// object.h -- support for an object file for linking in gold  -*- C++ -*-

// Copyright (C) 2006-2024 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <[email protected]>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#ifndef GOLD_OBJECT_H
#define GOLD_OBJECT_H

#include <string>
#include <vector>

#include "elfcpp.h"
#include "elfcpp_file.h"
#include "fileread.h"
#include "target.h"
#include "archive.h"

namespace gold
{

class General_options;
class Task;
class Cref;
class Layout;
class Kept_section;
class Output_data;
class Output_section;
class Output_section_data;
class Output_file;
class Output_symtab_xindex;
class Pluginobj;
class Dynobj;
class Object_merge_map;
class Relocatable_relocs;
struct Symbols_data;

template<typename Stringpool_char>
class Stringpool_template;

// Data to pass from read_symbols() to add_symbols().

struct Read_symbols_data
{
 Read_symbols_data()
   : section_headers(NULL), section_names(NULL), symbols(NULL),
     symbol_names(NULL), versym(NULL), verdef(NULL), verneed(NULL)
 { }

 ~Read_symbols_data();

 // Section headers.
 File_view* section_headers;
 // Section names.
 File_view* section_names;
 // Size of section name data in bytes.
 section_size_type section_names_size;
 // Symbol data.
 File_view* symbols;
 // Size of symbol data in bytes.
 section_size_type symbols_size;
 // Offset of external symbols within symbol data.  This structure
 // sometimes contains only external symbols, in which case this will
 // be zero.  Sometimes it contains all symbols.
 section_offset_type external_symbols_offset;
 // Symbol names.
 File_view* symbol_names;
 // Size of symbol name data in bytes.
 section_size_type symbol_names_size;

 // Version information.  This is only used on dynamic objects.
 // Version symbol data (from SHT_GNU_versym section).
 File_view* versym;
 section_size_type versym_size;
 // Version definition data (from SHT_GNU_verdef section).
 File_view* verdef;
 section_size_type verdef_size;
 unsigned int verdef_info;
 // Needed version data  (from SHT_GNU_verneed section).
 File_view* verneed;
 section_size_type verneed_size;
 unsigned int verneed_info;
};

// Information used to print error messages.

struct Symbol_location_info
{
 std::string source_file;
 std::string enclosing_symbol_name;
 elfcpp::STT enclosing_symbol_type;
};

// Data about a single relocation section.  This is read in
// read_relocs and processed in scan_relocs.

struct Section_relocs
{
 Section_relocs()
   : contents(NULL)
 { }

 ~Section_relocs()
 { delete this->contents; }

 // Index of reloc section.
 unsigned int reloc_shndx;
 // Index of section that relocs apply to.
 unsigned int data_shndx;
 // Contents of reloc section.
 File_view* contents;
 // Reloc section type.
 unsigned int sh_type;
 // Number of reloc entries.
 size_t reloc_count;
 // Output section.
 Output_section* output_section;
 // Whether this section has special handling for offsets.
 bool needs_special_offset_handling;
 // Whether the data section is allocated (has the SHF_ALLOC flag set).
 bool is_data_section_allocated;
};

// Relocations in an object file.  This is read in read_relocs and
// processed in scan_relocs.

struct Read_relocs_data
{
 Read_relocs_data()
   : local_symbols(NULL)
 { }

 ~Read_relocs_data()
 { delete this->local_symbols; }

 typedef std::vector<Section_relocs> Relocs_list;
 // The relocations.
 Relocs_list relocs;
 // The local symbols.
 File_view* local_symbols;
};

// The Xindex class manages section indexes for objects with more than
// 0xff00 sections.

class Xindex
{
public:
 Xindex(int large_shndx_offset)
   : large_shndx_offset_(large_shndx_offset), symtab_xindex_()
 { }

 // Initialize the symtab_xindex_ array, given the object and the
 // section index of the symbol table to use.
 template<int size, bool big_endian>
 void
 initialize_symtab_xindex(Object*, unsigned int symtab_shndx);

 // Read in the symtab_xindex_ array, given its section index.
 // PSHDRS may optionally point to the section headers.
 template<int size, bool big_endian>
 void
 read_symtab_xindex(Object*, unsigned int xindex_shndx,
                    const unsigned char* pshdrs);

 // Symbol SYMNDX in OBJECT has a section of SHN_XINDEX; return the
 // real section index.
 unsigned int
 sym_xindex_to_shndx(Object* object, unsigned int symndx);

private:
 // The type of the array giving the real section index for symbols
 // whose st_shndx field holds SHN_XINDEX.
 typedef std::vector<unsigned int> Symtab_xindex;

 // Adjust a section index if necessary.  This should only be called
 // for ordinary section indexes.
 unsigned int
 adjust_shndx(unsigned int shndx)
 {
   if (shndx >= elfcpp::SHN_LORESERVE)
     shndx += this->large_shndx_offset_;
   return shndx;
 }

 // Adjust to apply to large section indexes.
 int large_shndx_offset_;
 // The data from the SHT_SYMTAB_SHNDX section.
 Symtab_xindex symtab_xindex_;
};

// A GOT offset list.  A symbol may have more than one GOT offset
// (e.g., when mixing modules compiled with two different TLS models),
// but will usually have at most one.  GOT_TYPE identifies the type of
// GOT entry; its values are specific to each target.

class Got_offset_list
{
public:
 Got_offset_list()
   : got_type_(-1U), got_offset_(0), addend_(0), got_next_(NULL)
 { }

 Got_offset_list(unsigned int got_type, unsigned int got_offset,
                 uint64_t addend)
   : got_type_(got_type), got_offset_(got_offset), addend_(addend),
     got_next_(NULL)
 { }

 ~Got_offset_list()
 {
   if (this->got_next_ != NULL)
     {
       delete this->got_next_;
       this->got_next_ = NULL;
     }
 }

 // Initialize the fields to their default values.
 void
 init()
 {
   this->got_type_ = -1U;
   this->got_offset_ = 0;
   this->addend_ = 0;
   this->got_next_ = NULL;
 }

 // Set the offset for the GOT entry of type GOT_TYPE.
 void
 set_offset(unsigned int got_type, unsigned int got_offset, uint64_t addend)
 {
   if (this->got_type_ == -1U)
     {
       this->got_type_ = got_type;
       this->got_offset_ = got_offset;
       this->addend_ = addend;
     }
   else
     {
       for (Got_offset_list* g = this; g != NULL; g = g->got_next_)
         {
           if (g->got_type_ == got_type && g->addend_ == addend)
             {
               g->got_offset_ = got_offset;
               return;
             }
         }
       Got_offset_list* g = new Got_offset_list(got_type, got_offset, addend);
       g->got_next_ = this->got_next_;
       this->got_next_ = g;
     }
 }

 // Return the offset for a GOT entry of type GOT_TYPE.
 unsigned int
 get_offset(unsigned int got_type, uint64_t addend) const
 {
   for (const Got_offset_list* g = this; g != NULL; g = g->got_next_)
     {
       if (g->got_type_ == got_type && g->addend_ == addend)
         return g->got_offset_;
     }
   return -1U;
 }

 // Return a pointer to the list, or NULL if the list is empty.
 const Got_offset_list*
 get_list() const
 {
   if (this->got_type_ == -1U)
     return NULL;
   return this;
 }

 // Abstract visitor class for iterating over GOT offsets.
 class Visitor
 {
  public:
   Visitor()
   { }

   virtual
   ~Visitor()
   { }

   virtual void
   visit(unsigned int, unsigned int, uint64_t) = 0;
 };

 // Loop over all GOT offset entries, calling a visitor class V for each.
 void
 for_all_got_offsets(Visitor* v) const
 {
   if (this->got_type_ == -1U)
     return;
   for (const Got_offset_list* g = this; g != NULL; g = g->got_next_)
     v->visit(g->got_type_, g->got_offset_, g->addend_);
 }

private:
 unsigned int got_type_;
 unsigned int got_offset_;
 uint64_t addend_;
 Got_offset_list* got_next_;
};

// The Local_got_entry_key used to index the GOT offsets for local
// non-TLS symbols, and tp-relative offsets for TLS symbols.

class Local_got_entry_key
{
public:
 Local_got_entry_key(unsigned int symndx)
   : symndx_(symndx)
 {}

 // Whether this equals to another Local_got_entry_key.
 bool
 eq(const Local_got_entry_key& key) const
 {
   return this->symndx_ == key.symndx_;
 }

 // Compute a hash value for this using 64-bit FNV-1a hash.
 size_t
 hash_value() const
 {
   uint64_t h = 14695981039346656037ULL; // FNV offset basis.
   uint64_t prime = 1099511628211ULL;
   h = (h ^ static_cast<uint64_t>(this->symndx_)) * prime;
   return h;
 }

 // Functors for associative containers.
 struct equal_to
 {
   bool
   operator()(const Local_got_entry_key& key1,
              const Local_got_entry_key& key2) const
   { return key1.eq(key2); }
 };

 struct hash
 {
   size_t
   operator()(const Local_got_entry_key& key) const
   { return key.hash_value(); }
 };

private:
 // The local symbol index.
 unsigned int symndx_;
};

// Type for mapping section index to uncompressed size and contents.

struct Compressed_section_info
{
 section_size_type size;
 elfcpp::Elf_Xword flag;
 uint64_t addralign;
 const unsigned char* contents;
};
typedef std::map<unsigned int, Compressed_section_info> Compressed_section_map;

template<int size, bool big_endian>
Compressed_section_map*
build_compressed_section_map(const unsigned char* pshdrs, unsigned int shnum,
                            const char* names, section_size_type names_size,
                            Object* obj, bool decompress_if_needed);

// Osabi represents the EI_OSABI field from the ELF header.

class Osabi
{
public:
 Osabi(unsigned char ei_osabi)
   : ei_osabi_(static_cast<elfcpp::ELFOSABI>(ei_osabi))
 { }

 bool
 has_shf_retain(elfcpp::Elf_Xword sh_flags) const
 {
   switch (this->ei_osabi_)
     {
     case elfcpp::ELFOSABI_GNU:
     case elfcpp::ELFOSABI_FREEBSD:
       return (sh_flags & elfcpp::SHF_GNU_RETAIN) != 0;
     default:
       break;
     }
   return false;
 }

 elfcpp::Elf_Xword
 ignored_sh_flags() const
 {
   switch (this->ei_osabi_)
     {
     case elfcpp::ELFOSABI_GNU:
     case elfcpp::ELFOSABI_FREEBSD:
       return elfcpp::SHF_GNU_RETAIN;
     default:
       break;
     }
   return 0;
 }

private:
 elfcpp::ELFOSABI ei_osabi_;
};

// Object is an abstract base class which represents either a 32-bit
// or a 64-bit input object.  This can be a regular object file
// (ET_REL) or a shared object (ET_DYN).

class Object
{
public:
 typedef std::vector<Symbol*> Symbols;

