbol (this->is_section_symbol_ is
 // false), the local symbol index.  For a local section symbol
 // (this->is_section_symbol_ is true), the section index in the
 // input file.
 unsigned int local_sym_index_;
 // The reloc type--a processor specific code.
 unsigned int type_ : 28;
 // True if the relocation is a RELATIVE relocation.
 bool is_relative_ : 1;
 // True if the relocation is one which should not use
 // a symbol, but which obtains its addend from a symbol.
 bool is_symbolless_ : 1;
 // True if the relocation is against a section symbol.
 bool is_section_symbol_ : 1;
 // True if the addend should be the PLT offset.
 // (Used only for RELA, but stored here for space.)
 bool use_plt_offset_ : 1;
 // If the reloc address is an input section in an object, the
 // section index.  This is INVALID_CODE if the reloc address is
 // specified in some other way.
 unsigned int shndx_;
};

// The SHT_RELA version of Output_reloc<>.  This is just derived from
// the SHT_REL version of Output_reloc, but it adds an addend.

template<bool dynamic, int size, bool big_endian>
class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
{
public:
 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;

 // An uninitialized entry.
 Output_reloc()
   : rel_()
 { }

 // A reloc against a global symbol.

 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
              Address address, Addend addend, bool is_relative,
              bool is_symbolless, bool use_plt_offset)
   : rel_(gsym, type, od, address, is_relative, is_symbolless,
          use_plt_offset),
     addend_(addend)
 { }

 Output_reloc(Symbol* gsym, unsigned int type,
              Sized_relobj<size, big_endian>* relobj,
              unsigned int shndx, Address address, Addend addend,
              bool is_relative, bool is_symbolless, bool use_plt_offset)
   : rel_(gsym, type, relobj, shndx, address, is_relative,
          is_symbolless, use_plt_offset), addend_(addend)
 { }

 // A reloc against a local symbol.

 Output_reloc(Sized_relobj<size, big_endian>* relobj,
              unsigned int local_sym_index, unsigned int type,
              Output_data* od, Address address,
              Addend addend, bool is_relative,
              bool is_symbolless, bool is_section_symbol,
              bool use_plt_offset)
   : rel_(relobj, local_sym_index, type, od, address, is_relative,
          is_symbolless, is_section_symbol, use_plt_offset),
     addend_(addend)
 { }

 Output_reloc(Sized_relobj<size, big_endian>* relobj,
              unsigned int local_sym_index, unsigned int type,
              unsigned int shndx, Address address,
              Addend addend, bool is_relative,
              bool is_symbolless, bool is_section_symbol,
              bool use_plt_offset)
   : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
          is_symbolless, is_section_symbol, use_plt_offset),
     addend_(addend)
 { }

 // A reloc against the STT_SECTION symbol of an output section.

 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
              Address address, Addend addend, bool is_relative)
   : rel_(os, type, od, address, is_relative), addend_(addend)
 { }

 Output_reloc(Output_section* os, unsigned int type,
              Sized_relobj<size, big_endian>* relobj,
              unsigned int shndx, Address address, Addend addend,
              bool is_relative)
   : rel_(os, type, relobj, shndx, address, is_relative), addend_(addend)
 { }

 // An absolute or relative relocation with no symbol.

 Output_reloc(unsigned int type, Output_data* od, Address address,
              Addend addend, bool is_relative)
   : rel_(type, od, address, is_relative), addend_(addend)
 { }

 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
              unsigned int shndx, Address address, Addend addend,
              bool is_relative)
   : rel_(type, relobj, shndx, address, is_relative), addend_(addend)
 { }

 // A target specific relocation.  The target will be called to get
 // the symbol index and the addend, passing ARG.  The type and
 // offset will be set as for other relocation types.

 Output_reloc(unsigned int type, void* arg, Output_data* od,
              Address address, Addend addend)
   : rel_(type, arg, od, address), addend_(addend)
 { }

 Output_reloc(unsigned int type, void* arg,
              Sized_relobj<size, big_endian>* relobj,
              unsigned int shndx, Address address, Addend addend)
   : rel_(type, arg, relobj, shndx, address), addend_(addend)
 { }

 // Return whether this is a RELATIVE relocation.
 bool
 is_relative() const
 { return this->rel_.is_relative(); }

 // Return whether this is a relocation which should not use
 // a symbol, but which obtains its addend from a symbol.
 bool
 is_symbolless() const
 { return this->rel_.is_symbolless(); }

 // If this relocation is against an input section, return the
 // relocatable object containing the input section.
 Sized_relobj<size, big_endian>*
 get_relobj() const
 { return this->rel_.get_relobj(); }

 // Write the reloc entry to an output view.
 void
 write(unsigned char* pov) const;

 // Return whether this reloc should be sorted before the argument
 // when sorting dynamic relocs.
 bool
 sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
             r2) const
 {
   int i = this->rel_.compare(r2.rel_);
   if (i < 0)
     return true;
   else if (i > 0)
     return false;
   else
     return this->addend_ < r2.addend_;
 }

private:
 // The basic reloc.
 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
 // The addend.
 Addend addend_;
};

// Output_data_reloc_generic is a non-template base class for
// Output_data_reloc_base.  This gives the generic code a way to hold
// a pointer to a reloc section.

class Output_data_reloc_generic : public Output_section_data_build
{
public:
 Output_data_reloc_generic(int size, bool sort_relocs)
   : Output_section_data_build(Output_data::default_alignment_for_size(size)),
     relative_reloc_count_(0), sort_relocs_(sort_relocs)
 { }

 // Return the number of relative relocs in this section.
 size_t
 relative_reloc_count() const
 { return this->relative_reloc_count_; }

 // Whether we should sort the relocs.
 bool
 sort_relocs() const
 { return this->sort_relocs_; }

 // Add a reloc of type TYPE against the global symbol GSYM.  The
 // relocation applies to the data at offset ADDRESS within OD.
 virtual void
 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
                    uint64_t address, uint64_t addend) = 0;

 // Add a reloc of type TYPE against the global symbol GSYM.  The
 // relocation applies to data at offset ADDRESS within section SHNDX
 // of object file RELOBJ.  OD is the associated output section.
 virtual void
 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
                    Relobj* relobj, unsigned int shndx, uint64_t address,
                    uint64_t addend) = 0;

 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
 // in RELOBJ.  The relocation applies to the data at offset ADDRESS
 // within OD.
 virtual void
 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
                   unsigned int type, Output_data* od, uint64_t address,
                   uint64_t addend) = 0;

 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
 // in RELOBJ.  The relocation applies to the data at offset ADDRESS
 // within section SHNDX of RELOBJ.  OD is the associated output
 // section.
 virtual void
 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
                   unsigned int type, Output_data* od, unsigned int shndx,
                   uint64_t address, uint64_t addend) = 0;

 // Add a reloc of type TYPE against the STT_SECTION symbol of the
 // output section OS.  The relocation applies to the data at offset
 // ADDRESS within OD.
 virtual void
 add_output_section_generic(Output_section *os, unsigned int type,
                            Output_data* od, uint64_t address,
                            uint64_t addend) = 0;

 // Add a reloc of type TYPE against the STT_SECTION symbol of the
 // output section OS.  The relocation applies to the data at offset
 // ADDRESS within section SHNDX of RELOBJ.  OD is the associated
 // output section.
 virtual void
 add_output_section_generic(Output_section* os, unsigned int type,
                            Output_data* od, Relobj* relobj,
                            unsigned int shndx, uint64_t address,
                            uint64_t addend) = 0;

protected:
 // Note that we've added another relative reloc.
 void
 bump_relative_reloc_count()
 { ++this->relative_reloc_count_; }

private:
 // The number of relative relocs added to this section.  This is to
 // support DT_RELCOUNT.
 size_t relative_reloc_count_;
 // Whether to sort the relocations when writing them out, to make
 // the dynamic linker more efficient.
 bool sort_relocs_;
};

// Output_data_reloc is used to manage a section containing relocs.
// SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA.  DYNAMIC
// indicates whether this is a dynamic relocation or a normal
// relocation.  Output_data_reloc_base is a base class.
// Output_data_reloc is the real class, which we specialize based on
// the reloc type.

template<int sh_type, bool dynamic, int size, bool big_endian>
class Output_data_reloc_base : public Output_data_reloc_generic
{
public:
 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
 typedef typename Output_reloc_type::Address Address;
 static const int reloc_size =
   Reloc_types<sh_type, size, big_endian>::reloc_size;

 // Construct the section.
 Output_data_reloc_base(bool sort_relocs)
   : Output_data_reloc_generic(size, sort_relocs)
 { }

protected:
 // Write out the data.
 void
 do_write(Output_file*);

 // Generic implementation of do_write, allowing a customized
 // class for writing the output relocation (e.g., for MIPS-64).
 template<class Output_reloc_writer>
 void
 do_write_generic(Output_file* of)
 {
   const off_t off = this->offset();
   const off_t oview_size = this->data_size();
   unsigned char* const oview = of->get_output_view(off, oview_size);

   if (this->sort_relocs())
     {
       gold_assert(dynamic);
       std::sort(this->relocs_.begin(), this->relocs_.end(),
                 Sort_relocs_comparison());
     }

   unsigned char* pov = oview;
   for (typename Relocs::const_iterator p = this->relocs_.begin();
        p != this->relocs_.end();
        ++p)
     {
       Output_reloc_writer::write(p, pov);
       pov += reloc_size;
     }

   gold_assert(pov - oview == oview_size);

   of->write_output_view(off, oview_size, oview);

   // We no longer need the relocation entries.
   this->relocs_.clear();
 }

 // Set the entry size and the link.
 void
 do_adjust_output_section(Output_section* os);

 // Write to a map file.
 void
 do_print_to_mapfile(Mapfile* mapfile) const
 {
   mapfile->print_output_data(this,
                              (dynamic
                               ? _("** dynamic relocs")
                               : _("** relocs")));
 }

 // Add a relocation entry.
 void
 add(Output_data* od, const Output_reloc_type& reloc)
 {
   this->relocs_.push_back(reloc);
   this->set_current_data_size(this->relocs_.size() * reloc_size);
   if (dynamic)
     od->add_dynamic_reloc();
   if (reloc.is_relative())
     this->bump_relative_reloc_count();
   Sized_relobj<size, big_endian>* relobj = reloc.get_relobj();
   if (relobj != NULL)
     relobj->add_dyn_reloc(this->relocs_.size() - 1);
 }

private:
 typedef std::vector<Output_reloc_type> Relocs;

 // The class used to sort the relocations.
 struct Sort_relocs_comparison
 {
   bool
   operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
   { return r1.sort_before(r2); }
 };

 // The relocations in this section.
 Relocs relocs_;
};

// The class which callers actually create.

template<int sh_type, bool dynamic, int size, bool big_endian>
class Output_data_reloc;

// The SHT_REL version of Output_data_reloc.

template<bool dynamic, int size, bool big_endian>
class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
{
private:
 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
                                big_endian> Base;

public:
 typedef typename Base::Output_reloc_type Output_reloc_type;
 typedef typename Output_reloc_type::Address Address;

 Output_data_reloc(bool sr)
   : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
 { }

 // Add a reloc against a global symbol.

 void
 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
 {
   this->add(od, Output_reloc_type(gsym, type, od, address,
                                   false, false, false));
 }

 void
 add_global(Symbol* gsym, unsigned int type, Output_data* od,
            Sized_relobj<size, big_endian>* relobj,
            unsigned int shndx, Address address)
 {
   this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
                                   false, false, false));
 }

 void
 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
                    uint64_t address, uint64_t addend)
 {
   gold_assert(addend == 0);
   this->add(od, Output_reloc_type(gsym, type, od,
                                   convert_types<Address, uint64_t>(address),
                                   false, false, false));
 }

 void
 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
                    Relobj* relobj, unsigned int shndx, uint64_t address,
                    uint64_t addend)
 {
   gold_assert(addend == 0);
   Sized_relobj<size, big_endian>* sized_relobj =
     static_cast<Sized_relobj<size, big_endian>*>(relobj);
   this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
                                   convert_types<Address, uint64_t>(address),
                                   false, false, false));
 }

 // Add a RELATIVE reloc against a global symbol.  The final relocation
 // will not reference the symbol.

 void
 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
                     Address address)
 {
   this->add(od, Output_reloc_type(gsym, type, od, address, true, true,
                                   false));
 }

 void
 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
                     Sized_relobj<size, big_endian>* relobj,
                     unsigned int shndx, Address address)
 {
   this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
                                   true, true, false));
 }

 // Add a global relocation which does not use a symbol for the relocation,
 // but which gets its addend from a symbol.