 // NAME is the name of the object as we would report it to the user
 // (e.g., libfoo.a(bar.o) if this is in an archive.  INPUT_FILE is
 // used to read the file.  OFFSET is the offset within the input
 // file--0 for a .o or .so file, something else for a .a file.
 Object(const std::string& name, Input_file* input_file, bool is_dynamic,
        off_t offset = 0)
   : name_(name), input_file_(input_file), offset_(offset), shnum_(-1U),
     is_dynamic_(is_dynamic), is_needed_(false), uses_split_stack_(false),
     has_no_split_stack_(false), no_export_(false),
     is_in_system_directory_(false), as_needed_(false), xindex_(NULL),
     compressed_sections_(NULL)
 {
   if (input_file != NULL)
     {
       input_file->file().add_object();
       this->is_in_system_directory_ = input_file->is_in_system_directory();
       this->as_needed_ = input_file->options().as_needed();
     }
 }

 virtual ~Object()
 {
   if (this->input_file_ != NULL)
     this->input_file_->file().remove_object();
 }

 // Return the name of the object as we would report it to the user.
 const std::string&
 name() const
 { return this->name_; }

 // Get the offset into the file.
 off_t
 offset() const
 { return this->offset_; }

 // Return whether this is a dynamic object.
 bool
 is_dynamic() const
 { return this->is_dynamic_; }

 // Return the word size of the object file.
 virtual int elfsize() const = 0;

 // Return TRUE if this is a big-endian object file.
 virtual bool is_big_endian() const = 0;

 // Return whether this object is needed--true if it is a dynamic
 // object which defines some symbol referenced by a regular object.
 // We keep the flag here rather than in Dynobj for convenience when
 // setting it.
 bool
 is_needed() const
 { return this->is_needed_; }

 // Record that this object is needed.
 void
 set_is_needed()
 { this->is_needed_ = true; }

 // Return whether this object was compiled with -fsplit-stack.
 bool
 uses_split_stack() const
 { return this->uses_split_stack_; }

 // Return whether this object contains any functions compiled with
 // the no_split_stack attribute.
 bool
 has_no_split_stack() const
 { return this->has_no_split_stack_; }

 // Returns NULL for Objects that are not dynamic objects.  This method
 // is overridden in the Dynobj class.
 Dynobj*
 dynobj()
 { return this->do_dynobj(); }

 // Returns NULL for Objects that are not plugin objects.  This method
 // is overridden in the Pluginobj class.
 Pluginobj*
 pluginobj()
 { return this->do_pluginobj(); }

 // Get the file.  We pass on const-ness.
 Input_file*
 input_file()
 {
   gold_assert(this->input_file_ != NULL);
   return this->input_file_;
 }

 const Input_file*
 input_file() const
 {
   gold_assert(this->input_file_ != NULL);
   return this->input_file_;
 }

 // Lock the underlying file.
 void
 lock(const Task* t)
 {
   if (this->input_file_ != NULL)
     this->input_file_->file().lock(t);
 }

 // Unlock the underlying file.
 void
 unlock(const Task* t)
 {
   if (this->input_file_ != NULL)
     this->input_file()->file().unlock(t);
 }

 // Return whether the underlying file is locked.
 bool
 is_locked() const
 { return this->input_file_ != NULL && this->input_file_->file().is_locked(); }

 // Return the token, so that the task can be queued.
 Task_token*
 token()
 {
   if (this->input_file_ == NULL)
     return NULL;
   return this->input_file()->file().token();
 }

 // Release the underlying file.
 void
 release()
 {
   if (this->input_file_ != NULL)
     this->input_file()->file().release();
 }

 // Return whether we should just read symbols from this file.
 bool
 just_symbols() const
 { return this->input_file()->just_symbols(); }

 // Return whether this is an incremental object.
 bool
 is_incremental() const
 { return this->do_is_incremental(); }

 // Return the last modified time of the file.
 Timespec
 get_mtime()
 { return this->do_get_mtime(); }

 // Get the number of sections.
 unsigned int
 shnum() const
 { return this->shnum_; }

 // Return a view of the contents of a section.  Set *PLEN to the
 // size.  CACHE is a hint as in File_read::get_view.
 const unsigned char*
 section_contents(unsigned int shndx, section_size_type* plen, bool cache);

 // Adjust a symbol's section index as needed.  SYMNDX is the index
 // of the symbol and SHNDX is the symbol's section from
 // get_st_shndx.  This returns the section index.  It sets
 // *IS_ORDINARY to indicate whether this is a normal section index,
 // rather than a special code between SHN_LORESERVE and
 // SHN_HIRESERVE.
 unsigned int
 adjust_sym_shndx(unsigned int symndx, unsigned int shndx, bool* is_ordinary)
 {
   if (shndx < elfcpp::SHN_LORESERVE)
     *is_ordinary = true;
   else if (shndx == elfcpp::SHN_XINDEX)
     {
       if (this->xindex_ == NULL)
         this->xindex_ = this->do_initialize_xindex();
       shndx = this->xindex_->sym_xindex_to_shndx(this, symndx);
       *is_ordinary = true;
     }
   else
     *is_ordinary = false;
   return shndx;
 }

 // Return the size of a section given a section index.
 uint64_t
 section_size(unsigned int shndx)
 { return this->do_section_size(shndx); }

 // Return the name of a section given a section index.
 std::string
 section_name(unsigned int shndx) const
 { return this->do_section_name(shndx); }

 // Return the section flags given a section index.
 uint64_t
 section_flags(unsigned int shndx)
 { return this->do_section_flags(shndx); }

 // Return the section entsize given a section index.
 uint64_t
 section_entsize(unsigned int shndx)
 { return this->do_section_entsize(shndx); }

 // Return the section address given a section index.
 uint64_t
 section_address(unsigned int shndx)
 { return this->do_section_address(shndx); }

 // Return the section type given a section index.
 unsigned int
 section_type(unsigned int shndx)
 { return this->do_section_type(shndx); }

 // Return the section link field given a section index.
 unsigned int
 section_link(unsigned int shndx)
 { return this->do_section_link(shndx); }

 // Return the section info field given a section index.
 unsigned int
 section_info(unsigned int shndx)
 { return this->do_section_info(shndx); }

 // Return the required section alignment given a section index.
 uint64_t
 section_addralign(unsigned int shndx)
 { return this->do_section_addralign(shndx); }

 // Return the output section given a section index.
 Output_section*
 output_section(unsigned int shndx) const
 { return this->do_output_section(shndx); }

 // Given a section index, return its address.
 // The return value will be -1U if the section is specially mapped,
 // such as a merge section.
 uint64_t
 output_section_address(unsigned int shndx)
 { return this->do_output_section_address(shndx); }

 // Given a section index, return the offset in the Output_section.
 // The return value will be -1U if the section is specially mapped,
 // such as a merge section.
 uint64_t
 output_section_offset(unsigned int shndx) const
 { return this->do_output_section_offset(shndx); }

 // Read the symbol information.
 void
 read_symbols(Read_symbols_data* sd)
 { return this->do_read_symbols(sd); }

 // Pass sections which should be included in the link to the Layout
 // object, and record where the sections go in the output file.
 void
 layout(Symbol_table* symtab, Layout* layout, Read_symbols_data* sd)
 { this->do_layout(symtab, layout, sd); }

 // Add symbol information to the global symbol table.
 void
 add_symbols(Symbol_table* symtab, Read_symbols_data* sd, Layout *layout)
 { this->do_add_symbols(symtab, sd, layout); }

 // Add symbol information to the global symbol table.
 Archive::Should_include
 should_include_member(Symbol_table* symtab, Layout* layout,
                       Read_symbols_data* sd, std::string* why)
 { return this->do_should_include_member(symtab, layout, sd, why); }

 // Iterate over global symbols, calling a visitor class V for each.
 void
 for_all_global_symbols(Read_symbols_data* sd,
                        Library_base::Symbol_visitor_base* v)
 { return this->do_for_all_global_symbols(sd, v); }

 // Iterate over local symbols, calling a visitor class V for each GOT offset
 // associated with a local symbol.
 void
 for_all_local_got_entries(Got_offset_list::Visitor* v) const
 { this->do_for_all_local_got_entries(v); }

 // Functions and types for the elfcpp::Elf_file interface.  This
 // permit us to use Object as the File template parameter for
 // elfcpp::Elf_file.

 // The View class is returned by view.  It must support a single
 // method, data().  This is trivial, because get_view does what we
 // need.
 class View
 {
  public:
   View(const unsigned char* p)
     : p_(p)
   { }

   const unsigned char*
   data() const
   { return this->p_; }

  private:
   const unsigned char* p_;
 };

 // Return a View.
 View
 view(off_t file_offset, section_size_type data_size)
 { return View(this->get_view(file_offset, data_size, true, true)); }

 // Report an error.
 void
 error(const char* format, ...) const ATTRIBUTE_PRINTF_2;

 // A location in the file.
 struct Location
 {
   off_t file_offset;
   off_t data_size;

   Location(off_t fo, section_size_type ds)
     : file_offset(fo), data_size(ds)
   { }
 };

 // Get a View given a Location.
 View view(Location loc)
 { return View(this->get_view(loc.file_offset, loc.data_size, true, true)); }

 // Get a view into the underlying file.
 const unsigned char*
 get_view(off_t start, section_size_type size, bool aligned, bool cache)
 {
   return this->input_file()->file().get_view(this->offset_, start, size,
                                              aligned, cache);
 }

 // Get a lasting view into the underlying file.
 File_view*
 get_lasting_view(off_t start, section_size_type size, bool aligned,
                  bool cache)
 {
   return this->input_file()->file().get_lasting_view(this->offset_, start,
                                                      size, aligned, cache);
 }

 // Read data from the underlying file.
 void
 read(off_t start, section_size_type size, void* p)
 { this->input_file()->file().read(start + this->offset_, size, p); }

 // Read multiple data from the underlying file.
 void
 read_multiple(const File_read::Read_multiple& rm)
 { this->input_file()->file().read_multiple(this->offset_, rm); }

 // Stop caching views in the underlying file.
 void
 clear_view_cache_marks()
 {
   if (this->input_file_ != NULL)
     this->input_file_->file().clear_view_cache_marks();
 }

 // Get the number of global symbols defined by this object, and the
 // number of the symbols whose final definition came from this
 // object.
 void
 get_global_symbol_counts(const Symbol_table* symtab, size_t* defined,
                          size_t* used) const
 { this->do_get_global_symbol_counts(symtab, defined, used); }

 // Get the symbols defined in this object.
 const Symbols*
 get_global_symbols() const
 { return this->do_get_global_symbols(); }

 // Set flag that this object was found in a system directory.
 void
 set_is_in_system_directory()
 { this->is_in_system_directory_ = true; }

 // Return whether this object was found in a system directory.
 bool
 is_in_system_directory() const
 { return this->is_in_system_directory_; }

 // Set flag that this object was linked with --as-needed.
 void
 set_as_needed()
 { this->as_needed_ = true; }