 void
 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
                              Output_data* od, Address address)
 {
   this->add(od, Output_reloc_type(gsym, type, od, address, false, true,
                                   false));
 }

 void
 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
                              Output_data* od,
                              Sized_relobj<size, big_endian>* relobj,
                              unsigned int shndx, Address address)
 {
   this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
                                   false, true, false));
 }

 // Add a reloc against a local symbol.

 void
 add_local(Sized_relobj<size, big_endian>* relobj,
           unsigned int local_sym_index, unsigned int type,
           Output_data* od, Address address)
 {
   this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
                                   address, false, false, false, false));
 }

 void
 add_local(Sized_relobj<size, big_endian>* relobj,
           unsigned int local_sym_index, unsigned int type,
           Output_data* od, unsigned int shndx, Address address)
 {
   this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
                                   address, false, false, false, false));
 }

 void
 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
                   unsigned int type, Output_data* od, uint64_t address,
                   uint64_t addend)
 {
   gold_assert(addend == 0);
   Sized_relobj<size, big_endian>* sized_relobj =
     static_cast<Sized_relobj<size, big_endian> *>(relobj);
   this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
                                   convert_types<Address, uint64_t>(address),
                                   false, false, false, false));
 }

 void
 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
                   unsigned int type, Output_data* od, unsigned int shndx,
                   uint64_t address, uint64_t addend)
 {
   gold_assert(addend == 0);
   Sized_relobj<size, big_endian>* sized_relobj =
     static_cast<Sized_relobj<size, big_endian>*>(relobj);
   this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
                                   convert_types<Address, uint64_t>(address),
                                   false, false, false, false));
 }

 // Add a RELATIVE reloc against a local symbol.

 void
 add_local_relative(Sized_relobj<size, big_endian>* relobj,
                    unsigned int local_sym_index, unsigned int type,
                    Output_data* od, Address address)
 {
   this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
                                   address, true, true, false, false));
 }

 void
 add_local_relative(Sized_relobj<size, big_endian>* relobj,
                    unsigned int local_sym_index, unsigned int type,
                    Output_data* od, unsigned int shndx, Address address)
 {
   this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
                                   address, true, true, false, false));
 }

 void
 add_local_relative(Sized_relobj<size, big_endian>* relobj,
                    unsigned int local_sym_index, unsigned int type,
                    Output_data* od, unsigned int shndx, Address address,
                    bool use_plt_offset)
 {
   this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
                                   address, true, true, false,
                                   use_plt_offset));
 }

 // Add a local relocation which does not use a symbol for the relocation,
 // but which gets its addend from a symbol.

 void
 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
                             unsigned int local_sym_index, unsigned int type,
                             Output_data* od, Address address)
 {
   this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
                                   address, false, true, false, false));
 }

 void
 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
                             unsigned int local_sym_index, unsigned int type,
                             Output_data* od, unsigned int shndx,
                             Address address)
 {
   this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
                                   address, false, true, false, false));
 }

 // Add a reloc against a local section symbol.  This will be
 // converted into a reloc against the STT_SECTION symbol of the
 // output section.

 void
 add_local_section(Sized_relobj<size, big_endian>* relobj,
                   unsigned int input_shndx, unsigned int type,
                   Output_data* od, Address address)
 {
   this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
                                   address, false, false, true, false));
 }

 void
 add_local_section(Sized_relobj<size, big_endian>* relobj,
                   unsigned int input_shndx, unsigned int type,
                   Output_data* od, unsigned int shndx, Address address)
 {
   this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
                                   address, false, false, true, false));
 }

 // A reloc against the STT_SECTION symbol of an output section.
 // OS is the Output_section that the relocation refers to; OD is
 // the Output_data object being relocated.

 void
 add_output_section(Output_section* os, unsigned int type,
                    Output_data* od, Address address)
 { this->add(od, Output_reloc_type(os, type, od, address, false)); }

 void
 add_output_section(Output_section* os, unsigned int type, Output_data* od,
                    Sized_relobj<size, big_endian>* relobj,
                    unsigned int shndx, Address address)
 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, false)); }

 void
 add_output_section_generic(Output_section* os, unsigned int type,
                            Output_data* od, uint64_t address,
                            uint64_t addend)
 {
   gold_assert(addend == 0);
   this->add(od, Output_reloc_type(os, type, od,
                                   convert_types<Address, uint64_t>(address),
                                   false));
 }

 void
 add_output_section_generic(Output_section* os, unsigned int type,
                            Output_data* od, Relobj* relobj,
                            unsigned int shndx, uint64_t address,
                            uint64_t addend)
 {
   gold_assert(addend == 0);
   Sized_relobj<size, big_endian>* sized_relobj =
     static_cast<Sized_relobj<size, big_endian>*>(relobj);
   this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
                                   convert_types<Address, uint64_t>(address),
                                   false));
 }

 // As above, but the reloc TYPE is relative

 void
 add_output_section_relative(Output_section* os, unsigned int type,
                             Output_data* od, Address address)
 { this->add(od, Output_reloc_type(os, type, od, address, true)); }

 void
 add_output_section_relative(Output_section* os, unsigned int type,
                             Output_data* od,
                             Sized_relobj<size, big_endian>* relobj,
                             unsigned int shndx, Address address)
 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, true)); }

 // Add an absolute relocation.

 void
 add_absolute(unsigned int type, Output_data* od, Address address)
 { this->add(od, Output_reloc_type(type, od, address, false)); }

 void
 add_absolute(unsigned int type, Output_data* od,
              Sized_relobj<size, big_endian>* relobj,
              unsigned int shndx, Address address)
 { this->add(od, Output_reloc_type(type, relobj, shndx, address, false)); }

 // Add a relative relocation

 void
 add_relative(unsigned int type, Output_data* od, Address address)
 { this->add(od, Output_reloc_type(type, od, address, true)); }

 void
 add_relative(unsigned int type, Output_data* od,
              Sized_relobj<size, big_endian>* relobj,
              unsigned int shndx, Address address)
 { this->add(od, Output_reloc_type(type, relobj, shndx, address, true)); }

 // Add a target specific relocation.  A target which calls this must
 // define the reloc_symbol_index and reloc_addend virtual functions.

 void
 add_target_specific(unsigned int type, void* arg, Output_data* od,
                     Address address)
 { this->add(od, Output_reloc_type(type, arg, od, address)); }

 void
 add_target_specific(unsigned int type, void* arg, Output_data* od,
                     Sized_relobj<size, big_endian>* relobj,
                     unsigned int shndx, Address address)
 { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
};

// The SHT_RELA version of Output_data_reloc.

template<bool dynamic, int size, bool big_endian>
class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
{
private:
 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
                                big_endian> Base;

public:
 typedef typename Base::Output_reloc_type Output_reloc_type;
 typedef typename Output_reloc_type::Address Address;
 typedef typename Output_reloc_type::Addend Addend;

 Output_data_reloc(bool sr)
   : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
 { }

 // Add a reloc against a global symbol.

 void
 add_global(Symbol* gsym, unsigned int type, Output_data* od,
            Address address, Addend addend)
 {
   this->add(od, Output_reloc_type(gsym, type, od, address, addend,
                                   false, false, false));
 }

 void
 add_global(Symbol* gsym, unsigned int type, Output_data* od,
            Sized_relobj<size, big_endian>* relobj,
            unsigned int shndx, Address address,
            Addend addend)
 {
   this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
                                   addend, false, false, false));
 }

 void
 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
                    uint64_t address, uint64_t addend)
 {
   this->add(od, Output_reloc_type(gsym, type, od,
                                   convert_types<Address, uint64_t>(address),
                                   convert_types<Addend, uint64_t>(addend),
                                   false, false, false));
 }

 void
 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
                    Relobj* relobj, unsigned int shndx, uint64_t address,
                    uint64_t addend)
 {
   Sized_relobj<size, big_endian>* sized_relobj =
     static_cast<Sized_relobj<size, big_endian>*>(relobj);
   this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
                                   convert_types<Address, uint64_t>(address),
                                   convert_types<Addend, uint64_t>(addend),
                                   false, false, false));
 }

 // Add a RELATIVE reloc against a global symbol.  The final output
 // relocation will not reference the symbol, but we must keep the symbol
 // information long enough to set the addend of the relocation correctly
 // when it is written.

 void
 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
                     Address address, Addend addend, bool use_plt_offset)
 {
   this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
                                   true, use_plt_offset));
 }

 void
 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
                     Sized_relobj<size, big_endian>* relobj,
                     unsigned int shndx, Address address, Addend addend,
                     bool use_plt_offset)
 {
   this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
                                   addend, true, true, use_plt_offset));
 }

 // Add a global relocation which does not use a symbol for the relocation,
 // but which gets its addend from a symbol.

 void
 add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
                              Address address, Addend addend)
 {
   this->add(od, Output_reloc_type(gsym, type, od, address, addend,
                                   false, true, false));
 }

 void
 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
                              Output_data* od,
                              Sized_relobj<size, big_endian>* relobj,
                              unsigned int shndx, Address address,
                              Addend addend)
 {
   this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
                                   addend, false, true, false));
 }

 // Add a reloc against a local symbol.

 void
 add_local(Sized_relobj<size, big_endian>* relobj,
           unsigned int local_sym_index, unsigned int type,
           Output_data* od, Address address, Addend addend)
 {
   this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
                                   addend, false, false, false, false));
 }

 void
 add_local(Sized_relobj<size, big_endian>* relobj,
           unsigned int local_sym_index, unsigned int type,
           Output_data* od, unsigned int shndx, Address address,
           Addend addend)
 {
   this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
                                   address, addend, false, false, false,
                                   false));
 }

 void
 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
                   unsigned int type, Output_data* od, uint64_t address,
                   uint64_t addend)
 {
   Sized_relobj<size, big_endian>* sized_relobj =
     static_cast<Sized_relobj<size, big_endian> *>(relobj);
   this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
                                   convert_types<Address, uint64_t>(address),
                                   convert_types<Addend, uint64_t>(addend),
                                   false, false, false, false));
 }

 void
 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
                   unsigned int type, Output_data* od, unsigned int shndx,
                   uint64_t address, uint64_t addend)
 {
   Sized_relobj<size, big_endian>* sized_relobj =
     static_cast<Sized_relobj<size, big_endian>*>(relobj);
   this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
                                   convert_types<Address, uint64_t>(address),
                                   convert_types<Addend, uint64_t>(addend),
                                   false, false, false, false));
 }

 // Add a RELATIVE reloc against a local symbol.

 void
 add_local_relative(Sized_relobj<size, big_endian>* relobj,
                    unsigned int local_sym_index, unsigned int type,
                    Output_data* od, Address address, Addend addend,
                    bool use_plt_offset)
 {
   this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
                                   addend, true, true, false,
                                   use_plt_offset));
 }

 void
 add_local_relative(Sized_relobj<size, big_endian>* relobj,
                    unsigned int local_sym_index, unsigned int type,
                    Output_data* od, unsigned int shndx, Address address,
                    Addend addend, bool use_plt_offset)
 {
   this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
                                   address, addend, true, true, false,
                                   use_plt_offset));
 }

 // Add a local relocation which does not use a symbol for the relocation,
 // but which gets it's addend from a symbol.

 void
 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
                             unsigned int local_sym_index, unsigned int type,
                             Output_data* od, Address address, Addend addend)
 {
   this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
                                   addend, false, true, false, false));
 }

 void
 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
                             unsigned int local_sym_index, unsigned int type,
                             Output_data* od, unsigned int shndx,
                             Address address, Addend addend)
 {
   this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
                                   address, addend, false, true, false,
                                   false));
 }

 // Add a reloc against a local section symbol.  This will be
 // converted into a reloc against the STT_SECTION symbol of the
 // output section.

 void
 add_local_section(Sized_relobj<size, big_endian>* relobj,
                   unsigned int input_shndx, unsigned int type,
                   Output_data* od, Address address, Addend addend)
 {
   this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
                                   addend, false, false, true, false));
 }

 void
 add_local_section(Sized_relobj<size, big_endian>* relobj,
                   unsigned int input_shndx, unsigned int type,
                   Output_data* od, unsigned int shndx, Address address,
                   Addend addend)
 {
   this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
                                   address, addend, false, false, true,
                                   false));
 }

 // A reloc against the STT_SECTION symbol of an output section.