 // Clear flag that this object was linked with --as-needed.
 void
 clear_as_needed()
 { this->as_needed_ = false; }

 // Return whether this object was linked with --as-needed.
 bool
 as_needed() const
 { return this->as_needed_; }

 // Return whether we found this object by searching a directory.
 bool
 searched_for() const
 { return this->input_file()->will_search_for(); }

 bool
 no_export() const
 { return this->no_export_; }

 void
 set_no_export(bool value)
 { this->no_export_ = value; }

 bool
 section_is_compressed(unsigned int shndx,
                       section_size_type* uncompressed_size,
                       elfcpp::Elf_Xword* palign = NULL) const
 {
   if (this->compressed_sections_ == NULL)
     return false;
   Compressed_section_map::const_iterator p =
       this->compressed_sections_->find(shndx);
   if (p != this->compressed_sections_->end())
     {
       if (uncompressed_size != NULL)
         *uncompressed_size = p->second.size;
       if (palign != NULL)
         *palign = p->second.addralign;
       return true;
     }
   return false;
 }

 // Return a view of the decompressed contents of a section.  Set *PLEN
 // to the size.  Set *IS_NEW to true if the contents need to be freed
 // by the caller.
 const unsigned char*
 decompressed_section_contents(unsigned int shndx, section_size_type* plen,
                               bool* is_cached, uint64_t* palign = NULL);

 // Discard any buffers of decompressed sections.  This is done
 // at the end of the Add_symbols task.
 void
 discard_decompressed_sections();

 // Return the index of the first incremental relocation for symbol SYMNDX.
 unsigned int
 get_incremental_reloc_base(unsigned int symndx) const
 { return this->do_get_incremental_reloc_base(symndx); }

 // Return the number of incremental relocations for symbol SYMNDX.
 unsigned int
 get_incremental_reloc_count(unsigned int symndx) const
 { return this->do_get_incremental_reloc_count(symndx); }

 // Return the output view for section SHNDX.
 unsigned char*
 get_output_view(unsigned int shndx, section_size_type* plen) const
 { return this->do_get_output_view(shndx, plen); }

protected:
 // Returns NULL for Objects that are not dynamic objects.  This method
 // is overridden in the Dynobj class.
 virtual Dynobj*
 do_dynobj()
 { return NULL; }

 // Returns NULL for Objects that are not plugin objects.  This method
 // is overridden in the Pluginobj class.
 virtual Pluginobj*
 do_pluginobj()
 { return NULL; }

 // Return TRUE if this is an incremental (unchanged) input file.
 // We return FALSE by default; the incremental object classes
 // override this method.
 virtual bool
 do_is_incremental() const
 { return false; }

 // Return the last modified time of the file.  This method may be
 // overridden for subclasses that don't use an actual file (e.g.,
 // Incremental objects).
 virtual Timespec
 do_get_mtime()
 { return this->input_file()->file().get_mtime(); }

 // Read the symbols--implemented by child class.
 virtual void
 do_read_symbols(Read_symbols_data*) = 0;

 // Lay out sections--implemented by child class.
 virtual void
 do_layout(Symbol_table*, Layout*, Read_symbols_data*) = 0;

 // Add symbol information to the global symbol table--implemented by
 // child class.
 virtual void
 do_add_symbols(Symbol_table*, Read_symbols_data*, Layout*) = 0;

 virtual Archive::Should_include
 do_should_include_member(Symbol_table* symtab, Layout*, Read_symbols_data*,
                          std::string* why) = 0;

 // Iterate over global symbols, calling a visitor class V for each.
 virtual void
 do_for_all_global_symbols(Read_symbols_data* sd,
                           Library_base::Symbol_visitor_base* v) = 0;

 // Iterate over local symbols, calling a visitor class V for each GOT offset
 // associated with a local symbol.
 virtual void
 do_for_all_local_got_entries(Got_offset_list::Visitor* v) const = 0;

 // Return the location of the contents of a section.  Implemented by
 // child class.
 virtual const unsigned char*
 do_section_contents(unsigned int shndx, section_size_type* plen,
                     bool cache) = 0;

 // Get the size of a section--implemented by child class.
 virtual uint64_t
 do_section_size(unsigned int shndx) = 0;

 // Get the name of a section--implemented by child class.
 virtual std::string
 do_section_name(unsigned int shndx) const = 0;

 // Get section flags--implemented by child class.
 virtual uint64_t
 do_section_flags(unsigned int shndx) = 0;

 // Get section entsize--implemented by child class.
 virtual uint64_t
 do_section_entsize(unsigned int shndx) = 0;

 // Get section address--implemented by child class.
 virtual uint64_t
 do_section_address(unsigned int shndx) = 0;

 // Get section type--implemented by child class.
 virtual unsigned int
 do_section_type(unsigned int shndx) = 0;

 // Get section link field--implemented by child class.
 virtual unsigned int
 do_section_link(unsigned int shndx) = 0;

 // Get section info field--implemented by child class.
 virtual unsigned int
 do_section_info(unsigned int shndx) = 0;

 // Get section alignment--implemented by child class.
 virtual uint64_t
 do_section_addralign(unsigned int shndx) = 0;

 // Return the output section given a section index--implemented
 // by child class.
 virtual Output_section*
 do_output_section(unsigned int) const
 { gold_unreachable(); }

 // Get the address of a section--implemented by child class.
 virtual uint64_t
 do_output_section_address(unsigned int)
 { gold_unreachable(); }

 // Get the offset of a section--implemented by child class.
 virtual uint64_t
 do_output_section_offset(unsigned int) const
 { gold_unreachable(); }

 // Return the Xindex structure to use.
 virtual Xindex*
 do_initialize_xindex() = 0;

 // Implement get_global_symbol_counts--implemented by child class.
 virtual void
 do_get_global_symbol_counts(const Symbol_table*, size_t*, size_t*) const = 0;

 virtual const Symbols*
 do_get_global_symbols() const = 0;

 // Set the number of sections.
 void
 set_shnum(int shnum)
 { this->shnum_ = shnum; }

 // Functions used by both Sized_relobj_file and Sized_dynobj.

 // Read the section data into a Read_symbols_data object.
 template<int size, bool big_endian>
 void
 read_section_data(elfcpp::Elf_file<size, big_endian, Object>*,
                   Read_symbols_data*);

 // Find the section header with the given NAME.  If HDR is non-NULL
 // then it is a section header returned from a previous call to this
 // function and the next section header with the same name will be
 // returned.
 template<int size, bool big_endian>
 const unsigned char*
 find_shdr(const unsigned char* pshdrs, const char* name,
           const char* names, section_size_type names_size,
           const unsigned char* hdr) const;

 // Let the child class initialize the xindex object directly.
 void
 set_xindex(Xindex* xindex)
 {
   gold_assert(this->xindex_ == NULL);
   this->xindex_ = xindex;
 }

 // If NAME is the name of a special .gnu.warning section, arrange
 // for the warning to be issued.  SHNDX is the section index.
 // Return whether it is a warning section.
 bool
 handle_gnu_warning_section(const char* name, unsigned int shndx,
                            Symbol_table*);

 // If NAME is the name of the special section which indicates that
 // this object was compiled with -fsplit-stack, mark it accordingly,
 // and return true.  Otherwise return false.
 bool
 handle_split_stack_section(const char* name);

 // Discard any buffers of decompressed sections.  This is done
 // at the end of the Add_symbols task.
 virtual void
 do_discard_decompressed_sections()
 { }

 // Return the index of the first incremental relocation for symbol SYMNDX--
 // implemented by child class.
 virtual unsigned int
 do_get_incremental_reloc_base(unsigned int) const
 { gold_unreachable(); }

 // Return the number of incremental relocations for symbol SYMNDX--
 // implemented by child class.
 virtual unsigned int
 do_get_incremental_reloc_count(unsigned int) const
 { gold_unreachable(); }

 // Return the output view for a section.
 virtual unsigned char*
 do_get_output_view(unsigned int, section_size_type*) const
 { gold_unreachable(); }

 void
 set_compressed_sections(Compressed_section_map* compressed_sections)
 { this->compressed_sections_ = compressed_sections; }

 Compressed_section_map*
 compressed_sections()
 { return this->compressed_sections_; }

private:
 // This class may not be copied.
 Object(const Object&);
 Object& operator=(const Object&);

 // Name of object as printed to user.
 std::string name_;
 // For reading the file.
 Input_file* input_file_;
 // Offset within the file--0 for an object file, non-0 for an
 // archive.
 off_t offset_;
 // Number of input sections.
 unsigned int shnum_;
 // Whether this is a dynamic object.
 bool is_dynamic_ : 1;
 // Whether this object is needed.  This is only set for dynamic
 // objects, and means that the object defined a symbol which was
 // used by a reference from a regular object.
 bool is_needed_ : 1;
 // Whether this object was compiled with -fsplit-stack.
 bool uses_split_stack_ : 1;
 // Whether this object contains any functions compiled with the
 // no_split_stack attribute.
 bool has_no_split_stack_ : 1;
 // True if exclude this object from automatic symbol export.
 // This is used only for archive objects.
 bool no_export_ : 1;
 // True if the object was found in a system directory.
 bool is_in_system_directory_ : 1;
 // True if the object was linked with --as-needed.
 bool as_needed_ : 1;
 // Many sections for objects with more than SHN_LORESERVE sections.
 Xindex* xindex_;
 // For compressed debug sections, map section index to uncompressed size
 // and contents.
 Compressed_section_map* compressed_sections_;
};

// A regular object (ET_REL).  This is an abstract base class itself.
// The implementation is the template class Sized_relobj_file.

class Relobj : public Object
{
public:
 Relobj(const std::string& name, Input_file* input_file, off_t offset = 0)
   : Object(name, input_file, false, offset),
     output_sections_(),
     map_to_relocatable_relocs_(NULL),
     object_merge_map_(NULL),
     relocs_must_follow_section_writes_(false),
     sd_(NULL),
     reloc_counts_(NULL),
     reloc_bases_(NULL),
     first_dyn_reloc_(0),
     dyn_reloc_count_(0)
 { }

 // During garbage collection, the Read_symbols_data pass for
 // each object is stored as layout needs to be done after
 // reloc processing.
 Symbols_data*
 get_symbols_data()
 { return this->sd_; }

 // Decides which section names have to be included in the worklist
 // as roots.
 bool
 is_section_name_included(const char* name);

 void
 copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
                   unsigned int section_header_size);

 void
 set_symbols_data(Symbols_data* sd)
 { this->sd_ = sd; }

 // During garbage collection, the Read_relocs pass for all objects
 // is done before scanning the relocs.  In that case, this->rd_ is
 // used to store the information from Read_relocs for each object.
 // This data is also used to compute the list of relevant sections.
 Read_relocs_data*
 get_relocs_data()
 { return this->rd_; }

 void
 set_relocs_data(Read_relocs_data* rd)
 { this->rd_ = rd; }

 virtual bool
 is_output_section_offset_invalid(unsigned int shndx) const = 0;