 void
 add_output_section(Output_section* os, unsigned int type, Output_data* od,
                    Address address, Addend addend)
 { this->add(od, Output_reloc_type(os, type, od, address, addend, false)); }

 void
 add_output_section(Output_section* os, unsigned int type, Output_data* od,
                    Sized_relobj<size, big_endian>* relobj,
                    unsigned int shndx, Address address, Addend addend)
 {
   this->add(od, Output_reloc_type(os, type, relobj, shndx, address,
                                   addend, false));
 }

 void
 add_output_section_generic(Output_section* os, unsigned int type,
                            Output_data* od, uint64_t address,
                            uint64_t addend)
 {
   this->add(od, Output_reloc_type(os, type, od,
                                   convert_types<Address, uint64_t>(address),
                                   convert_types<Addend, uint64_t>(addend),
                                   false));
 }

 void
 add_output_section_generic(Output_section* os, unsigned int type,
                            Output_data* od, Relobj* relobj,
                            unsigned int shndx, uint64_t address,
                            uint64_t addend)
 {
   Sized_relobj<size, big_endian>* sized_relobj =
     static_cast<Sized_relobj<size, big_endian>*>(relobj);
   this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
                                   convert_types<Address, uint64_t>(address),
                                   convert_types<Addend, uint64_t>(addend),
                                   false));
 }

 // As above, but the reloc TYPE is relative

 void
 add_output_section_relative(Output_section* os, unsigned int type,
                             Output_data* od, Address address, Addend addend)
 { this->add(od, Output_reloc_type(os, type, od, address, addend, true)); }

 void
 add_output_section_relative(Output_section* os, unsigned int type,
                             Output_data* od,
                             Sized_relobj<size, big_endian>* relobj,
                             unsigned int shndx, Address address,
                             Addend addend)
 {
   this->add(od, Output_reloc_type(os, type, relobj, shndx,
                                   address, addend, true));
 }

 // Add an absolute relocation.

 void
 add_absolute(unsigned int type, Output_data* od, Address address,
              Addend addend)
 { this->add(od, Output_reloc_type(type, od, address, addend, false)); }

 void
 add_absolute(unsigned int type, Output_data* od,
              Sized_relobj<size, big_endian>* relobj,
              unsigned int shndx, Address address, Addend addend)
 {
   this->add(od, Output_reloc_type(type, relobj, shndx, address, addend,
                                   false));
 }

 // Add a relative relocation

 void
 add_relative(unsigned int type, Output_data* od, Address address,
              Addend addend)
 { this->add(od, Output_reloc_type(type, od, address, addend, true)); }

 void
 add_relative(unsigned int type, Output_data* od,
              Sized_relobj<size, big_endian>* relobj,
              unsigned int shndx, Address address, Addend addend)
 {
   this->add(od, Output_reloc_type(type, relobj, shndx, address, addend,
                                   true));
 }

 // Add a target specific relocation.  A target which calls this must
 // define the reloc_symbol_index and reloc_addend virtual functions.

 void
 add_target_specific(unsigned int type, void* arg, Output_data* od,
                     Address address, Addend addend)
 { this->add(od, Output_reloc_type(type, arg, od, address, addend)); }

 void
 add_target_specific(unsigned int type, void* arg, Output_data* od,
                     Sized_relobj<size, big_endian>* relobj,
                     unsigned int shndx, Address address, Addend addend)
 {
   this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
                                   addend));
 }
};

// Output_relocatable_relocs represents a relocation section in a
// relocatable link.  The actual data is written out in the target
// hook relocate_relocs.  This just saves space for it.

template<int sh_type, int size, bool big_endian>
class Output_relocatable_relocs : public Output_section_data
{
public:
 Output_relocatable_relocs(Relocatable_relocs* rr)
   : Output_section_data(Output_data::default_alignment_for_size(size)),
     rr_(rr)
 { }

 void
 set_final_data_size();

 // Write out the data.  There is nothing to do here.
 void
 do_write(Output_file*)
 { }

 // Write to a map file.
 void
 do_print_to_mapfile(Mapfile* mapfile) const
 { mapfile->print_output_data(this, _("** relocs")); }

private:
 // The relocs associated with this input section.
 Relocatable_relocs* rr_;
};

// Handle a GROUP section.

template<int size, bool big_endian>
class Output_data_group : public Output_section_data
{
public:
 // The constructor clears *INPUT_SHNDXES.
 Output_data_group(Sized_relobj_file<size, big_endian>* relobj,
                   section_size_type entry_count,
                   elfcpp::Elf_Word flags,
                   std::vector<unsigned int>* input_shndxes);

 void
 do_write(Output_file*);

 // Write to a map file.
 void
 do_print_to_mapfile(Mapfile* mapfile) const
 { mapfile->print_output_data(this, _("** group")); }

 // Set final data size.
 void
 set_final_data_size()
 { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }

private:
 // The input object.
 Sized_relobj_file<size, big_endian>* relobj_;
 // The group flag word.
 elfcpp::Elf_Word flags_;
 // The section indexes of the input sections in this group.
 std::vector<unsigned int> input_shndxes_;
};

// Output_data_got is used to manage a GOT.  Each entry in the GOT is
// for one symbol--either a global symbol or a local symbol in an
// object.  The target specific code adds entries to the GOT as
// needed.  The GOT_SIZE template parameter is the size in bits of a
// GOT entry, typically 32 or 64.

class Output_data_got_base : public Output_section_data_build
{
public:
 Output_data_got_base(uint64_t align)
   : Output_section_data_build(align)
 { }

 Output_data_got_base(off_t data_size, uint64_t align)
   : Output_section_data_build(data_size, align)
 { }

 // Reserve the slot at index I in the GOT.
 void
 reserve_slot(unsigned int i)
 { this->do_reserve_slot(i); }

protected:
 // Reserve the slot at index I in the GOT.
 virtual void
 do_reserve_slot(unsigned int i) = 0;
};

template<int got_size, bool big_endian>
class Output_data_got : public Output_data_got_base
{
public:
 typedef typename elfcpp::Elf_types<got_size>::Elf_Addr Valtype;

 Output_data_got()
   : Output_data_got_base(Output_data::default_alignment_for_size(got_size)),
     entries_(), free_list_()
 { }

 Output_data_got(off_t data_size)
   : Output_data_got_base(data_size,
                          Output_data::default_alignment_for_size(got_size)),
     entries_(), free_list_()
 {
   // For an incremental update, we have an existing GOT section.
   // Initialize the list of entries and the free list.
   this->entries_.resize(data_size / (got_size / 8));
   this->free_list_.init(data_size, false);
 }

 // Add an entry for a global symbol GSYM plus ADDEND to the GOT.
 // Return true if this is a new GOT entry, false if the symbol plus
 // addend was already in the GOT.
 bool
 add_global(Symbol* gsym, unsigned int got_type, uint64_t addend = 0);

 // Like add_global, but use the PLT offset of the global symbol if
 // it has one.
 bool
 add_global_plt(Symbol* gsym, unsigned int got_type, uint64_t addend = 0);

 // Like add_global, but for a TLS symbol where the value will be
 // offset using Target::tls_offset_for_global.
 bool
 add_global_tls(Symbol* gsym, unsigned int got_type, uint64_t addend = 0)
 { return this->add_global_plt(gsym, got_type, addend); }

 // Add an entry for a global symbol GSYM plus ADDEND to the GOT, and
 // add a dynamic relocation of type R_TYPE for the GOT entry.
 void
 add_global_with_rel(Symbol* gsym, unsigned int got_type,
                     Output_data_reloc_generic* rel_dyn, unsigned int r_type,
                     uint64_t addend = 0);

 // Add a pair of entries for a global symbol GSYM plus ADDEND to the
 // GOT, and add dynamic relocations of type R_TYPE_1 and R_TYPE_2,
 // respectively.
 void
 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
                          Output_data_reloc_generic* rel_dyn,
                          unsigned int r_type_1, unsigned int r_type_2,
                          uint64_t addend = 0);

 // Add an entry for a local symbol plus ADDEND to the GOT.  This returns
 // true if this is a new GOT entry, false if the symbol already has a GOT
 // entry.
 bool
 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type,
           uint64_t addend = 0);

 // Like add_local, but use the PLT offset of the local symbol if it
 // has one.
 bool
 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type,
               uint64_t addend = 0);

 // Like add_local, but for a TLS symbol where the value will be
 // offset using Target::tls_offset_for_local.
 bool
 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type,
               uint64_t addend = 0)
 { return this->add_local_plt(object, sym_index, got_type, addend); }

 // Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic
 // relocation of type R_TYPE for the GOT entry.
 void
 add_local_with_rel(Relobj* object, unsigned int sym_index,
                    unsigned int got_type, Output_data_reloc_generic* rel_dyn,
                    unsigned int r_type, uint64_t addend = 0);

 // Add a pair of entries for a local symbol plus ADDEND to the GOT, and add
 // a dynamic relocation of type R_TYPE using the section symbol of
 // the output section to which input section SHNDX maps, on the first.
 // The first got entry will have a value of zero, the second the
 // value of the local symbol.
 void
 add_local_pair_with_rel(Relobj* object, unsigned int sym_index,
                         unsigned int shndx, unsigned int got_type,
                         Output_data_reloc_generic* rel_dyn,
                         unsigned int r_type, uint64_t addend = 0);

 // Add a pair of entries for a local symbol plus ADDEND to the GOT,
 // and add a dynamic relocation of type R_TYPE using STN_UNDEF on
 // the first.  The first got entry will have a value of zero, the
 // second the value of the local symbol plus ADDEND offset by
 // Target::tls_offset_for_local.
 void
 add_local_tls_pair(Relobj* object, unsigned int sym_index,
                    unsigned int got_type,
                    Output_data_reloc_generic* rel_dyn,
                    unsigned int r_type, uint64_t addend = 0);

 // Add a constant to the GOT.  This returns the offset of the new
 // entry from the start of the GOT.
 unsigned int
 add_constant(Valtype constant)
 { return this->add_got_entry(Got_entry(constant)); }

 // Add a pair of constants to the GOT.  This returns the offset of
 // the new entry from the start of the GOT.
 unsigned int
 add_constant_pair(Valtype c1, Valtype c2)
 { return this->add_got_entry_pair(Got_entry(c1), Got_entry(c2)); }

 // Replace GOT entry I with a new constant.
 void
 replace_constant(unsigned int i, Valtype constant)
 {
   this->replace_got_entry(i, Got_entry(constant));
 }

 // Reserve a slot in the GOT for a local symbol plus ADDEND.
 void
 reserve_local(unsigned int i, Relobj* object, unsigned int sym_index,
               unsigned int got_type, uint64_t addend = 0);

 // Reserve a slot in the GOT for a global symbol plus ADDEND.
 void
 reserve_global(unsigned int i, Symbol* gsym, unsigned int got_type,
                uint64_t addend = 0);

protected:
 // Write out the GOT table.
 void
 do_write(Output_file*);

 // Write to a map file.
 void
 do_print_to_mapfile(Mapfile* mapfile) const
 { mapfile->print_output_data(this, _("** GOT")); }

 // Reserve the slot at index I in the GOT.
 virtual void
 do_reserve_slot(unsigned int i)
 { this->free_list_.remove(i * got_size / 8, (i + 1) * got_size / 8); }

 // Return the number of words in the GOT.
 unsigned int
 num_entries () const
 { return this->entries_.size(); }

 // Return the offset into the GOT of GOT entry I.
 unsigned int
 got_offset(unsigned int i) const
 { return i * (got_size / 8); }

private:
 // This POD class holds a single GOT entry.
 class Got_entry
 {
  public:
   // Create a zero entry.
   Got_entry()
     : local_sym_index_(RESERVED_CODE), use_plt_or_tls_offset_(false),
       addend_(0)
   { this->u_.constant = 0; }

   // Create a global symbol entry.
   Got_entry(Symbol* gsym, bool use_plt_or_tls_offset, uint64_t addend)
     : local_sym_index_(GSYM_CODE),
       use_plt_or_tls_offset_(use_plt_or_tls_offset), addend_(addend)
   { this->u_.gsym = gsym; }

   // Create a local symbol entry.
   Got_entry(Relobj* object, unsigned int local_sym_index,
             bool use_plt_or_tls_offset, uint64_t addend)
     : local_sym_index_(local_sym_index),
       use_plt_or_tls_offset_(use_plt_or_tls_offset), addend_(addend)
   {
     gold_assert(local_sym_index != GSYM_CODE
                 && local_sym_index != CONSTANT_CODE
                 && local_sym_index != RESERVED_CODE
                 && local_sym_index == this->local_sym_index_);
     this->u_.object = object;
   }

   // Create a constant entry.  The constant is a host value--it will
   // be swapped, if necessary, when it is written out.
   explicit Got_entry(Valtype constant)
     : local_sym_index_(CONSTANT_CODE), use_plt_or_tls_offset_(false)
   { this->u_.constant = constant; }