 // Read the relocs.
 void
 read_relocs(Read_relocs_data* rd)
 { return this->do_read_relocs(rd); }

 // Process the relocs, during garbage collection only.
 void
 gc_process_relocs(Symbol_table* symtab, Layout* layout, Read_relocs_data* rd)
 { return this->do_gc_process_relocs(symtab, layout, rd); }

 // Scan the relocs and adjust the symbol table.
 void
 scan_relocs(Symbol_table* symtab, Layout* layout, Read_relocs_data* rd)
 { return this->do_scan_relocs(symtab, layout, rd); }

 // Return the value of the local symbol whose index is SYMNDX, plus
 // ADDEND.  ADDEND is passed in so that we can correctly handle the
 // section symbol for a merge section.
 uint64_t
 local_symbol_value(unsigned int symndx, uint64_t addend) const
 { return this->do_local_symbol_value(symndx, addend); }

 // Return the PLT offset for a local symbol.  It is an error to call
 // this if it doesn't have one.
 unsigned int
 local_plt_offset(unsigned int symndx) const
 { return this->do_local_plt_offset(symndx); }

 // Return whether there is a GOT entry of type GOT_TYPE for the
 // local symbol SYMNDX with given ADDEND.
 bool
 local_has_got_offset(unsigned int symndx, unsigned int got_type,
                      uint64_t addend = 0) const
 { return this->do_local_has_got_offset(symndx, got_type, addend); }

 // Return the GOT offset of the GOT entry with type GOT_TYPE for the
 // local symbol SYMNDX with given ADDEND.  It is an error to call
 // this function if the symbol does not have such a GOT entry.
 unsigned int
 local_got_offset(unsigned int symndx, unsigned int got_type,
                  uint64_t addend = 0) const
 { return this->do_local_got_offset(symndx, got_type, addend); }

 // Set the GOT offset for a GOT entry with type GOT_TYPE for the
 // local symbol SYMNDX with ADDEND to GOT_OFFSET.  Create such an
 // entry if none exists.
 void
 set_local_got_offset(unsigned int symndx, unsigned int got_type,
                      unsigned int got_offset, uint64_t addend = 0)
 { this->do_set_local_got_offset(symndx, got_type, got_offset, addend); }

 // Return whether the local symbol SYMNDX is a TLS symbol.
 bool
 local_is_tls(unsigned int symndx) const
 { return this->do_local_is_tls(symndx); }

 // The number of local symbols in the input symbol table.
 virtual unsigned int
 local_symbol_count() const
 { return this->do_local_symbol_count(); }

 // The number of local symbols in the output symbol table.
 virtual unsigned int
 output_local_symbol_count() const
 { return this->do_output_local_symbol_count(); }

 // The file offset for local symbols in the output symbol table.
 virtual off_t
 local_symbol_offset() const
 { return this->do_local_symbol_offset(); }

 // Initial local symbol processing: count the number of local symbols
 // in the output symbol table and dynamic symbol table; add local symbol
 // names to *POOL and *DYNPOOL.
 void
 count_local_symbols(Stringpool_template<char>* pool,
                     Stringpool_template<char>* dynpool)
 { return this->do_count_local_symbols(pool, dynpool); }

 // Set the values of the local symbols, set the output symbol table
 // indexes for the local variables, and set the offset where local
 // symbol information will be stored. Returns the new local symbol index.
 unsigned int
 finalize_local_symbols(unsigned int index, off_t off, Symbol_table* symtab)
 { return this->do_finalize_local_symbols(index, off, symtab); }

 // Set the output dynamic symbol table indexes for the local variables.
 unsigned int
 set_local_dynsym_indexes(unsigned int index)
 { return this->do_set_local_dynsym_indexes(index); }

 // Set the offset where local dynamic symbol information will be stored.
 unsigned int
 set_local_dynsym_offset(off_t off)
 { return this->do_set_local_dynsym_offset(off); }

 // Record a dynamic relocation against an input section from this object.
 void
 add_dyn_reloc(unsigned int index)
 {
   if (this->dyn_reloc_count_ == 0)
     this->first_dyn_reloc_ = index;
   ++this->dyn_reloc_count_;
 }

 // Return the index of the first dynamic relocation.
 unsigned int
 first_dyn_reloc() const
 { return this->first_dyn_reloc_; }

 // Return the count of dynamic relocations.
 unsigned int
 dyn_reloc_count() const
 { return this->dyn_reloc_count_; }

 // Relocate the input sections and write out the local symbols.
 void
 relocate(const Symbol_table* symtab, const Layout* layout, Output_file* of)
 { return this->do_relocate(symtab, layout, of); }

 // Return whether an input section is being included in the link.
 bool
 is_section_included(unsigned int shndx) const
 {
   gold_assert(shndx < this->output_sections_.size());
   return this->output_sections_[shndx] != NULL;
 }

 // The output section of the input section with index SHNDX.
 // This is only used currently to remove a section from the link in
 // relaxation.
 void
 set_output_section(unsigned int shndx, Output_section* os)
 {
   gold_assert(shndx < this->output_sections_.size());
   this->output_sections_[shndx] = os;
 }

 // Set the offset of an input section within its output section.
 void
 set_section_offset(unsigned int shndx, uint64_t off)
 { this->do_set_section_offset(shndx, off); }

 // Return true if we need to wait for output sections to be written
 // before we can apply relocations.  This is true if the object has
 // any relocations for sections which require special handling, such
 // as the exception frame section.
 bool
 relocs_must_follow_section_writes() const
 { return this->relocs_must_follow_section_writes_; }

 Object_merge_map*
 get_or_create_merge_map();

 template<int size>
 void
 initialize_input_to_output_map(unsigned int shndx,
     typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
     Unordered_map<section_offset_type,
           typename elfcpp::Elf_types<size>::Elf_Addr>* output_address) const;

 void
 add_merge_mapping(Output_section_data *output_data,
                   unsigned int shndx, section_offset_type offset,
                   section_size_type length,
                   section_offset_type output_offset);

 bool
 merge_output_offset(unsigned int shndx, section_offset_type offset,
                     section_offset_type *poutput) const;

 const Output_section_data*
 find_merge_section(unsigned int shndx) const;

 // Record the relocatable reloc info for an input reloc section.
 void
 set_relocatable_relocs(unsigned int reloc_shndx, Relocatable_relocs* rr)
 {
   gold_assert(reloc_shndx < this->shnum());
   (*this->map_to_relocatable_relocs_)[reloc_shndx] = rr;
 }

 // Get the relocatable reloc info for an input reloc section.
 Relocatable_relocs*
 relocatable_relocs(unsigned int reloc_shndx)
 {
   gold_assert(reloc_shndx < this->shnum());
   return (*this->map_to_relocatable_relocs_)[reloc_shndx];
 }

 // Layout sections whose layout was deferred while waiting for
 // input files from a plugin.
 void
 layout_deferred_sections(Layout* layout)
 { this->do_layout_deferred_sections(layout); }

 // Return the index of the first incremental relocation for symbol SYMNDX.
 virtual unsigned int
 do_get_incremental_reloc_base(unsigned int symndx) const
 { return this->reloc_bases_[symndx]; }

 // Return the number of incremental relocations for symbol SYMNDX.
 virtual unsigned int
 do_get_incremental_reloc_count(unsigned int symndx) const
 { return this->reloc_counts_[symndx]; }

 // Return the word size of the object file.
 int
 elfsize() const
 { return this->do_elfsize(); }

 // Return TRUE if this is a big-endian object file.
 bool
 is_big_endian() const
 { return this->do_is_big_endian(); }

protected:
 // The output section to be used for each input section, indexed by
 // the input section number.  The output section is NULL if the
 // input section is to be discarded.
 typedef std::vector<Output_section*> Output_sections;

 // Read the relocs--implemented by child class.
 virtual void
 do_read_relocs(Read_relocs_data*) = 0;

 // Process the relocs--implemented by child class.
 virtual void
 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*) = 0;

 // Scan the relocs--implemented by child class.
 virtual void
 do_scan_relocs(Symbol_table*, Layout*, Read_relocs_data*) = 0;

 // Return the value of a local symbol.
 virtual uint64_t
 do_local_symbol_value(unsigned int symndx, uint64_t addend) const = 0;

 // Return the PLT offset of a local symbol.
 virtual unsigned int
 do_local_plt_offset(unsigned int symndx) const = 0;

 // Return whether a local symbol plus addend has a GOT offset
 // of a given type.
 virtual bool
 do_local_has_got_offset(unsigned int symndx,
                         unsigned int got_type, uint64_t addend) const = 0;

 // Return the GOT offset of a given type of a local symbol plus addend.
 virtual unsigned int
 do_local_got_offset(unsigned int symndx, unsigned int got_type,
                     uint64_t addend) const = 0;

 // Set the GOT offset with a given type for a local symbol plus addend.
 virtual void
 do_set_local_got_offset(unsigned int symndx, unsigned int got_type,
                         unsigned int got_offset, uint64_t addend) = 0;

 // Return whether local symbol SYMNDX is a TLS symbol.
 virtual bool
 do_local_is_tls(unsigned int symndx) const = 0;

 // Return the number of local symbols--implemented by child class.
 virtual unsigned int
 do_local_symbol_count() const = 0;

 // Return the number of output local symbols--implemented by child class.
 virtual unsigned int
 do_output_local_symbol_count() const = 0;

 // Return the file offset for local symbols--implemented by child class.
 virtual off_t
 do_local_symbol_offset() const = 0;

 // Count local symbols--implemented by child class.
 virtual void
 do_count_local_symbols(Stringpool_template<char>*,
                        Stringpool_template<char>*) = 0;

 // Finalize the local symbols.  Set the output symbol table indexes
 // for the local variables, and set the offset where local symbol
 // information will be stored.
 virtual unsigned int
 do_finalize_local_symbols(unsigned int, off_t, Symbol_table*) = 0;

 // Set the output dynamic symbol table indexes for the local variables.
 virtual unsigned int
 do_set_local_dynsym_indexes(unsigned int) = 0;

 // Set the offset where local dynamic symbol information will be stored.
 virtual unsigned int
 do_set_local_dynsym_offset(off_t) = 0;

 // Relocate the input sections and write out the local
 // symbols--implemented by child class.
 virtual void
 do_relocate(const Symbol_table* symtab, const Layout*, Output_file* of) = 0;

 // Set the offset of a section--implemented by child class.
 virtual void
 do_set_section_offset(unsigned int shndx, uint64_t off) = 0;

 // Layout sections whose layout was deferred while waiting for
 // input files from a plugin--implemented by child class.
 virtual void
 do_layout_deferred_sections(Layout*) = 0;

 // Given a section index, return the corresponding Output_section.
 // The return value will be NULL if the section is not included in
 // the link.
 Output_section*
 do_output_section(unsigned int shndx) const
 {
   gold_assert(shndx < this->output_sections_.size());
   return this->output_sections_[shndx];
 }

 // Return the vector mapping input sections to output sections.
 Output_sections&
 output_sections()
 { return this->output_sections_; }

 const Output_sections&
 output_sections() const
 { return this->output_sections_; }

 // Set the size of the relocatable relocs array.
 void
 size_relocatable_relocs()
 {
   this->map_to_relocatable_relocs_ =
     new std::vector<Relocatable_relocs*>(this->shnum());
 }

 // Record that we must wait for the output sections to be written
 // before applying relocations.
 void
 set_relocs_must_follow_section_writes()
 { this->relocs_must_follow_section_writes_ = true; }

 // Allocate the array for counting incremental relocations.
 void
 allocate_incremental_reloc_counts()
 {
   unsigned int nsyms = this->do_get_global_symbols()->size();
   this->reloc_counts_ = new unsigned int[nsyms];
   gold_assert(this->reloc_counts_ != NULL);
   memset(this->reloc_counts_, 0, nsyms * sizeof(unsigned int));
 }

 // Record a relocation in this object referencing global symbol SYMNDX.
 // Used for tracking incremental link information.
 void
 count_incremental_reloc(unsigned int symndx)
 {
   unsigned int nsyms = this->do_get_global_symbols()->size();
   gold_assert(symndx < nsyms);
   gold_assert(this->reloc_counts_ != NULL);
   ++this->reloc_counts_[symndx];
 }

 // Finalize the incremental relocation information.
 void
 finalize_incremental_relocs(Layout* layout, bool clear_counts);

 // Return the index of the next relocation to be written for global symbol
 // SYMNDX.  Only valid after finalize_incremental_relocs() has been called.
 unsigned int
 next_incremental_reloc_index(unsigned int symndx)
 {
   unsigned int nsyms = this->do_get_global_symbols()->size();

   gold_assert(this->reloc_counts_ != NULL);
   gold_assert(this->reloc_bases_ != NULL);
   gold_assert(symndx < nsyms);

   unsigned int counter = this->reloc_counts_[symndx]++;
   return this->reloc_bases_[symndx] + counter;
 }

 // Return the word size of the object file--
 // implemented by child class.
 virtual int
 do_elfsize() const = 0;

 // Return TRUE if this is a big-endian object file--
 // implemented by child class.
 virtual bool
 do_is_big_endian() const = 0;

private:
 // Mapping from input sections to output section.
 Output_sections output_sections_;
 // Mapping from input section index to the information recorded for
 // the relocations.  This is only used for a relocatable link.
 std::vector<Relocatable_relocs*>* map_to_relocatable_relocs_;
 // Mappings for merge sections.  This is managed by the code in the
 // Merge_map class.
 Object_merge_map* object_merge_map_;
 // Whether we need to wait for output sections to be written before
 // we can apply relocations.
 bool relocs_must_follow_section_writes_;
 // Used to store the relocs data computed by the Read_relocs pass.
 // Used during garbage collection of unused sections.
 Read_relocs_data* rd_;
 // Used to store the symbols data computed by the Read_symbols pass.
 // Again used during garbage collection when laying out referenced
 // sections.
 gold::Symbols_data* sd_;
 // Per-symbol counts of relocations, for incremental links.
 unsigned int* reloc_counts_;
 // Per-symbol base indexes of relocations, for incremental links.
 unsigned int* reloc_bases_;
 // Index of the first dynamic relocation for this object.
 unsigned int first_dyn_reloc_;
 // Count of dynamic relocations for this object.
 unsigned int dyn_reloc_count_;
};

// This class is used to handle relocations against a section symbol
// in an SHF_MERGE section.  For such a symbol, we need to know the
// addend of the relocation before we can determine the final value.
// The addend gives us the location in the input section, and we can
// determine how it is mapped to the output section.  For a
// non-section symbol, we apply the addend to the final value of the
// symbol; that is done in finalize_local_symbols, and does not use
// this class.

template<int size>
class Merged_symbol_value
{
public:
 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value;

 // We use a hash table to map offsets in the input section to output
 // addresses.
 typedef Unordered_map<section_offset_type, Value> Output_addresses;

 Merged_symbol_value(Value input_value, Value output_start_address)
   : input_value_(input_value), output_start_address_(output_start_address),
     output_addresses_()
 { }

 // Initialize the hash table.
 void
 initialize_input_to_output_map(const Relobj*, unsigned int input_shndx);

 // Release the hash table to save space.
 void
 free_input_to_output_map()
 { this->output_addresses_.clear(); }

 // Get the output value corresponding to an addend.  The object and
 // input section index are passed in because the caller will have
 // them; otherwise we could store them here.
 Value
 value(const Relobj* object, unsigned int input_shndx, Value addend) const
 {
   // This is a relocation against a section symbol.  ADDEND is the
   // offset in the section.  The result should be the start of some
   // merge area.  If the object file wants something else, it should
   // use a regular symbol rather than a section symbol.
   // Unfortunately, PR 6658 shows a case in which the object file
   // refers to the section symbol, but uses a negative ADDEND to
   // compensate for a PC relative reloc.  We can't handle the
   // general case.  However, we can handle the special case of a
   // negative addend, by assuming that it refers to the start of the
   // section.  Of course, that means that we have to guess when
   // ADDEND is negative.  It is normal to see a 32-bit value here
   // even when the template parameter size is 64, as 64-bit object
   // file formats have 32-bit relocations.  We know this is a merge
   // section, so we know it has to fit into memory.  So we assume
   // that we won't see a value larger than a large 32-bit unsigned
   // value.  This will break objects with very very large merge
   // sections; they probably break in other ways anyhow.
   Value input_offset = this->input_value_;
   if (addend < 0xffffff00)
     {
       input_offset += addend;
       addend = 0;
     }
   typename Output_addresses::const_iterator p =
     this->output_addresses_.find(input_offset);
   if (p != this->output_addresses_.end())
     return p->second + addend;

   return (this->value_from_output_section(object, input_shndx, input_offset)
           + addend);
 }

private:
 // Get the output value for an input offset if we couldn't find it
 // in the hash table.
 Value
 value_from_output_section(const Relobj*, unsigned int input_shndx,
                           Value input_offset) const;

 // The value of the section symbol in the input file.  This is
 // normally zero, but could in principle be something else.
 Value input_value_;
 // The start address of this merged section in the output file.
 Value output_start_address_;
 // A hash table which maps offsets in the input section to output
 // addresses.  This only maps specific offsets, not all offsets.
 Output_addresses output_addresses_;
};

// This POD class is holds the value of a symbol.  This is used for
// local symbols, and for all symbols during relocation processing.
// For special sections, such as SHF_MERGE sections, this calls a
// function to get the final symbol value.

template<int size>
class Symbol_value
{
public:
 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value;

 Symbol_value()
   : output_symtab_index_(0), output_dynsym_index_(-1U), input_shndx_(0),
     is_ordinary_shndx_(false), is_section_symbol_(false),
     is_tls_symbol_(false), is_ifunc_symbol_(false), has_output_value_(true)
 { this->u_.value = 0; }

 ~Symbol_value()
 {
   if (!this->has_output_value_)
     delete this->u_.merged_symbol_value;
 }

 // Get the value of this symbol.  OBJECT is the object in which this
 // symbol is defined, and ADDEND is an addend to add to the value.
 template<bool big_endian>
 Value
 value(const Sized_relobj_file<size, big_endian>* object, Value addend) const
 {
   if (this->has_output_value_)
     return this->u_.value + addend;
   else
     {
       gold_assert(this->is_ordinary_shndx_);
       return this->u_.merged_symbol_value->value(object, this->input_shndx_,
                                                  addend);
     }
 }

 // Set the value of this symbol in the output symbol table.
 void
 set_output_value(Value value)
 { this->u_.value = value; }

 // For a section symbol in a merged section, we need more
 // information.
 void
 set_merged_symbol_value(Merged_symbol_value<size>* msv)
 {
   gold_assert(this->is_section_symbol_);
   this->has_output_value_ = false;
   this->u_.merged_symbol_value = msv;
 }

 // Initialize the input to output map for a section symbol in a
 // merged section.  We also initialize the value of a non-section
 // symbol in a merged section.
 void
 initialize_input_to_output_map(const Relobj* object)
 {
   if (!this->has_output_value_)
     {
       gold_assert(this->is_section_symbol_ && this->is_ordinary_shndx_);
       Merged_symbol_value<size>* msv = this->u_.merged_symbol_value;
       msv->initialize_input_to_output_map(object, this->input_shndx_);
     }
 }

 // Free the input to output map for a section symbol in a merged
 // section.
 void
 free_input_to_output_map()
 {
   if (!this->has_output_value_)
     this->u_.merged_symbol_value->free_input_to_output_map();
 }

 // Set the value of the symbol from the input file.  This is only
 // called by count_local_symbols, to communicate the value to
 // finalize_local_symbols.
 void
 set_input_value(Value value)
 { this->u_.value = value; }

 // Return the input value.  This is only called by
 // finalize_local_symbols and (in special cases) relocate_section.
 Value
 input_value() const
 { return this->u_.value; }

 // Return whether we have set the index in the output symbol table
 // yet.
 bool
 is_output_symtab_index_set() const
 {
   return (this->output_symtab_index_ != 0
           && this->output_symtab_index_ != -2U);
 }

 // Return whether this symbol may be discarded from the normal
 // symbol table.
 bool
 may_be_discarded_from_output_symtab() const
 {
   gold_assert(!this->is_output_symtab_index_set());
   return this->output_symtab_index_ != -2U;
 }

 // Return whether this symbol has an entry in the output symbol
 // table.
 bool
 has_output_symtab_entry() const
 {
   gold_assert(this->is_output_symtab_index_set());
   return this->output_symtab_index_ != -1U;
 }

 // Return the index in the output symbol table.
 unsigned int
 output_symtab_index() const
 {
   gold_assert(this->is_output_symtab_index_set()
               && this->output_symtab_index_ != -1U);
   return this->output_symtab_index_;
 }

 // Set the index in the output symbol table.
 void
 set_output_symtab_index(unsigned int i)
 {
   gold_assert(!this->is_output_symtab_index_set());
   gold_assert(i != 0 && i != -1U && i != -2U);
   this->output_symtab_index_ = i;
 }

 // Record that this symbol should not go into the output symbol
 // table.
 void
 set_no_output_symtab_entry()
 {
   gold_assert(this->output_symtab_index_ == 0);
   this->output_symtab_index_ = -1U;
 }

 // Record that this symbol must go into the output symbol table,
 // because it there is a relocation that uses it.
 void
 set_must_have_output_symtab_entry()
 {
   gold_assert(!this->is_output_symtab_index_set());
   this->output_symtab_index_ = -2U;
 }

 // Set the index in the output dynamic symbol table.
 void
 set_needs_output_dynsym_entry()
 {
   gold_assert(!this->is_section_symbol());
   this->output_dynsym_index_ = 0;
 }