   // Write the GOT entry to an output view.
   void
   write(Output_data_got_base* got, unsigned int got_indx,
         unsigned char* pov) const;

  private:
   enum
   {
     GSYM_CODE = 0x7fffffff,
     CONSTANT_CODE = 0x7ffffffe,
     RESERVED_CODE = 0x7ffffffd
   };

   union
   {
     // For a local symbol, the object.
     Relobj* object;
     // For a global symbol, the symbol.
     Symbol* gsym;
     // For a constant, the constant.
     Valtype constant;
   } u_;
   // For a local symbol, the local symbol index.  This is GSYM_CODE
   // for a global symbol, or CONSTANT_CODE for a constant.
   unsigned int local_sym_index_ : 31;
   // Whether to use the PLT offset of the symbol if it has one.
   // For TLS symbols, whether to offset the symbol value.
   bool use_plt_or_tls_offset_ : 1;
   // The addend.
   uint64_t addend_;
 };

 typedef std::vector<Got_entry> Got_entries;

 // Create a new GOT entry and return its offset.
 unsigned int
 add_got_entry(Got_entry got_entry);

 // Create a pair of new GOT entries and return the offset of the first.
 unsigned int
 add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2);

 // Replace GOT entry I with a new value.
 void
 replace_got_entry(unsigned int i, Got_entry got_entry);

 // Return the offset into the GOT of the last entry added.
 unsigned int
 last_got_offset() const
 { return this->got_offset(this->num_entries() - 1); }

 // Set the size of the section.
 void
 set_got_size()
 { this->set_current_data_size(this->got_offset(this->num_entries())); }

 // The list of GOT entries.
 Got_entries entries_;

 // List of available regions within the section, for incremental
 // update links.
 Free_list free_list_;
};

// Output_data_dynamic is used to hold the data in SHT_DYNAMIC
// section.

class Output_data_dynamic : public Output_section_data
{
public:
 Output_data_dynamic(Stringpool* pool)
   : Output_section_data(Output_data::default_alignment()),
     entries_(), pool_(pool)
 { }

 // Add a new dynamic entry with a fixed numeric value.
 void
 add_constant(elfcpp::DT tag, unsigned int val)
 { this->add_entry(Dynamic_entry(tag, val)); }

 // Add a new dynamic entry with the address of output data.
 void
 add_section_address(elfcpp::DT tag, const Output_data* od)
 { this->add_entry(Dynamic_entry(tag, od, false)); }

 // Add a new dynamic entry with the address of output data
 // plus a constant offset.
 void
 add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
                         unsigned int offset)
 { this->add_entry(Dynamic_entry(tag, od, offset)); }

 // Add a new dynamic entry with the size of output data.
 void
 add_section_size(elfcpp::DT tag, const Output_data* od)
 { this->add_entry(Dynamic_entry(tag, od, true)); }

 // Add a new dynamic entry with the total size of two output datas.
 void
 add_section_size(elfcpp::DT tag, const Output_data* od,
                  const Output_data* od2)
 { this->add_entry(Dynamic_entry(tag, od, od2)); }

 // Add a new dynamic entry with the address of a symbol.
 void
 add_symbol(elfcpp::DT tag, const Symbol* sym)
 { this->add_entry(Dynamic_entry(tag, sym)); }

 // Add a new dynamic entry with a string.
 void
 add_string(elfcpp::DT tag, const char* str)
 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }

 void
 add_string(elfcpp::DT tag, const std::string& str)
 { this->add_string(tag, str.c_str()); }

 // Add a new dynamic entry with custom value.
 void
 add_custom(elfcpp::DT tag)
 { this->add_entry(Dynamic_entry(tag)); }

 // Get a dynamic entry offset.
 unsigned int
 get_entry_offset(elfcpp::DT tag) const;

protected:
 // Adjust the output section to set the entry size.
 void
 do_adjust_output_section(Output_section*);

 // Set the final data size.
 void
 set_final_data_size();

 // Write out the dynamic entries.
 void
 do_write(Output_file*);

 // Write to a map file.
 void
 do_print_to_mapfile(Mapfile* mapfile) const
 { mapfile->print_output_data(this, _("** dynamic")); }

private:
 // This POD class holds a single dynamic entry.
 class Dynamic_entry
 {
  public:
   // Create an entry with a fixed numeric value.
   Dynamic_entry(elfcpp::DT tag, unsigned int val)
     : tag_(tag), offset_(DYNAMIC_NUMBER)
   { this->u_.val = val; }

   // Create an entry with the size or address of a section.
   Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
     : tag_(tag),
       offset_(section_size
               ? DYNAMIC_SECTION_SIZE
               : DYNAMIC_SECTION_ADDRESS)
   {
     this->u_.od = od;
     this->od2 = NULL;
   }

   // Create an entry with the size of two sections.
   Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
     : tag_(tag),
       offset_(DYNAMIC_SECTION_SIZE)
   {
     this->u_.od = od;
     this->od2 = od2;
   }

   // Create an entry with the address of a section plus a constant offset.
   Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
     : tag_(tag),
       offset_(offset)
   { this->u_.od = od; }

   // Create an entry with the address of a symbol.
   Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
     : tag_(tag), offset_(DYNAMIC_SYMBOL)
   { this->u_.sym = sym; }

   // Create an entry with a string.
   Dynamic_entry(elfcpp::DT tag, const char* str)
     : tag_(tag), offset_(DYNAMIC_STRING)
   { this->u_.str = str; }

   // Create an entry with a custom value.
   Dynamic_entry(elfcpp::DT tag)
     : tag_(tag), offset_(DYNAMIC_CUSTOM)
   { }

   // Return the tag of this entry.
   elfcpp::DT
   tag() const
   { return this->tag_; }

   // Write the dynamic entry to an output view.
   template<int size, bool big_endian>
   void
   write(unsigned char* pov, const Stringpool*) const;

  private:
   // Classification is encoded in the OFFSET field.
   enum Classification
   {
     // Section address.
     DYNAMIC_SECTION_ADDRESS = 0,
     // Number.
     DYNAMIC_NUMBER = -1U,
     // Section size.
     DYNAMIC_SECTION_SIZE = -2U,
     // Symbol address.
     DYNAMIC_SYMBOL = -3U,
     // String.
     DYNAMIC_STRING = -4U,
     // Custom value.
     DYNAMIC_CUSTOM = -5U
     // Any other value indicates a section address plus OFFSET.
   };

   union
   {
     // For DYNAMIC_NUMBER.
     unsigned int val;
     // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
     const Output_data* od;
     // For DYNAMIC_SYMBOL.
     const Symbol* sym;
     // For DYNAMIC_STRING.
     const char* str;
   } u_;
   // For DYNAMIC_SYMBOL with two sections.
   const Output_data* od2;
   // The dynamic tag.
   elfcpp::DT tag_;
   // The type of entry (Classification) or offset within a section.
   unsigned int offset_;
 };

 // Add an entry to the list.
 void
 add_entry(const Dynamic_entry& entry)
 { this->entries_.push_back(entry); }

 // Sized version of write function.
 template<int size, bool big_endian>
 void
 sized_write(Output_file* of);

 // The type of the list of entries.
 typedef std::vector<Dynamic_entry> Dynamic_entries;

 // The entries.
 Dynamic_entries entries_;
 // The pool used for strings.
 Stringpool* pool_;
};

// Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
// which may be required if the object file has more than
// SHN_LORESERVE sections.

class Output_symtab_xindex : public Output_section_data
{
public:
 Output_symtab_xindex(size_t symcount)
   : Output_section_data(symcount * 4, 4, true),
     entries_()
 { }

 // Add an entry: symbol number SYMNDX has section SHNDX.
 void
 add(unsigned int symndx, unsigned int shndx)
 { this->entries_.push_back(std::make_pair(symndx, shndx)); }

protected:
 void
 do_write(Output_file*);

 // Write to a map file.
 void
 do_print_to_mapfile(Mapfile* mapfile) const
 { mapfile->print_output_data(this, _("** symtab xindex")); }

private:
 template<bool big_endian>
 void
 endian_do_write(unsigned char*);

 // It is likely that most symbols will not require entries.  Rather
 // than keep a vector for all symbols, we keep pairs of symbol index
 // and section index.
 typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;

 // The entries we need.
 Xindex_entries entries_;
};

// A relaxed input section.
class Output_relaxed_input_section : public Output_section_data_build
{
public:
 // We would like to call relobj->section_addralign(shndx) to get the
 // alignment but we do not want the constructor to fail.  So callers
 // are repsonsible for ensuring that.
 Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
                              uint64_t addralign)
   : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
 { }

 // Return the Relobj of this relaxed input section.
 Relobj*
 relobj() const
 { return this->relobj_; }

 // Return the section index of this relaxed input section.
 unsigned int
 shndx() const
 { return this->shndx_; }

protected:
 void
 set_relobj(Relobj* relobj)
 { this->relobj_ = relobj; }

 void
 set_shndx(unsigned int shndx)
 { this->shndx_ = shndx; }

private:
 Relobj* relobj_;
 unsigned int shndx_;
};

// This class describes properties of merge data sections.  It is used
// as a key type for maps.
class Merge_section_properties
{
public:
 Merge_section_properties(bool is_string, uint64_t entsize,
                            uint64_t addralign)
   : is_string_(is_string), entsize_(entsize), addralign_(addralign)
 { }

 // Whether this equals to another Merge_section_properties MSP.
 bool
 eq(const Merge_section_properties& msp) const
 {
   return ((this->is_string_ == msp.is_string_)
           && (this->entsize_ == msp.entsize_)
           && (this->addralign_ == msp.addralign_));
 }

 // Compute a hash value for this using 64-bit FNV-1a hash.
 size_t
 hash_value() const
 {
   uint64_t h = 14695981039346656037ULL;       // FNV offset basis.
   uint64_t prime = 1099511628211ULL;
   h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
   h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
   h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
   return h;
 }

 // Functors for associative containers.
 struct equal_to
 {
   bool
   operator()(const Merge_section_properties& msp1,
              const Merge_section_properties& msp2) const
   { return msp1.eq(msp2); }
 };

 struct hash
 {
   size_t
   operator()(const Merge_section_properties& msp) const
   { return msp.hash_value(); }
 };

private:
 // Whether this merge data section is for strings.
 bool is_string_;
 // Entsize of this merge data section.
 uint64_t entsize_;
 // Address alignment.
 uint64_t addralign_;
};

// This class is used to speed up look up of special input sections in an
// Output_section.

class Output_section_lookup_maps
{
public:
 Output_section_lookup_maps()
   : is_valid_(true), merge_sections_by_properties_(),
     relaxed_input_sections_by_id_()
 { }

 // Whether the maps are valid.
 bool
 is_valid() const
 { return this->is_valid_; }

 // Invalidate the maps.
 void
 invalidate()
 { this->is_valid_ = false; }

 // Clear the maps.
 void
 clear()
 {
   this->merge_sections_by_properties_.clear();
   this->relaxed_input_sections_by_id_.clear();
   // A cleared map is valid.
   this->is_valid_ = true;
 }

 // Find a merge section by merge section properties.  Return NULL if none
 // is found.
 Output_merge_base*
 find_merge_section(const Merge_section_properties& msp) const
 {
   gold_assert(this->is_valid_);
   Merge_sections_by_properties::const_iterator p =
     this->merge_sections_by_properties_.find(msp);
   return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
 }

 // Add a merge section pointed by POMB with properties MSP.
 void
 add_merge_section(const Merge_section_properties& msp,
                   Output_merge_base* pomb)
 {
   std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb);
   std::pair<Merge_sections_by_properties::iterator, bool> result =
     this->merge_sections_by_properties_.insert(value);
   gold_assert(result.second);
 }

 // Find a relaxed input section of OBJECT with index SHNDX.
 Output_relaxed_input_section*
 find_relaxed_input_section(const Relobj* object, unsigned int shndx) const
 {
   gold_assert(this->is_valid_);
   Relaxed_input_sections_by_id::const_iterator p =
     this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx));
   return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL;
 }

 // Add a relaxed input section pointed by POMB and whose original input
 // section is in OBJECT with index SHNDX.
 void
 add_relaxed_input_section(const Relobj* relobj, unsigned int shndx,
                           Output_relaxed_input_section* poris)
 {
   Const_section_id csid(relobj, shndx);
   std::pair<Const_section_id, Output_relaxed_input_section*>
     value(csid, poris);
   std::pair<Relaxed_input_sections_by_id::iterator, bool> result =
     this->relaxed_input_sections_by_id_.insert(value);
   gold_assert(result.second);
 }

private:
 typedef Unordered_map<Merge_section_properties, Output_merge_base*,
                       Merge_section_properties::hash,
                       Merge_section_properties::equal_to>
   Merge_sections_by_properties;

 typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
                       Const_section_id_hash>
   Relaxed_input_sections_by_id;