 // Return whether this symbol should go into the dynamic symbol
 // table.
 bool
 needs_output_dynsym_entry() const
 {
   return this->output_dynsym_index_ != -1U;
 }

 // Return whether this symbol has an entry in the dynamic symbol
 // table.
 bool
 has_output_dynsym_entry() const
 {
   gold_assert(this->output_dynsym_index_ != 0);
   return this->output_dynsym_index_ != -1U;
 }

 // Record that this symbol should go into the dynamic symbol table.
 void
 set_output_dynsym_index(unsigned int i)
 {
   gold_assert(this->output_dynsym_index_ == 0);
   gold_assert(i != 0 && i != -1U);
   this->output_dynsym_index_ = i;
 }

 // Return the index in the output dynamic symbol table.
 unsigned int
 output_dynsym_index() const
 {
   gold_assert(this->output_dynsym_index_ != 0
               && this->output_dynsym_index_ != -1U);
   return this->output_dynsym_index_;
 }

 // Set the index of the input section in the input file.
 void
 set_input_shndx(unsigned int i, bool is_ordinary)
 {
   this->input_shndx_ = i;
   // input_shndx_ field is a bitfield, so make sure that the value
   // fits.
   gold_assert(this->input_shndx_ == i);
   this->is_ordinary_shndx_ = is_ordinary;
 }

 // Return the index of the input section in the input file.
 unsigned int
 input_shndx(bool* is_ordinary) const
 {
   *is_ordinary = this->is_ordinary_shndx_;
   return this->input_shndx_;
 }

 // Whether this is a section symbol.
 bool
 is_section_symbol() const
 { return this->is_section_symbol_; }

 // Record that this is a section symbol.
 void
 set_is_section_symbol()
 {
   gold_assert(!this->needs_output_dynsym_entry());
   this->is_section_symbol_ = true;
 }

 // Record that this is a TLS symbol.
 void
 set_is_tls_symbol()
 { this->is_tls_symbol_ = true; }

 // Return true if this is a TLS symbol.
 bool
 is_tls_symbol() const
 { return this->is_tls_symbol_; }

 // Record that this is an IFUNC symbol.
 void
 set_is_ifunc_symbol()
 { this->is_ifunc_symbol_ = true; }

 // Return true if this is an IFUNC symbol.
 bool
 is_ifunc_symbol() const
 { return this->is_ifunc_symbol_; }

 // Return true if this has output value.
 bool
 has_output_value() const
 { return this->has_output_value_; }

private:
 // The index of this local symbol in the output symbol table.  This
 // will be 0 if no value has been assigned yet, and the symbol may
 // be omitted.  This will be -1U if the symbol should not go into
 // the symbol table.  This will be -2U if the symbol must go into
 // the symbol table, but no index has been assigned yet.
 unsigned int output_symtab_index_;
 // The index of this local symbol in the dynamic symbol table.  This
 // will be -1U if the symbol should not go into the symbol table.
 unsigned int output_dynsym_index_;
 // The section index in the input file in which this symbol is
 // defined.
 unsigned int input_shndx_ : 27;
 // Whether the section index is an ordinary index, not a special
 // value.
 bool is_ordinary_shndx_ : 1;
 // Whether this is a STT_SECTION symbol.
 bool is_section_symbol_ : 1;
 // Whether this is a STT_TLS symbol.
 bool is_tls_symbol_ : 1;
 // Whether this is a STT_GNU_IFUNC symbol.
 bool is_ifunc_symbol_ : 1;
 // Whether this symbol has a value for the output file.  This is
 // normally set to true during Layout::finalize, by
 // finalize_local_symbols.  It will be false for a section symbol in
 // a merge section, as for such symbols we can not determine the
 // value to use in a relocation until we see the addend.
 bool has_output_value_ : 1;
 union
 {
   // This is used if has_output_value_ is true.  Between
   // count_local_symbols and finalize_local_symbols, this is the
   // value in the input file.  After finalize_local_symbols, it is
   // the value in the output file.
   Value value;
   // This is used if has_output_value_ is false.  It points to the
   // information we need to get the value for a merge section.
   Merged_symbol_value<size>* merged_symbol_value;
 } u_;
};

// This type is used to modify relocations for -fsplit-stack.  It is
// indexed by relocation index, and means that the relocation at that
// index should use the symbol from the vector, rather than the one
// indicated by the relocation.

class Reloc_symbol_changes
{
public:
 Reloc_symbol_changes(size_t count)
   : vec_(count, NULL)
 { }

 void
 set(size_t i, Symbol* sym)
 { this->vec_[i] = sym; }

 const Symbol*
 operator[](size_t i) const
 { return this->vec_[i]; }

private:
 std::vector<Symbol*> vec_;
};

// Abstract base class for a regular object file, either a real object file
// or an incremental (unchanged) object.  This is size and endian specific.

template<int size, bool big_endian>
class Sized_relobj : public Relobj
{
public:
 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
 typedef Relobj::Symbols Symbols;

 static const Address invalid_address = static_cast<Address>(0) - 1;

 Sized_relobj(const std::string& name, Input_file* input_file)
   : Relobj(name, input_file), local_got_offsets_(), section_offsets_()
 { }

 Sized_relobj(const std::string& name, Input_file* input_file,
                   off_t offset)
   : Relobj(name, input_file, offset), local_got_offsets_(), section_offsets_()
 { }

 ~Sized_relobj()
 { }

 // If this is a regular object, return a pointer to the Sized_relobj_file
 // object.  Otherwise, return NULL.
 virtual Sized_relobj_file<size, big_endian>*
 sized_relobj()
 { return NULL; }

 const virtual Sized_relobj_file<size, big_endian>*
 sized_relobj() const
 { return NULL; }

 // Checks if the offset of input section SHNDX within its output
 // section is invalid.
 bool
 is_output_section_offset_invalid(unsigned int shndx) const
 { return this->get_output_section_offset(shndx) == invalid_address; }

 // Get the offset of input section SHNDX within its output section.
 // This is -1 if the input section requires a special mapping, such
 // as a merge section.  The output section can be found in the
 // output_sections_ field of the parent class Relobj.
 Address
 get_output_section_offset(unsigned int shndx) const
 {
   gold_assert(shndx < this->section_offsets_.size());
   return this->section_offsets_[shndx];
 }

 // Iterate over local symbols, calling a visitor class V for each GOT offset
 // associated with a local symbol.
 void
 do_for_all_local_got_entries(Got_offset_list::Visitor* v) const;

protected:
 typedef Relobj::Output_sections Output_sections;

 // Clear the local symbol information.
 void
 clear_got_offsets()
 { this->local_got_offsets_.clear(); }

 // Return the vector of section offsets.
 std::vector<Address>&
 section_offsets()
 { return this->section_offsets_; }

 // Get the address of an output section.
 uint64_t
 do_output_section_address(unsigned int shndx);

 // Get the offset of a section.
 uint64_t
 do_output_section_offset(unsigned int shndx) const
 {
   Address off = this->get_output_section_offset(shndx);
   if (off == invalid_address)
     return -1ULL;
   return off;
 }

 // Set the offset of a section.
 void
 do_set_section_offset(unsigned int shndx, uint64_t off)
 {
   gold_assert(shndx < this->section_offsets_.size());
   this->section_offsets_[shndx] =
     (off == static_cast<uint64_t>(-1)
      ? invalid_address
      : convert_types<Address, uint64_t>(off));
 }

 // Return whether the local symbol SYMNDX plus ADDEND has a GOT offset
 // of type GOT_TYPE.
 bool
 do_local_has_got_offset(unsigned int symndx, unsigned int got_type,
                         uint64_t addend) const
 {
   Local_got_entry_key key(symndx);
   Local_got_offsets::const_iterator p =
       this->local_got_offsets_.find(key);
   return (p != this->local_got_offsets_.end()
           && p->second->get_offset(got_type, addend) != -1U);
 }

 // Return the GOT offset of type GOT_TYPE of the local symbol
 // SYMNDX plus ADDEND.
 unsigned int
 do_local_got_offset(unsigned int symndx, unsigned int got_type,
                         uint64_t addend) const
 {
   Local_got_entry_key key(symndx);
   Local_got_offsets::const_iterator p =
       this->local_got_offsets_.find(key);
   gold_assert(p != this->local_got_offsets_.end());
   unsigned int off = p->second->get_offset(got_type, addend);
   gold_assert(off != -1U);
   return off;
 }

 // Set the GOT offset with type GOT_TYPE of the local symbol SYMNDX
 // plus ADDEND to GOT_OFFSET.
 void
 do_set_local_got_offset(unsigned int symndx, unsigned int got_type,
                         unsigned int got_offset, uint64_t addend)
 {
   Local_got_entry_key key(symndx);
   Local_got_offsets::const_iterator p =
       this->local_got_offsets_.find(key);
   if (p != this->local_got_offsets_.end())
     p->second->set_offset(got_type, got_offset, addend);
   else
     {
       Got_offset_list* g = new Got_offset_list(got_type, got_offset, addend);
       std::pair<Local_got_offsets::iterator, bool> ins =
           this->local_got_offsets_.insert(std::make_pair(key, g));
       gold_assert(ins.second);
     }
 }

 // Return the word size of the object file.
 virtual int
 do_elfsize() const
 { return size; }

 // Return TRUE if this is a big-endian object file.
 virtual bool
 do_is_big_endian() const
 { return big_endian; }

private:
 // The GOT offsets of local symbols. This map also stores GOT offsets
 // for tp-relative offsets for TLS symbols.
 typedef Unordered_map<Local_got_entry_key, Got_offset_list*,
                       Local_got_entry_key::hash,
                       Local_got_entry_key::equal_to> Local_got_offsets;

 // GOT offsets for local non-TLS symbols, and tp-relative offsets
 // for TLS symbols, indexed by local got entry key class.
 Local_got_offsets local_got_offsets_;
 // For each input section, the offset of the input section in its
 // output section.  This is INVALID_ADDRESS if the input section requires a
 // special mapping.
 std::vector<Address> section_offsets_;
};

// A regular object file.  This is size and endian specific.

template<int size, bool big_endian>
class Sized_relobj_file : public Sized_relobj<size, big_endian>
{
public:
 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
 typedef typename Sized_relobj<size, big_endian>::Symbols Symbols;
 typedef std::vector<Symbol_value<size> > Local_values;

 static const Address invalid_address = static_cast<Address>(0) - 1;

 enum Compute_final_local_value_status
 {
   // No error.
   CFLV_OK,
   // An error occurred.
   CFLV_ERROR,
   // The local symbol has no output section.
   CFLV_DISCARDED
 };

 Sized_relobj_file(const std::string& name,
                   Input_file* input_file,
                   off_t offset,
                   const typename elfcpp::Ehdr<size, big_endian>&);

 ~Sized_relobj_file();

 // Set up the object file based on TARGET.
 void
 setup()
 { this->do_setup(); }

 // Return a pointer to the Sized_relobj_file object.
 Sized_relobj_file<size, big_endian>*
 sized_relobj()
 { return this; }

 const Sized_relobj_file<size, big_endian>*
 sized_relobj() const
 { return this; }

 // Return the ELF file type.
 int
 e_type() const
 { return this->e_type_; }

 // Return the EI_OSABI.
 const Osabi&
 osabi() const
 { return this->osabi_; }

 // Return the number of symbols.  This is only valid after
 // Object::add_symbols has been called.
 unsigned int
 symbol_count() const
 { return this->local_symbol_count_ + this->symbols_.size(); }

 // If SYM is the index of a global symbol in the object file's
 // symbol table, return the Symbol object.  Otherwise, return NULL.
 Symbol*
 global_symbol(unsigned int sym) const
 {
   if (sym >= this->local_symbol_count_)
     {
       gold_assert(sym - this->local_symbol_count_ < this->symbols_.size());
       return this->symbols_[sym - this->local_symbol_count_];
     }
   return NULL;
 }

 // Return the section index of symbol SYM.  Set *VALUE to its value
 // in the object file.  Set *IS_ORDINARY if this is an ordinary
 // section index, not a special code between SHN_LORESERVE and
 // SHN_HIRESERVE.  Note that for a symbol which is not defined in
 // this object file, this will set *VALUE to 0 and return SHN_UNDEF;
 // it will not return the final value of the symbol in the link.
 unsigned int
 symbol_section_and_value(unsigned int sym, Address* value, bool* is_ordinary);

 // Return a pointer to the Symbol_value structure which holds the
 // value of a local symbol.
 const Symbol_value<size>*
 local_symbol(unsigned int sym) const
 {
   gold_assert(sym < this->local_values_.size());
   return &this->local_values_[sym];
 }

 // Return the index of local symbol SYM in the ordinary symbol
 // table.  A value of -1U means that the symbol is not being output.
 unsigned int
 symtab_index(unsigned int sym) const
 {
   gold_assert(sym < this->local_values_.size());
   return this->local_values_[sym].output_symtab_index();
 }

 // Return the index of local symbol SYM in the dynamic symbol
 // table.  A value of -1U means that the symbol is not being output.
 unsigned int
 dynsym_index(unsigned int sym) const
 {
   gold_assert(sym < this->local_values_.size());
   return this->local_values_[sym].output_dynsym_index();
 }

 // Return the input section index of local symbol SYM.
 unsigned int
 local_symbol_input_shndx(unsigned int sym, bool* is_ordinary) const
 {
   gold_assert(sym < this->local_values_.size());
   return this->local_values_[sym].input_shndx(is_ordinary);
 }

 // Record that local symbol SYM must be in the output symbol table.
 void
 set_must_have_output_symtab_entry(unsigned int sym)
 {
   gold_assert(sym < this->local_values_.size());
   this->local_values_[sym].set_must_have_output_symtab_entry();
 }

 // Record that local symbol SYM needs a dynamic symbol entry.
 void
 set_needs_output_dynsym_entry(unsigned int sym)
 {
   gold_assert(sym < this->local_values_.size());
   this->local_values_[sym].set_needs_output_dynsym_entry();
 }

 // Return whether the local symbol SYMNDX has a PLT offset.
 bool
 local_has_plt_offset(unsigned int symndx) const;

 // Set the PLT offset of the local symbol SYMNDX.
 void
 set_local_plt_offset(unsigned int symndx, unsigned int plt_offset);

 // Adjust this local symbol value.  Return false if the symbol
 // should be discarded from the output file.
 bool
 adjust_local_symbol(Symbol_value<size>* lv) const
 { return this->do_adjust_local_symbol(lv); }

 // Return the name of the symbol that spans the given offset in the
 // specified section in this object.  This is used only for error
 // messages and is not particularly efficient.
 bool
 get_symbol_location_info(unsigned int shndx, off_t offset,
                          Symbol_location_info* info);

 // Look for a kept section corresponding to the given discarded section,
 // and return its output address.  This is used only for relocations in
 // debugging sections.
 Address
 map_to_kept_section(unsigned int shndx, std::string& section_name,
                     bool* found) const;

 // Look for a kept section corresponding to the given discarded section,
 // and return its object file.
 Relobj*
 find_kept_section_object(unsigned int shndx, unsigned int* symndx_p) const;

 // Return the name of symbol SYMNDX.
 std::string
 get_symbol_name(unsigned int symndx);

 // Compute final local symbol value.  R_SYM is the local symbol index.
 // LV_IN points to a local symbol value containing the input value.
 // LV_OUT points to a local symbol value storing the final output value,
 // which must not be a merged symbol value since before calling this
 // method to avoid memory leak.  SYMTAB points to a symbol table.
 //
 // The method returns a status code at return.  If the return status is
 // CFLV_OK, *LV_OUT contains the final value.  If the return status is
 // CFLV_ERROR, *LV_OUT is 0.  If the return status is CFLV_DISCARDED,
 // *LV_OUT is not modified.
 Compute_final_local_value_status
 compute_final_local_value(unsigned int r_sym,
                           const Symbol_value<size>* lv_in,
                           Symbol_value<size>* lv_out,
                           const Symbol_table* symtab);

 // Return true if the layout for this object was deferred.
 bool is_deferred_layout() const
 { return this->is_deferred_layout_; }

protected:
 typedef typename Sized_relobj<size, big_endian>::Output_sections
     Output_sections;

 // Set up.
 virtual void
 do_setup();

 // Read the symbols.
 void
 do_read_symbols(Read_symbols_data*);

 // Read the symbols.  This is common code for all target-specific
 // overrides of do_read_symbols.
 void
 base_read_symbols(Read_symbols_data*);

 // Return the value of a local symbol.
 uint64_t
 do_local_symbol_value(unsigned int symndx, uint64_t addend) const
 {
   const Symbol_value<size>* symval = this->local_symbol(symndx);
   return symval->value(this, addend);
 }

 // Return the PLT offset for a local symbol.  It is an error to call
 // this if it doesn't have one.
 unsigned int
 do_local_plt_offset(unsigned int symndx) const;

 // Return whether local symbol SYMNDX is a TLS symbol.
 bool
 do_local_is_tls(unsigned int symndx) const
 { return this->local_symbol(symndx)->is_tls_symbol(); }

 // Return the number of local symbols.
 unsigned int
 do_local_symbol_count() const
 { return this->local_symbol_count_; }

 // Return the number of local symbols in the output symbol table.
 unsigned int
 do_output_local_symbol_count() const
 { return this->output_local_symbol_count_; }

 // Return the number of local symbols in the output symbol table.
 off_t
 do_local_symbol_offset() const
 { return this->local_symbol_offset_; }

 // Lay out the input sections.
 void
 do_layout(Symbol_table*, Layout*, Read_symbols_data*);

 // Layout sections whose layout was deferred while waiting for
 // input files from a plugin.
 void
 do_layout_deferred_sections(Layout*);

 // Add the symbols to the symbol table.
 void
 do_add_symbols(Symbol_table*, Read_symbols_data*, Layout*);

 Archive::Should_include
 do_should_include_member(Symbol_table* symtab, Layout*, Read_symbols_data*,
                          std::string* why);

 // Iterate over global symbols, calling a visitor class V for each.
 void
 do_for_all_global_symbols(Read_symbols_data* sd,
                           Library_base::Symbol_visitor_base* v);

 // Read the relocs.
 void
 do_read_relocs(Read_relocs_data*);

 // Process the relocs to find list of referenced sections. Used only
 // during garbage collection.
 void
 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);

 // Scan the relocs and adjust the symbol table.
 void
 do_scan_relocs(Symbol_table*, Layout*, Read_relocs_data*);

 // Count the local symbols.
 void
 do_count_local_symbols(Stringpool_template<char>*,
                           Stringpool_template<char>*);

 // Finalize the local symbols.
 unsigned int
 do_finalize_local_symbols(unsigned int, off_t, Symbol_table*);

 // Set the offset where local dynamic symbol information will be stored.
 unsigned int
 do_set_local_dynsym_indexes(unsigned int);

 // Set the offset where local dynamic symbol information will be stored.
 unsigned int
 do_set_local_dynsym_offset(off_t);

 // Relocate the input sections and write out the local symbols.
 void
 do_relocate(const Symbol_table* symtab, const Layout*, Output_file* of);

 // Get the size of a section.
 uint64_t
 do_section_size(unsigned int shndx)
 { return this->elf_file_.section_size(shndx); }

 // Get the name of a section.
 std::string
 do_section_name(unsigned int shndx) const
 { return this->elf_file_.section_name(shndx); }

 // Return the location of the contents of a section.
 const unsigned char*
 do_section_contents(unsigned int shndx, section_size_type* plen,
                     bool cache)
 {
   Object::Location loc(this->elf_file_.section_contents(shndx));
   *plen = convert_to_section_size_type(loc.data_size);
   if (*plen == 0)
     {
       static const unsigned char empty[1] = { '\0' };
       return empty;
     }
   return this->get_view(loc.file_offset, *plen, true, cache);
 }

 // Return section flags.
 uint64_t
 do_section_flags(unsigned int shndx);

 // Return section entsize.
 uint64_t
 do_section_entsize(unsigned int shndx);

 // Return section address.
 uint64_t
 do_section_address(unsigned int shndx)
 { return this->elf_file_.section_addr(shndx); }

 // Return section type.
 unsigned int
 do_section_type(unsigned int shndx)
 { return this->elf_file_.section_type(shndx); }

 // Return the section link field.
 unsigned int
 do_section_link(unsigned int shndx)
 { return this->elf_file_.section_link(shndx); }

 // Return the section info field.
 unsigned int
 do_section_info(unsigned int shndx)
 { return this->elf_file_.section_info(shndx); }

 // Return the section alignment.
 uint64_t
 do_section_addralign(unsigned int shndx)
 { return this->elf_file_.section_addralign(shndx); }

 // Return the Xindex structure to use.
 Xindex*
 do_initialize_xindex();

 // Get symbol counts.
 void
 do_get_global_symbol_counts(const Symbol_table*, size_t*, size_t*) const;

 // Get the global symbols.
 const Symbols*
 do_get_global_symbols() const
 { return &this->symbols_; }

 // Adjust a section index if necessary.
 unsigned int
 adjust_shndx(unsigned int shndx)
 {
   if (shndx >= elfcpp::SHN_LORESERVE)
     shndx += this->elf_file_.large_shndx_offset();
   return shndx;
 }

 // Initialize input to output maps for section symbols in merged
 // sections.
 void
 initialize_input_to_output_maps();

 // Free the input to output maps for section symbols in merged
 // sections.
 void
 free_input_to_output_maps();

 // Return symbol table section index.
 unsigned int
 symtab_shndx() const
 { return this->symtab_shndx_; }

 // Allow a child class to access the ELF file.
 elfcpp::Elf_file<size, big_endian, Object>*
 elf_file()
 { return &this->elf_file_; }