 // Whether this is valid
 bool is_valid_;
 // Merge sections by merge section properties.
 Merge_sections_by_properties merge_sections_by_properties_;
 // Relaxed sections by section IDs.
 Relaxed_input_sections_by_id relaxed_input_sections_by_id_;
};

// This abstract base class defines the interface for the
// types of methods used to fill free space left in an output
// section during an incremental link.  These methods are used
// to insert dummy compilation units into debug info so that
// debug info consumers can scan the debug info serially.

class Output_fill
{
public:
 Output_fill()
   : is_big_endian_(parameters->target().is_big_endian())
 { }

 virtual
 ~Output_fill()
 { }

 // Return the smallest size chunk of free space that can be
 // filled with a dummy compilation unit.
 size_t
 minimum_hole_size() const
 { return this->do_minimum_hole_size(); }

 // Write a fill pattern of length LEN at offset OFF in the file.
 void
 write(Output_file* of, off_t off, size_t len) const
 { this->do_write(of, off, len); }

protected:
 virtual size_t
 do_minimum_hole_size() const = 0;

 virtual void
 do_write(Output_file* of, off_t off, size_t len) const = 0;

 bool
 is_big_endian() const
 { return this->is_big_endian_; }

private:
 bool is_big_endian_;
};

// Fill method that introduces a dummy compilation unit in
// a .debug_info or .debug_types section.

class Output_fill_debug_info : public Output_fill
{
public:
 Output_fill_debug_info(bool is_debug_types)
   : is_debug_types_(is_debug_types)
 { }

protected:
 virtual size_t
 do_minimum_hole_size() const;

 virtual void
 do_write(Output_file* of, off_t off, size_t len) const;

private:
 // Version of the header.
 static const int version = 4;
 // True if this is a .debug_types section.
 bool is_debug_types_;
};

// Fill method that introduces a dummy compilation unit in
// a .debug_line section.

class Output_fill_debug_line : public Output_fill
{
public:
 Output_fill_debug_line()
 { }

protected:
 virtual size_t
 do_minimum_hole_size() const;

 virtual void
 do_write(Output_file* of, off_t off, size_t len) const;

private:
 // Version of the header.  We write a DWARF-3 header because it's smaller
 // and many tools have not yet been updated to understand the DWARF-4 header.
 static const int version = 3;
 // Length of the portion of the header that follows the header_length
 // field.  This includes the following fields:
 // minimum_instruction_length, default_is_stmt, line_base, line_range,
 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
 // The standard_opcode_lengths array is 12 bytes long, and the
 // include_directories and filenames fields each contain only a single
 // null byte.
 static const size_t header_length = 19;
};

// An output section.  We don't expect to have too many output
// sections, so we don't bother to do a template on the size.

class Output_section : public Output_data
{
public:
 // Create an output section, giving the name, type, and flags.
 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
 virtual ~Output_section();

 // Add a new input section SHNDX, named NAME, with header SHDR, from
 // object OBJECT.  RELOC_SHNDX is the index of a relocation section
 // which applies to this section, or 0 if none, or -1 if more than
 // one.  HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
 // in a linker script; in that case we need to keep track of input
 // sections associated with an output section.  Return the offset
 // within the output section.
 template<int size, bool big_endian>
 off_t
 add_input_section(Layout* layout, Sized_relobj_file<size, big_endian>* object,
                   unsigned int shndx, const char* name,
                   const elfcpp::Shdr<size, big_endian>& shdr,
                   unsigned int reloc_shndx, bool have_sections_script);

 // Add generated data POSD to this output section.
 void
 add_output_section_data(Output_section_data* posd);

 // Add a relaxed input section PORIS called NAME to this output section
 // with LAYOUT.
 void
 add_relaxed_input_section(Layout* layout,
                           Output_relaxed_input_section* poris,
                           const std::string& name);

 // Return the section name.
 const char*
 name() const
 { return this->name_; }

 // Return the section type.
 elfcpp::Elf_Word
 type() const
 { return this->type_; }

 // Return the section flags.
 elfcpp::Elf_Xword
 flags() const
 { return this->flags_; }

 typedef std::map<Section_id, unsigned int> Section_layout_order;

 void
 update_section_layout(const Section_layout_order* order_map);

 // Update the output section flags based on input section flags.
 void
 update_flags_for_input_section(elfcpp::Elf_Xword flags);

 // Set the output section flags.
 void
 set_flags(elfcpp::Elf_Xword flags)
 { this->flags_ = flags; }

 // Return the entsize field.
 uint64_t
 entsize() const
 { return this->entsize_; }

 // Set the entsize field.
 void
 set_entsize(uint64_t v);

 // Set the load address.
 void
 set_load_address(uint64_t load_address)
 {
   this->load_address_ = load_address;
   this->has_load_address_ = true;
 }

 // Set the link field to the output section index of a section.
 void
 set_link_section(const Output_data* od)
 {
   gold_assert(this->link_ == 0
               && !this->should_link_to_symtab_
               && !this->should_link_to_dynsym_);
   this->link_section_ = od;
 }

 // Set the link field to a constant.
 void
 set_link(unsigned int v)
 {
   gold_assert(this->link_section_ == NULL
               && !this->should_link_to_symtab_
               && !this->should_link_to_dynsym_);
   this->link_ = v;
 }

 // Record that this section should link to the normal symbol table.
 void
 set_should_link_to_symtab()
 {
   gold_assert(this->link_section_ == NULL
               && this->link_ == 0
               && !this->should_link_to_dynsym_);
   this->should_link_to_symtab_ = true;
 }

 // Record that this section should link to the dynamic symbol table.
 void
 set_should_link_to_dynsym()
 {
   gold_assert(this->link_section_ == NULL
               && this->link_ == 0
               && !this->should_link_to_symtab_);
   this->should_link_to_dynsym_ = true;
 }

 // Return the info field.
 unsigned int
 info() const
 {
   gold_assert(this->info_section_ == NULL
               && this->info_symndx_ == NULL);
   return this->info_;
 }

 // Set the info field to the output section index of a section.
 void
 set_info_section(const Output_section* os)
 {
   gold_assert((this->info_section_ == NULL
                || (this->info_section_ == os
                    && this->info_uses_section_index_))
               && this->info_symndx_ == NULL
               && this->info_ == 0);
   this->info_section_ = os;
   this->info_uses_section_index_= true;
 }

 // Set the info field to the symbol table index of a symbol.
 void
 set_info_symndx(const Symbol* sym)
 {
   gold_assert(this->info_section_ == NULL
               && (this->info_symndx_ == NULL
                   || this->info_symndx_ == sym)
               && this->info_ == 0);
   this->info_symndx_ = sym;
 }

 // Set the info field to the symbol table index of a section symbol.
 void
 set_info_section_symndx(const Output_section* os)
 {
   gold_assert((this->info_section_ == NULL
                || (this->info_section_ == os
                    && !this->info_uses_section_index_))
               && this->info_symndx_ == NULL
               && this->info_ == 0);
   this->info_section_ = os;
   this->info_uses_section_index_ = false;
 }

 // Set the info field to a constant.
 void
 set_info(unsigned int v)
 {
   gold_assert(this->info_section_ == NULL
               && this->info_symndx_ == NULL
               && (this->info_ == 0
                   || this->info_ == v));
   this->info_ = v;
 }

 // Set the addralign field.
 void
 set_addralign(uint64_t v)
 { this->addralign_ = v; }

 void
 checkpoint_set_addralign(uint64_t val)
 {
   if (this->checkpoint_ != NULL)
     this->checkpoint_->set_addralign(val);
 }

 // Whether the output section index has been set.
 bool
 has_out_shndx() const
 { return this->out_shndx_ != -1U; }

 // Indicate that we need a symtab index.
 void
 set_needs_symtab_index()
 { this->needs_symtab_index_ = true; }

 // Return whether we need a symtab index.
 bool
 needs_symtab_index() const
 { return this->needs_symtab_index_; }

 // Get the symtab index.
 unsigned int
 symtab_index() const
 {
   gold_assert(this->symtab_index_ != 0);
   return this->symtab_index_;
 }

 // Set the symtab index.
 void
 set_symtab_index(unsigned int index)
 {
   gold_assert(index != 0);
   this->symtab_index_ = index;
 }

 // Indicate that we need a dynsym index.
 void
 set_needs_dynsym_index()
 { this->needs_dynsym_index_ = true; }

 // Return whether we need a dynsym index.
 bool
 needs_dynsym_index() const
 { return this->needs_dynsym_index_; }

 // Get the dynsym index.
 unsigned int
 dynsym_index() const
 {
   gold_assert(this->dynsym_index_ != 0);
   return this->dynsym_index_;
 }

 // Set the dynsym index.
 void
 set_dynsym_index(unsigned int index)
 {
   gold_assert(index != 0);
   this->dynsym_index_ = index;
 }

 // Sort the attached input sections.
 void
 sort_attached_input_sections();

 // Return whether the input sections sections attachd to this output
 // section may require sorting.  This is used to handle constructor
 // priorities compatibly with GNU ld.
 bool
 may_sort_attached_input_sections() const
 { return this->may_sort_attached_input_sections_; }

 // Record that the input sections attached to this output section
 // may require sorting.
 void
 set_may_sort_attached_input_sections()
 { this->may_sort_attached_input_sections_ = true; }

  // Returns true if input sections must be sorted according to the
 // order in which their name appear in the --section-ordering-file.
 bool
 input_section_order_specified()
 { return this->input_section_order_specified_; }

 // Record that input sections must be sorted as some of their names
 // match the patterns specified through --section-ordering-file.
 void
 set_input_section_order_specified()
 { this->input_section_order_specified_ = true; }

 // Return whether the input sections attached to this output section
 // require sorting.  This is used to handle constructor priorities
 // compatibly with GNU ld.
 bool
 must_sort_attached_input_sections() const
 { return this->must_sort_attached_input_sections_; }

 // Record that the input sections attached to this output section
 // require sorting.
 void
 set_must_sort_attached_input_sections()
 { this->must_sort_attached_input_sections_ = true; }

 // Get the order in which this section appears in the PT_LOAD output
 // segment.
 Output_section_order
 order() const
 { return this->order_; }

 // Set the order for this section.
 void
 set_order(Output_section_order order)
 { this->order_ = order; }

 // Return whether this section holds relro data--data which has
 // dynamic relocations but which may be marked read-only after the
 // dynamic relocations have been completed.
 bool
 is_relro() const
 { return this->is_relro_; }

 // Record that this section holds relro data.
 void
 set_is_relro()
 { this->is_relro_ = true; }

 // Record that this section does not hold relro data.
 void
 clear_is_relro()
 { this->is_relro_ = false; }

 // True if this is a small section: a section which holds small
 // variables.
 bool
 is_small_section() const
 { return this->is_small_section_; }

 // Record that this is a small section.
 void
 set_is_small_section()
 { this->is_small_section_ = true; }

 // True if this is a large section: a section which holds large
 // variables.
 bool
 is_large_section() const
 { return this->is_large_section_; }

 // Record that this is a large section.
 void
 set_is_large_section()
 { this->is_large_section_ = true; }

 // True if this is a large data (not BSS) section.
 bool
 is_large_data_section()
 { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }

 // Return whether this section should be written after all the input
 // sections are complete.
 bool
 after_input_sections() const
 { return this->after_input_sections_; }

 // Record that this section should be written after all the input
 // sections are complete.
 void
 set_after_input_sections()
 { this->after_input_sections_ = true; }

 // Return whether this section requires postprocessing after all
 // relocations have been applied.
 bool
 requires_postprocessing() const
 { return this->requires_postprocessing_; }

 bool
 is_unique_segment() const
 { return this->is_unique_segment_; }

 void
 set_is_unique_segment()
 { this->is_unique_segment_ = true; }

 uint64_t extra_segment_flags() const
 { return this->extra_segment_flags_; }

 void
 set_extra_segment_flags(uint64_t flags)
 { this->extra_segment_flags_ = flags; }

 uint64_t segment_alignment() const
 { return this->segment_alignment_; }

 void
 set_segment_alignment(uint64_t align)
 { this->segment_alignment_ = align; }

 // If a section requires postprocessing, return the buffer to use.
 unsigned char*
 postprocessing_buffer() const
 {
   gold_assert(this->postprocessing_buffer_ != NULL);
   return this->postprocessing_buffer_;
 }

 // If a section requires postprocessing, create the buffer to use.
 void
 create_postprocessing_buffer();

 // If a section requires postprocessing, this is the size of the
 // buffer to which relocations should be applied.
 off_t
 postprocessing_buffer_size() const
 { return this->current_data_size_for_child(); }

 // Modify the section name.  This is only permitted for an
 // unallocated section, and only before the size has been finalized.
 // Otherwise the name will not get into Layout::namepool_.
 void
 set_name(const char* newname)
 {
   gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
   gold_assert(!this->is_data_size_valid());
   this->name_ = newname;
 }

 // Return whether the offset OFFSET in the input section SHNDX in
 // object OBJECT is being included in the link.
 bool
 is_input_address_mapped(const Relobj* object, unsigned int shndx,
                         off_t offset) const;

 // Return the offset within the output section of OFFSET relative to
 // the start of input section SHNDX in object OBJECT.
 section_offset_type
 output_offset(const Relobj* object, unsigned int shndx,
               section_offset_type offset) const;

 // Return the output virtual address of OFFSET relative to the start
 // of input section SHNDX in object OBJECT.
 uint64_t
 output_address(const Relobj* object, unsigned int shndx,
                off_t offset) const;

 // Look for the merged section for input section SHNDX in object
 // OBJECT.  If found, return true, and set *ADDR to the address of
 // the start of the merged section.  This is not necessary the
 // output offset corresponding to input offset 0 in the section,
 // since the section may be mapped arbitrarily.
 bool
 find_starting_output_address(const Relobj* object, unsigned int shndx,
                              uint64_t* addr) const;

 // Record that this output section was found in the SECTIONS clause
 // of a linker script.
 void
 set_found_in_sections_clause()
 { this->found_in_sections_clause_ = true; }

 // Return whether this output section was found in the SECTIONS
 // clause of a linker script.
 bool
 found_in_sections_clause() const
 { return this->found_in_sections_clause_; }

 // Write the section header into *OPHDR.
 template<int size, bool big_endian>
 void
 write_header(const Layout*, const Stringpool*,
              elfcpp::Shdr_write<size, big_endian>*) const;

 // The next few calls are for linker script support.

 // In some cases we need to keep a list of the input sections
 // associated with this output section.  We only need the list if we
 // might have to change the offsets of the input section within the
 // output section after we add the input section.  The ordinary
 // input sections will be written out when we process the object
 // file, and as such we don't need to track them here.  We do need
 // to track Output_section_data objects here.  We store instances of
 // this structure in a std::vector, so it must be a POD.  There can
 // be many instances of this structure, so we use a union to save
 // some space.
 class Input_section
 {
  public:
   Input_section()
     : shndx_(0), p2align_(0)
   {
     this->u1_.data_size = 0;
     this->u2_.object = NULL;
   }

   // For an ordinary input section.
   Input_section(Relobj* object, unsigned int shndx, off_t data_size,
                 uint64_t addralign)
     : shndx_(shndx),
       p2align_(ffsll(static_cast<long long>(addralign))),
       section_order_index_(0)
   {
     gold_assert(shndx != OUTPUT_SECTION_CODE
                 && shndx != MERGE_DATA_SECTION_CODE
                 && shndx != MERGE_STRING_SECTION_CODE
                 && shndx != RELAXED_INPUT_SECTION_CODE);
     this->u1_.data_size = data_size;
     this->u2_.object = object;
   }

   // For a non-merge output section.
   Input_section(Output_section_data* posd)
     : shndx_(OUTPUT_SECTION_CODE), p2align_(0),
       section_order_index_(0)
   {
     this->u1_.data_size = 0;
     this->u2_.posd = posd;
   }

   // For a merge section.
   Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
     : shndx_(is_string
              ? MERGE_STRING_SECTION_CODE
              : MERGE_DATA_SECTION_CODE),
       p2align_(0),
       section_order_index_(0)
   {
     this->u1_.entsize = entsize;
     this->u2_.posd = posd;
   }

   // For a relaxed input section.
   Input_section(Output_relaxed_input_section* psection)
     : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0),
       section_order_index_(0)
   {
     this->u1_.data_size = 0;
     this->u2_.poris = psection;
   }

   unsigned int
   section_order_index() const
   {
     return this->section_order_index_;
   }

   void
   set_section_order_index(unsigned int number)
   {
     this->section_order_index_ = number;
   }

   // The required alignment.
   uint64_t
   addralign() const
   {
     if (this->p2align_ != 0)
       return static_cast<uint64_t>(1) << (this->p2align_ - 1);
     else if (!this->is_input_section())
       return this->u2_.posd->addralign();
     else
       return 0;
   }

   // Set the required alignment, which must be either 0 or a power of 2.
   // For input sections that are sub-classes of Output_section_data, a
   // alignment of zero means asking the underlying object for alignment.
   void
   set_addralign(uint64_t addralign)
   {
     if (addralign == 0)
       this->p2align_ = 0;
     else
       {
         gold_assert((addralign & (addralign - 1)) == 0);
         this->p2align_ = ffsll(static_cast<long long>(addralign));
       }
   }

   // Return the current required size, without finalization.
   off_t
   current_data_size() const;

   // Return the required size.
   off_t
   data_size() const;

   // Whether this is an input section.
   bool
   is_input_section() const
   {
     return (this->shndx_ != OUTPUT_SECTION_CODE
             && this->shndx_ != MERGE_DATA_SECTION_CODE
             && this->shndx_ != MERGE_STRING_SECTION_CODE
             && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
   }

   // Return whether this is a merge section which matches the
   // parameters.
   bool
   is_merge_section(bool is_string, uint64_t entsize,
                    uint64_t addralign) const
   {
     return (this->shndx_ == (is_string
                              ? MERGE_STRING_SECTION_CODE
                              : MERGE_DATA_SECTION_CODE)
             && this->u1_.entsize == entsize
             && this->addralign() == addralign);
   }

   // Return whether this is a merge section for some input section.
   bool
   is_merge_section() const
   {
     return (this->shndx_ == MERGE_DATA_SECTION_CODE
             || this->shndx_ == MERGE_STRING_SECTION_CODE);
   }

   // Return whether this is a relaxed input section.
   bool
   is_relaxed_input_section() const
   { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }

   // Return whether this is a generic Output_section_data.
   bool
   is_output_section_data() const
   {
     return this->shndx_ == OUTPUT_SECTION_CODE;
   }

   // Return the object for an input section.
   Relobj*
   relobj() const;

   // Return the input section index for an input section.
   unsigned int
   shndx() const;

   // For non-input-sections, return the associated Output_section_data
   // object.
   Output_section_data*
   output_section_data() const
   {
     gold_assert(!this->is_input_section());
     return this->u2_.posd;
   }

   // For a merge section, return the Output_merge_base pointer.
   Output_merge_base*
   output_merge_base() const
   {
     gold_assert(this->is_merge_section());
     return this->u2_.pomb;
   }

   // Return the Output_relaxed_input_section object.
   Output_relaxed_input_section*
   relaxed_input_section() const
   {
     gold_assert(this->is_relaxed_input_section());
     return this->u2_.poris;
   }

   // Set the output section.
   void
   set_output_section(Output_section* os)
   {
     gold_assert(!this->is_input_section());
     Output_section_data* posd =
       this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
     posd->set_output_section(os);
   }

   // Set the address and file offset.  This is called during
   // Layout::finalize.  SECTION_FILE_OFFSET is the file offset of
   // the enclosing section.
   void
   set_address_and_file_offset(uint64_t address, off_t file_offset,
                               off_t section_file_offset);

   // Reset the address and file offset.
   void
   reset_address_and_file_offset();

   // Finalize the data size.
   void
   finalize_data_size();

   // Add an input section, for SHF_MERGE sections.
   bool
   add_input_section(Relobj* object, unsigned int shndx)
   {
     gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
                 || this->shndx_ == MERGE_STRING_SECTION_CODE);
     return this->u2_.posd->add_input_section(object, shndx);
   }

   // Given an input OBJECT, an input section index SHNDX within that
   // object, and an OFFSET relative to the start of that input
   // section, return whether or not the output offset is known.  If
   // this function returns true, it sets *POUTPUT to the offset in
   // the output section, relative to the start of the input section
   // in the output section.  *POUTPUT may be different from OFFSET
   // for a merged section.
   bool
   output_offset(const Relobj* object, unsigned int shndx,
                 section_offset_type offset,
                 section_offset_type* poutput) const;

   // Write out the data.  This does nothing for an input section.
   void
   write(Output_file*);

   // Write the data to a buffer.  This does nothing for an input
   // section.
   void
   write_to_buffer(unsigned char*);

   // Print to a map file.
   void
   print_to_mapfile(Mapfile*) const;

   // Print statistics about merge sections to stderr.
   void
   print_merge_stats(const char* section_name)
   {
     if (this->shndx_ == MERGE_DATA_SECTION_CODE
         || this->shndx_ == MERGE_STRING_SECTION_CODE)
       this->u2_.posd->print_merge_stats(section_name);
   }

  private:
   // Code values which appear in shndx_.  If the value is not one of
   // these codes, it is the input section index in the object file.
   enum
   {
     // An Output_section_data.
     OUTPUT_SECTION_CODE = -1U,
     // An Output_section_data for an SHF_MERGE section with
     // SHF_STRINGS not set.
     MERGE_DATA_SECTION_CODE = -2U,
     // An Output_section_data for an SHF_MERGE section with
     // SHF_STRINGS set.
     MERGE_STRING_SECTION_CODE = -3U,
     // An Output_section_data for a relaxed input section.
     RELAXED_INPUT_SECTION_CODE = -4U
   };

   // For an ordinary input section, this is the section index in the
   // input file.  For an Output_section_data, this is
   // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
   // MERGE_STRING_SECTION_CODE.
   unsigned int shndx_;
   // The required alignment, stored as a power of 2.
   unsigned int p2align_;
   union
   {
     // For an ordinary input section, the section size.
     off_t data_size;
     // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
     // used.  For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
     // entity size.
     uint64_t entsize;
   } u1_;
   union
   {
     // For an ordinary input section, the object which holds the
     // input section.
     Relobj* object;
     // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
     // MERGE_STRING_SECTION_CODE, the data.
     Output_section_data* posd;
     Output_merge_base* pomb;
     // For RELAXED_INPUT_SECTION_CODE, the data.
     Output_relaxed_input_section* poris;
   } u2_;
   // The line number of the pattern it matches in the --section-ordering-file
   // file.  It is 0 if does not match any pattern.
   unsigned int section_order_index_;
 };

 // Store the list of input sections for this Output_section into the
 // list passed in.  This removes the input sections, leaving only
 // any Output_section_data elements.  This returns the size of those
 // Output_section_data elements.  ADDRESS is the address of this
 // output section.  FILL is the fill value to use, in case there are
 // any spaces between the remaining Output_section_data elements.
 uint64_t
 get_input_sections(uint64_t address, const std::string& fill,
                    std::list<Input_section>*);

 // Add a script input section.  A script input section can either be
 // a plain input section or a sub-class of Output_section_data.
 void
 add_script_input_section(const Input_section& input_section);

 // Set the current size of the output section.
 void
 set_current_data_size(off_t size)
 { this->set_current_data_size_for_child(size); }

 // End of linker script support.

 // Save states before doing section layout.
 // This is used for relaxation.
 void
 save_states();

 // Restore states prior to section layout.
 void
 restore_states();

 // Discard states.
 void
 discard_states();

 // Convert existing input sections to relaxed input sections.
 void
 convert_input_sections_to_relaxed_sections(
     const std::vector<Output_relaxed_input_section*>& sections);

 // Find a relaxed input section to an input section in OBJECT
 // with index SHNDX.  Return NULL if none is found.
 const Output_relaxed_input_section*
 find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;

 // Whether section offsets need adjustment due to relaxation.
 bool
 section_offsets_need_adjustment() const
 { return this->section_offsets_need_adjustment_; }

 // Set section_offsets_need_adjustment to be true.
 void
 set_section_offsets_need_adjustment()
 { this->section_offsets_need_adjustment_ = true; }

 // Set section_offsets_need_adjustment to be false.
 void
 clear_section_offsets_need_adjustment()
 { this->section_offsets_need_adjustment_ = false; }

 // Adjust section offsets of input sections in this.  This is
 // requires if relaxation caused some input sections to change sizes.
 void
 adjust_section_offsets();

 // Whether this is a NOLOAD section.
 bool
 is_noload() const
 { return this->is_noload_; }

 // Set NOLOAD flag.
 void
 set_is_noload()
 { this->is_noload_ = true; }

 // Print merge statistics to stderr.
 void
 print_merge_stats();

 // Set a fixed layout for the section.  Used for incremental update links.
 void
 set_fixed_layout(uint64_t sh_addr, off_t sh_offset, off_t sh_size,
                  uint64_t sh_addralign);

 // Return TRUE if the section has a fixed layout.
 bool
 has_fixed_layout() const
 { return this->has_fixed_layout_; }

 // Set flag to allow patch space for this section.  Used for full
 // incremental links.
 void
 set_is_patch_space_allowed()
 { this->is_patch_space_allowed_ = true; }

 // Set a fill method to use for free space left in the output section
 // during incremental links.
 void
 set_free_space_fill(Output_fill* free_space_fill)
 {
   this->free_space_fill_ = free_space_fill;
   this->free_list_.set_min_hole_size(free_space_fill->minimum_hole_size());
 }

 // Reserve space within the fixed layout for the section.  Used for
 // incremental update links.
 void
 reserve(uint64_t sh_offset, uint64_t sh_size);

 // Allocate space from the free list for the section.  Used for
 // incremental update links.
 off_t
 allocate(off_t len, uint64_t addralign);

 typedef std::vector<Input_section> Input_section_list;

 // Allow access to the input sections.
 const Input_section_list&
 input_sections() const
 { return this->input_sections_; }

 Input_section_list&
 input_sections()
 { return this->input_sections_; }

 // For -r and --emit-relocs, we need to keep track of the associated
 // relocation section.
 Output_section*
 reloc_section() const
 { return this->reloc_section_; }

 void
 set_reloc_section(Output_section* os)
 { this->reloc_section_ = os; }

protected:
 // Return the output section--i.e., the object itself.
 Output_section*
 do_output_section()
 { return this; }

 const Output_section*
 do_output_section() const
 { return this; }

 // Return the section index in the output file.
 unsigned int
 do_out_shndx() const
 {
   gold_assert(this->out_shndx_ != -1U);
   return this->out_shndx_;
 }

 // Set the output section index.
 void
 do_set_out_shndx(unsigned int shndx)
 {
   gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
   this->out_shndx_ = shndx;
 }

 // Update the data size of the Output_section.  For a typical
 // Output_section, there is nothing to do, but if there are any
 // Output_section_data objects we need to do a trial layout
 // here.
 virtual void
 update_data_size();

 // Set the final data size of the Output_section.  For a typical
 // Output_section, there is nothing to do, but if there are any
 // Output_section_data objects we need to set their final addresses
 // here.
 virtual void
 set_final_data_size();

 // Reset the address and file offset.
 void
 do_reset_address_and_file_offset();

 // Return true if address and file offset already have reset values. In
 // other words, calling reset_address_and_file_offset will not change them.
 bool
 do_address_and_file_offset_have_reset_values() const;

 // Write the data to the file.  For a typical Output_section, this
 // does nothing: the data is written out by calling Object::Relocate
 // on each input object.  But if there are any Output_section_data
 // objects we do need to write them out here.
 virtual void
 do_write(Output_file*);

 // Return the address alignment--function required by parent class.
 uint64_t
 do_addralign() const
 { return this->addralign_; }

 // Return whether there is a load address.
 bool
 do_has_load_address() const
 { return this->has_load_address_; }

 // Return the load address.
 uint64_t
 do_load_address() const
 {
   gold_assert(this->has_load_address_);
   return this->load_address_;
 }

 // Return whether this is an Output_section.
 bool
 do_is_section() const
 { return true; }

 // Return whether this is a section of the specified type.
 bool
 do_is_section_type(elfcpp::Elf_Word type) const
 { return this->type_ == type; }

 // Return whether the specified section flag is set.
 bool
 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
 { return (this->flags_ & flag) != 0; }

 // Set the TLS offset.  Called only for SHT_TLS sections.
 void
 do_set_tls_offset(uint64_t tls_base);

 // Return the TLS offset, relative to the base of the TLS segment.
 // Valid only for SHT_TLS sections.
 uint64_t
 do_tls_offset() const
 { return this->tls_offset_; }

 // This may be implemented by a child class.
 virtual void
 do_finalize_name(Layout*)
 { }

 // Print to the map file.
 virtual void
 do_print_to_mapfile(Mapfile*) const;

 // Record that this section requires postprocessing after all
 // relocations have been applied.  This is called by a child class.
 void
 set_requires_postprocessing()
 {
   this->requires_postprocessing_ = true;
   this->after_input_sections_ = true;
 }

 // Write all the data of an Output_section into the postprocessing
 // buffer.
 void
 write_to_postprocessing_buffer();

 // Whether this always keeps an input section list
 bool
 always_keeps_input_sections() const
 { return this->always_keeps_input_sections_; }

 // Always keep an input section list.
 void
 set_always_keeps_input_sections()
 {
   gold_assert(this->current_data_size_for_child() == 0);
   this->always_keeps_input_sections_ = true;
 }

private:
 // We only save enough information to undo the effects of section layout.
 class Checkpoint_output_section
 {
  public:
   Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
                             const Input_section_list& input_sections,
                             off_t first_input_offset,
                             bool attached_input_sections_are_sorted)
     : addralign_(addralign), flags_(flags),
       input_sections_(input_sections),
       input_sections_size_(input_sections_.size()),
       input_sections_copy_(), first_input_offset_(first_input_offset),
       attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
   { }

   virtual
   ~Checkpoint_output_section()
   { }

   // Return the address alignment.
   uint64_t
   addralign() const
   { return this->addralign_; }

   void
   set_addralign(uint64_t val)
   { this->addralign_ = val; }

   // Return the section flags.
   elfcpp::Elf_Xword
   flags() const
   { return this->flags_; }

   // Return a reference to the input section list copy.
   Input_section_list*
   input_sections()
   { return &this->input_sections_copy_; }

   // Return the size of input_sections at the time when checkpoint is
   // taken.
   size_t
   input_sections_size() const
   { return this->input_sections_size_; }

   // Whether input sections are copied.
   bool
   input_sections_saved() const
   { return this->input_sections_copy_.size() == this->input_sections_size_; }

   off_t
   first_input_offset() const
   { return this->first_input_offset_; }

   bool
   attached_input_sections_are_sorted() const
   { return this->attached_input_sections_are_sorted_; }

   // Save input sections.
   void
   save_input_sections()
   {
     this->input_sections_copy_.reserve(this->input_sections_size_);
     this->input_sections_copy_.clear();
     Input_section_list::const_iterator p = this->input_sections_.begin();
     gold_assert(this->input_sections_size_ >= this->input_sections_.size());
     for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
       this->input_sections_copy_.push_back(*p);
   }

  private:
   // The section alignment.
   uint64_t addralign_;
   // The section flags.
   elfcpp::Elf_Xword flags_;
   // Reference to the input sections to be checkpointed.
   const Input_section_list& input_sections_;
   // Size of the checkpointed portion of input_sections_;
   size_t input_sections_size_;
   // Copy of input sections.
   Input_section_list input_sections_copy_;
   // The offset of the first entry in input_sections_.
   off_t first_input_offset_;
   // True if the input sections attached to this output section have
   // already been sorted.
   bool attached_input_sections_are_sorted_;
 };

 // This class is used to sort the input sections.
 class Input_section_sort_entry;

 // This is the sort comparison function for ctors and dtors.
 struct Input_section_sort_compare
 {
   bool
   operator()(const Input_section_sort_entry&,
              const Input_section_sort_entry&) const;
 };

 // This is the sort comparison function for .init_array and .fini_array.
 struct Input_section_sort_init_fini_compare
 {
   bool
   operator()(const Input_section_sort_entry&,
              const Input_section_sort_entry&) const;
 };

 // This is the sort comparison function when a section order is specified
 // from an input file.
 struct Input_section_sort_section_order_index_compare
 {
   bool
   operator()(const Input_section_sort_entry&,
              const Input_section_sort_entry&) const;
 };

 // This is the sort comparison function for .text to sort sections with
 // prefixes .text.{unlikely,exit,startup,hot} before other sections.
 struct Input_section_sort_section_prefix_special_ordering_compare
 {
   bool
   operator()(const Input_section_sort_entry&,
              const Input_section_sort_entry&) const;
 };

 // This is the sort comparison function for sorting sections by name.
 struct Input_section_sort_section_name_compare
 {
   bool
   operator()(const Input_section_sort_entry&,
              const Input_section_sort_entry&) const;
 };

 // Fill data.  This is used to fill in data between input sections.
 // It is also used for data statements (BYTE, WORD, etc.) in linker
 // scripts.  When we have to keep track of the input sections, we
 // can use an Output_data_const, but we don't want to have to keep
 // track of input sections just to implement fills.
 class Fill
 {
  public:
   Fill(off_t section_offset, off_t length)
     : section_offset_(section_offset),
       length_(convert_to_section_size_type(length))
   { }

   // Return section offset.
   off_t
   section_offset() const
   { return this->section_offset_; }

   // Return fill length.
   section_size_type
   length() const
   { return this->length_; }

  private:
   // The offset within the output section.
   off_t section_offset_;
   // The length of the space to fill.
   section_size_type length_;
 };

 typedef std::vector<Fill> Fill_list;

 // Map used during relaxation of existing sections.  This map
 // a section id an input section list index.  We assume that
 // Input_section_list is a vector.
 typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;

 // Add a new output section by Input_section.
 void
 add_output_section_data(Input_section*);

 // Add an SHF_MERGE input section.  Returns true if the section was
 // handled.  If KEEPS_INPUT_SECTIONS is true, the output merge section
 // stores information about the merged input sections.
 bool
 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
                         uint64_t entsize, uint64_t addralign,
                         bool keeps_input_sections);

 // Add an output SHF_MERGE section POSD to this output section.
 // IS_STRING indicates whether it is a SHF_STRINGS section, and
 // ENTSIZE is the entity size.  This returns the entry added to
 // input_sections_.
 void
 add_output_merge_section(Output_section_data* posd, bool is_string,
                          uint64_t entsize);

 // Find the merge section into which an input section with index SHNDX in
 // OBJECT has been added.  Return NULL if none found.
 const Output_section_data*
 find_merge_section(const Relobj* object, unsigned int shndx) const;

 // Build a relaxation map.
 void
 build_relaxation_map(
     const Input_section_list& input_sections,
     size_t limit,
     Relaxation_map* map) const;

 // Convert input sections in an input section list into relaxed sections.
 void
 convert_input_sections_in_list_to_relaxed_sections(
     const std::vector<Output_relaxed_input_section*>& relaxed_sections,
     const Relaxation_map& map,
     Input_section_list* input_sections);

 // Build the lookup maps for merge and relaxed input sections.
 void
 build_lookup_maps() const;

 // Most of these fields are only valid after layout.

 // The name of the section.  This will point into a Stringpool.
 const char* name_;
 // The section address is in the parent class.
 // The section alignment.
 uint64_t addralign_;
 // The section entry size.
 uint64_t entsize_;
 // The load address.  This is only used when using a linker script
 // with a SECTIONS clause.  The has_load_address_ field indicates
 // whether this field is valid.
 uint64_t load_address_;
 // The file offset is in the parent class.
 // Set the section link field to the index of this section.
 const Output_data* link_section_;
 // If link_section_ is NULL, this is the link field.
 unsigned int link_;
 // Set the section info field to the index of this section.
 const Output_section* info_section_;
 // If info_section_ is NULL, set the info field to the symbol table
 // index of this symbol.
 const Symbol* info_symndx_;
 // If info_section_ and info_symndx_ are NULL, this is the section
 // info field.
 unsigned int info_;
 // The section type.
 const elfcpp::Elf_Word type_;
 // The section flags.
 elfcpp::Elf_Xword flags_;
 // The order of this section in the output segment.
 Output_section_order order_;
 // The section index.
 unsigned int out_shndx_;
 // If there is a STT_SECTION for this output section in the normal
 // symbol table, this is the symbol index.  This starts out as zero.
 // It is initialized in Layout::finalize() to be the index, or -1U
 // if there isn't one.
 unsigned int symtab_index_;
 // If there is a STT_SECTION for this output section in the dynamic
 // symbol table, this is the symbol index.  This starts out as zero.
 // It is initialized in Layout::finalize() to be the index, or -1U
 // if there isn't one.
 unsigned int dynsym_index_;
 // The input sections.  This will be empty in cases where we don't
 // need to keep track of them.
 Input_section_list input_sections_;
 // The offset of the first entry in input_sections_.
 off_t first_input_offset_;
 // The fill data.  This is separate from input_sections_ because we
 // often will need fill sections without needing to keep track of
 // input sections.
 Fill_list fills_;
 // If the section requires postprocessing, this buffer holds the
 // section contents during relocation.
 unsigned char* postprocessing_buffer_;
 // Whether this output section needs a STT_SECTION symbol in the
 // normal symbol table.  This will be true if there is a relocation
 // which needs it.
 bool needs_symtab_index_ : 1;
 // Whether this output section needs a STT_SECTION symbol in the
 // dynamic symbol table.  This will be true if there is a dynamic
 // relocation which needs it.
 bool needs_dynsym_index_ : 1;
 // Whether the link field of this output section should point to the
 // normal symbol table.
 bool should_link_to_symtab_ : 1;
 // Whether the link field of this output section should point to the
 // dynamic symbol table.
 bool should_link_to_dynsym_ : 1;
 // Whether this section should be written after all the input
 // sections are complete.
 bool after_input_sections_ : 1;
 // Whether this section requires post processing after all
 // relocations have been applied.
 bool requires_postprocessing_ : 1;
 // Whether an input section was mapped to this output section
 // because of a SECTIONS clause in a linker script.
 bool found_in_sections_clause_ : 1;
 // Whether this section has an explicitly specified load address.
 bool has_load_address_ : 1;
 // True if the info_section_ field means the section index of the
 // section, false if it means the symbol index of the corresponding
 // section symbol.
 bool info_uses_section_index_ : 1;
 // True if input sections attached to this output section have to be
 // sorted according to a specified order.
 bool input_section_order_specified_ : 1;
 // True if the input sections attached to this output section may
 // need sorting.
 bool may_sort_attached_input_sections_ : 1;
 // True if the input sections attached to this output section must
 // be sorted.
 bool must_sort_attached_input_sections_ : 1;
 // True if the input sections attached to this output section have
 // already been sorted.
 bool attached_input_sections_are_sorted_ : 1;
 // True if this section holds relro data.
 bool is_relro_ : 1;
 // True if this is a small section.
 bool is_small_section_ : 1;
 // True if this is a large section.
 bool is_large_section_ : 1;
 // Whether code-fills are generated at write.
 bool generate_code_fills_at_write_ : 1;
 // Whether the entry size field should be zero.
 bool is_entsize_zero_ : 1;
 // Whether section offsets need adjustment due to relaxation.
 bool section_offsets_need_adjustment_ : 1;
 // Whether this is a NOLOAD section.
 bool is_noload_ : 1;
 // Whether this always keeps input section.
 bool always_keeps_input_sections_ : 1;
 // Whether this section has a fixed layout, for incremental update links.
 bool has_fixed_layout_ : 1;
 // True if we can add patch space to this section.
 bool is_patch_space_allowed_ : 1;
 // True if this output section goes into a unique segment.
 bool is_unique_segment_ : 1;
 // For SHT_TLS sections, the offset of this section relative to the base
 // of the TLS segment.
 uint64_t tls_offset_;
 // Additional segment flags, specified via linker plugin, when mapping some
 // input sections to unique segments.
 uint64_t extra_segment_flags_;
 // Segment alignment specified via linker plugin, when mapping some
 // input sections to unique segments.
 uint64_t segment_alignment_;
 // Saved checkpoint.
 Checkpoint_output_section* checkpoint_;
 // Fast lookup maps for merged and relaxed input sections.
 Output_section_lookup_maps* lookup_maps_;
 // List of available regions within the section, for incremental
 // update links.
 Free_list free_list_;
 // Method for filling chunks of free space.
 Output_fill* free_space_fill_;
 // Amount added as patch space for incremental linking.
 off_t patch_space_;
 // Associated relocation section, when emitting relocations.
 Output_section* reloc_section_;
};

// An output segment.  PT_LOAD segments are built from collections of
// output sections.  Other segments typically point within PT_LOAD
// segments, and are built directly as needed.
//
// NOTE: We want to use the copy constructor for this class.  During
// relaxation, we may try built the segments multiple times.  We do
// that by copying the original segment list before lay-out, doing
// a trial lay-out and roll-back to the saved copied if we need to
// to the lay-out again.

class Output_segment
{
public:
 // Create an output segment, specifying the type and flags.
 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);

 // Return the virtual address.
 uint64_t
 vaddr() const
 { return this->vaddr_; }

 // Return the physical address.
 uint64_t
 paddr() const
 { return this->paddr_; }

 // Return the segment type.
 elfcpp::Elf_Word
 type() const
 { return this->type_; }

 // Return the segment flags.
 elfcpp::Elf_Word
 flags() const
 { return this->flags_; }

 // Return the memory size.
 uint64_t
 memsz() const
 { return this->memsz_; }

 // Return the file size.
 off_t
 filesz() const
 { return this->filesz_; }

 // Return the file offset.
 off_t
 offset() const
 { return this->offset_; }

 // Return the segment alignment.
 uint64_t
 align() const
 { return this->align_; }

 // Set the segment alignment.
 void
 set_align(uint64_t align)
 { this->align_ = align; }

 // Whether this is a segment created to hold large data sections.
 bool
 is_large_data_segment() const
 { return this->is_large_data_segment_; }

 // Record that this is a segment created to hold large data
 // sections.
 void
 set_is_large_data_segment()
 { this->is_large_data_segment_ = true; }

 bool
 is_unique_segment() const
 { return this->is_unique_segment_; }

 // Mark segment as unique, happens when linker plugins request that
 // certain input sections be mapped to unique segments.
 void
 set_is_unique_segment()
 { this->is_unique_segment_ = true; }

 // Return the maximum alignment of the Output_data.
 uint64_t
 maximum_alignment();

 // Add the Output_section OS to this PT_LOAD segment.  SEG_FLAGS is
 // the segment flags to use.
 void
 add_output_section_to_load(Layout* layout, Output_section* os,
                            elfcpp::Elf_Word seg_flags);

 // Add the Output_section OS to this non-PT_LOAD segment.  SEG_FLAGS
 // is the segment flags to use.
 void
 add_output_section_to_nonload(Output_section* os,
                               elfcpp::Elf_Word seg_flags);

 // Remove an Output_section from this segment.  It is an error if it
 // is not present.
 void
 remove_output_section(Output_section* os);

 // Add an Output_data (which need not be an Output_section) to the
 // start of this segment.
 void
 add_initial_output_data(Output_data*);

 // Return true if this segment has any sections which hold actual
 // data, rather than being a BSS section.
 bool
 has_any_data_sections() const;

 // Whether this segment has a dynamic relocs.
 bool
 has_dynamic_reloc() const;

 // Return the first section.
 Output_section*
 first_section() const;

 // Return the address of the first section.
 uint64_t
 first_section_load_address() const
 {
   const Output_section* os = this->first_section();
   gold_assert(os != NULL);
   return os->has_load_address() ? os->load_address() : os->address();
 }

 // Return whether the addresses have been set already.
 bool
 are_addresses_set() const
 { return this->are_addresses_set_; }

 // Set the addresses.
 void
 set_addresses(uint64_t vaddr, uint64_t paddr)
 {
   this->vaddr_ = vaddr;
   this->paddr_ = paddr;
   this->are_addresses_set_ = true;
 }

 // Update the flags for the flags of an output section added to this
 // segment.
 void
 update_flags_for_output_section(elfcpp::Elf_Xword flags)
 {
   // The ELF ABI specifies that a PT_TLS segment should always have
   // PF_R as the flags.
   if (this->type() != elfcpp::PT_TLS)
     this->flags_ |= flags;
 }

 // Set the segment flags.  This is only used if we have a PHDRS
 // clause which explicitly specifies the flags.
 void
 set_flags(elfcpp::Elf_Word flags)
 { this->flags_ = flags; }

 // Set the address of the segment to ADDR and the offset to *POFF
 // and set the addresses and offsets of all contained output
 // sections accordingly.  Set the section indexes of all contained
 // output sections starting with *PSHNDX.  If RESET is true, first
 // reset the addresses of the contained sections.  Return the
 // address of the immediately following segment.  Update *POFF and
 // *PSHNDX.  This should only be called for a PT_LOAD segment.
 uint64_t
 set_section_addresses(const Target*, Layout*, bool reset, uint64_t addr,
                       unsigned int* increase_relro, bool* has_relro,
                       off_t* poff, unsigned int* pshndx);

 // Set the minimum alignment of this segment.  This may be adjusted
 // upward based on the section alignments.
 void
 set_minimum_p_align(uint64_t align)
 {
   if (align > this->min_p_align_)
     this->min_p_align_ = align;
 }

 // Set the memory size of this segment.
 void
 set_size(uint64_t size)
 {
   this->memsz_ = size;
 }

 // Set the offset of this segment based on the section.  This should
 // only be called for a non-PT_LOAD segment.
 void
 set_offset(unsigned int increase);

 // Set the TLS offsets of the sections contained in the PT_TLS segment.
 void
 set_tls_offsets();

 // Return the number of output sections.
 unsigned int
 output_section_count() const;

 // Return the section attached to the list segment with the lowest
 // load address.  This is used when handling a PHDRS clause in a
 // linker script.
 Output_section*
 section_with_lowest_load_address() const;

 // Write the segment header into *OPHDR.
 template<int size, bool big_endian>
 void
 write_header(elfcpp::Phdr_write<size, big_endian>*);

 // Write the section headers of associated sections into V.
 template<int size, bool big_endian>
 unsigned char*
 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
                       unsigned int* pshndx) const;

 // Print the output sections in the map file.
 void
 print_sections_to_mapfile(Mapfile*) const;

private:
 typedef std::vector<Output_data*> Output_data_list;

 // Find the maximum alignment in an Output_data_list.
 static uint64_t
 maximum_alignment_list(const Output_data_list*);

 // Return whether the first data section is a relro section.
 bool
 is_first_section_relro() const;

 // Set the section addresses in an Output_data_list.
 uint64_t
 set_section_list_addresses(Layout*, bool reset, Output_data_list*,
                            uint64_t addr, off_t* poff, off_t* fpoff,
                            unsigned int* pshndx, bool* in_tls);

 // Return the number of Output_sections in an Output_data_list.
 unsigned int
 output_section_count_list(const Output_data_list*) const;

 // Return whether an Output_data_list has a dynamic reloc.
 bool
 has_dynamic_reloc_list(const Output_data_list*) const;

 // Find the section with the lowest load address in an
 // Output_data_list.
 void
 lowest_load_address_in_list(const Output_data_list* pdl,
                             Output_section** found,
                             uint64_t* found_lma) const;

 // Find the first and last entries by address.
 void
 find_first_and_last_list(const Output_data_list* pdl,
                          const Output_data** pfirst,
                          const Output_data** plast) const;

 // Write the section headers in the list into V.
 template<int size, bool big_endian>
 unsigned char*
 write_section_headers_list(const Layout*, const Stringpool*,
                            const Output_data_list*, unsigned char* v,
                            unsigned int* pshdx) const;

 // Print a section list to the mapfile.
 void
 print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;

 // NOTE: We want to use the copy constructor.  Currently, shallow copy
 // works for us so we do not need to write our own copy constructor.

 // The list of output data attached to this segment.
 Output_data_list output_lists_[ORDER_MAX];
 // The segment virtual address.
 uint64_t vaddr_;
 // The segment physical address.
 uint64_t paddr_;
 // The size of the segment in memory.
 uint64_t memsz_;
 // The segment alignment.
 uint64_t align_;
 // The maximum section alignment.  The is_max_align_known_ field
 // indicates whether this has been finalized.
 uint64_t max_align_;
 // The required minimum value for the p_align field.  This is used
 // for PT_LOAD segments.  Note that this does not mean that
 // addresses should be aligned to this value; it means the p_paddr
 // and p_vaddr fields must be congruent modulo this value.  For
 // non-PT_LOAD segments, the dynamic linker works more efficiently
 // if the p_align field has the more conventional value, although it
 // can align as needed.
 uint64_t min_p_align_;
 // The offset of the segment data within the file.
 off_t offset_;
 // The size of the segment data in the file.
 off_t filesz_;
 // The segment type;
 elfcpp::Elf_Word type_;
 // The segment flags.
 elfcpp::Elf_Word flags_;
 // Whether we have finalized max_align_.
 bool is_max_align_known_ : 1;
 // Whether vaddr and paddr were set by a linker script.
 bool are_addresses_set_ : 1;
 // Whether this segment holds large data sections.
 bool is_large_data_segment_ : 1;
 // Whether this was marked as a unique segment via a linker plugin.
 bool is_unique_segment_ : 1;
};

} // End namespace gold.

#endif // !defined(GOLD_OUTPUT_H)