 // Allow a child class to access the local values.
 Local_values*
 local_values()
 { return &this->local_values_; }

 // Views and sizes when relocating.
 struct View_size
 {
   unsigned char* view;
   typename elfcpp::Elf_types<size>::Elf_Addr address;
   off_t offset;
   section_size_type view_size;
   bool is_input_output_view;
   bool is_postprocessing_view;
   bool is_ctors_reverse_view;
 };

 typedef std::vector<View_size> Views;

 // Stash away info for a number of special sections.
 // Return true if any of the sections found require local symbols to be read.
 virtual bool
 do_find_special_sections(Read_symbols_data* sd);

 // This may be overriden by a child class.
 virtual void
 do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
                      const unsigned char* pshdrs, Output_file* of,
                      Views* pviews);

 // Relocate section data for a range of sections.
 void
 relocate_section_range(const Symbol_table* symtab, const Layout* layout,
                        const unsigned char* pshdrs, Output_file* of,
                        Views* pviews, unsigned int start_shndx,
                        unsigned int end_shndx);

 // Adjust this local symbol value.  Return false if the symbol
 // should be discarded from the output file.
 virtual bool
 do_adjust_local_symbol(Symbol_value<size>*) const
 { return true; }

 // Allow a child to set output local symbol count.
 void
 set_output_local_symbol_count(unsigned int value)
 { this->output_local_symbol_count_ = value; }

 // Return the output view for a section.
 unsigned char*
 do_get_output_view(unsigned int, section_size_type*) const;

private:
 // For convenience.
 typedef Sized_relobj_file<size, big_endian> This;
 static const int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
 static const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
 static const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
 typedef elfcpp::Shdr<size, big_endian> Shdr;
 typedef elfcpp::Shdr_write<size, big_endian> Shdr_write;

 // To keep track of discarded comdat sections, we need to map a member
 // section index to the object and section index of the corresponding
 // kept section.
 struct Kept_comdat_section
 {
   Kept_comdat_section(uint64_t a_sh_size, Kept_section* a_kept_section,
                       unsigned int a_symndx, bool a_is_comdat)
     : sh_size(a_sh_size), kept_section(a_kept_section),
       symndx (a_symndx), is_comdat(a_is_comdat)
   { }
   uint64_t sh_size;           // Section size
   Kept_section* kept_section; // Kept section info
   unsigned int symndx;        // Index of key symbol
   bool is_comdat;             // True if comdat group, false if linkonce
 };
 typedef std::map<unsigned int, Kept_comdat_section>
     Kept_comdat_section_table;

 // Find the SHT_SYMTAB section, given the section headers.
 void
 find_symtab(const unsigned char* pshdrs);

 // Return whether SHDR has the right flags for a GNU style exception
 // frame section.
 bool
 check_eh_frame_flags(const elfcpp::Shdr<size, big_endian>* shdr) const;

 // Return whether there is a section named .eh_frame which might be
 // a GNU style exception frame section.
 bool
 find_eh_frame(const unsigned char* pshdrs, const char* names,
               section_size_type names_size) const;

 // Whether to include a section group in the link.
 bool
 include_section_group(Symbol_table*, Layout*, unsigned int, const char*,
                       const unsigned char*, const char*, section_size_type,
                       std::vector<bool>*);

 // Whether to include a linkonce section in the link.
 bool
 include_linkonce_section(Layout*, unsigned int, const char*,
                          const elfcpp::Shdr<size, big_endian>&);

 // Layout an input section.
 void
 layout_section(Layout* layout, unsigned int shndx, const char* name,
                const typename This::Shdr& shdr, unsigned int sh_type,
                unsigned int reloc_shndx, unsigned int reloc_type);

 // Layout an input .eh_frame section.
 void
 layout_eh_frame_section(Layout* layout, const unsigned char* symbols_data,
                         section_size_type symbols_size,
                         const unsigned char* symbol_names_data,
                         section_size_type symbol_names_size,
                         unsigned int shndx, const typename This::Shdr&,
                         unsigned int reloc_shndx, unsigned int reloc_type);

 // Layout an input .note.gnu.property section.
 void
 layout_gnu_property_section(Layout* layout, unsigned int shndx);

 // Write section data to the output file.  Record the views and
 // sizes in VIEWS for use when relocating.
 void
 write_sections(const Layout*, const unsigned char* pshdrs, Output_file*,
                Views*);

 // Relocate the sections in the output file.
 void
 relocate_sections(const Symbol_table* symtab, const Layout* layout,
                   const unsigned char* pshdrs, Output_file* of,
                   Views* pviews)
 { this->do_relocate_sections(symtab, layout, pshdrs, of, pviews); }

 // Reverse the words in a section.  Used for .ctors sections mapped
 // to .init_array sections.
 void
 reverse_words(unsigned char*, section_size_type);

 // Scan the input relocations for --emit-relocs.
 void
 emit_relocs_scan(Symbol_table*, Layout*, const unsigned char* plocal_syms,
                  const Read_relocs_data::Relocs_list::iterator&);

 // Scan the input relocations for --emit-relocs, templatized on the
 // type of the relocation section.
 template<int sh_type>
 void
 emit_relocs_scan_reltype(Symbol_table*, Layout*,
                          const unsigned char* plocal_syms,
                          const Read_relocs_data::Relocs_list::iterator&,
                          Relocatable_relocs*);

 // Scan the input relocations for --incremental.
 void
 incremental_relocs_scan(const Read_relocs_data::Relocs_list::iterator&);

 // Scan the input relocations for --incremental, templatized on the
 // type of the relocation section.
 template<int sh_type>
 void
 incremental_relocs_scan_reltype(
     const Read_relocs_data::Relocs_list::iterator&);

 void
 incremental_relocs_write(const Relocate_info<size, big_endian>*,
                          unsigned int sh_type,
                          const unsigned char* prelocs,
                          size_t reloc_count,
                          Output_section*,
                          Address output_offset,
                          Output_file*);

 template<int sh_type>
 void
 incremental_relocs_write_reltype(const Relocate_info<size, big_endian>*,
                                  const unsigned char* prelocs,
                                  size_t reloc_count,
                                  Output_section*,
                                  Address output_offset,
                                  Output_file*);

 // A type shared by split_stack_adjust_reltype and find_functions.
 typedef std::map<section_offset_type, section_size_type> Function_offsets;

 // Check for -fsplit-stack routines calling non-split-stack routines.
 void
 split_stack_adjust(const Symbol_table*, const unsigned char* pshdrs,
                    unsigned int sh_type, unsigned int shndx,
                    const unsigned char* prelocs, size_t reloc_count,
                    unsigned char* view, section_size_type view_size,
                    Reloc_symbol_changes** reloc_map,
                    const Sized_target<size, big_endian>* target);

 template<int sh_type>
 void
 split_stack_adjust_reltype(const Symbol_table*, const unsigned char* pshdrs,
                            unsigned int shndx, const unsigned char* prelocs,
                            size_t reloc_count, unsigned char* view,
                            section_size_type view_size,
                            Reloc_symbol_changes** reloc_map,
                            const Sized_target<size, big_endian>* target);

 // Find all functions in a section.
 void
 find_functions(const unsigned char* pshdrs, unsigned int shndx,
                Function_offsets*);

 // Write out the local symbols.
 void
 write_local_symbols(Output_file*,
                     const Stringpool_template<char>*,
                     const Stringpool_template<char>*,
                     Output_symtab_xindex*,
                     Output_symtab_xindex*,
                     off_t);

 // Record a mapping from discarded section SHNDX to the corresponding
 // kept section.
 void
 set_kept_comdat_section(unsigned int shndx, bool is_comdat,
                         unsigned int symndx, uint64_t sh_size,
                         Kept_section* kept_section)
 {
   Kept_comdat_section kept(sh_size, kept_section, symndx, is_comdat);
   this->kept_comdat_sections_.insert(std::make_pair(shndx, kept));
 }

 // Find the kept section corresponding to the discarded section
 // SHNDX.  Return true if found.
 bool
 get_kept_comdat_section(unsigned int shndx, bool* is_comdat,
                         unsigned int *symndx, uint64_t* sh_size,
                         Kept_section** kept_section) const
 {
   typename Kept_comdat_section_table::const_iterator p =
     this->kept_comdat_sections_.find(shndx);
   if (p == this->kept_comdat_sections_.end())
     return false;
   *is_comdat = p->second.is_comdat;
   *symndx = p->second.symndx;
   *sh_size = p->second.sh_size;
   *kept_section = p->second.kept_section;
   return true;
 }

 // Compute final local symbol value.  R_SYM is the local symbol index.
 // LV_IN points to a local symbol value containing the input value.
 // LV_OUT points to a local symbol value storing the final output value,
 // which must not be a merged symbol value since before calling this
 // method to avoid memory leak.  RELOCATABLE indicates whether we are
 // linking a relocatable output.  OUT_SECTIONS is an array of output
 // sections.  OUT_OFFSETS is an array of offsets of the sections.  SYMTAB
 // points to a symbol table.
 //
 // The method returns a status code at return.  If the return status is
 // CFLV_OK, *LV_OUT contains the final value.  If the return status is
 // CFLV_ERROR, *LV_OUT is 0.  If the return status is CFLV_DISCARDED,
 // *LV_OUT is not modified.
 inline Compute_final_local_value_status
 compute_final_local_value_internal(unsigned int r_sym,
                                    const Symbol_value<size>* lv_in,
                                    Symbol_value<size>* lv_out,
                                    bool relocatable,
                                    const Output_sections& out_sections,
                                    const std::vector<Address>& out_offsets,
                                    const Symbol_table* symtab);

 // The PLT offsets of local symbols.
 typedef Unordered_map<unsigned int, unsigned int> Local_plt_offsets;

 // Saved information for sections whose layout was deferred.
 struct Deferred_layout
 {
   static const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
   Deferred_layout(unsigned int shndx, const char* name,
                   unsigned int sh_type,
                   const unsigned char* pshdr,
                   unsigned int reloc_shndx, unsigned int reloc_type)
     : name_(name), shndx_(shndx), reloc_shndx_(reloc_shndx),
       reloc_type_(reloc_type)
   {
     typename This::Shdr_write shdr(this->shdr_data_);
     memcpy(this->shdr_data_, pshdr, shdr_size);
     shdr.put_sh_type(sh_type);
   }
   std::string name_;
   unsigned int shndx_;
   unsigned int reloc_shndx_;
   unsigned int reloc_type_;
   unsigned char shdr_data_[shdr_size];
 };

 // General access to the ELF file.
 elfcpp::Elf_file<size, big_endian, Object> elf_file_;
 // The EI_OSABI.
 const Osabi osabi_;
 // Type of ELF file (ET_REL or ET_EXEC).  ET_EXEC files are allowed
 // as input files only for the --just-symbols option.
 int e_type_;
 // Index of SHT_SYMTAB section.
 unsigned int symtab_shndx_;
 // The number of local symbols.
 unsigned int local_symbol_count_;
 // The number of local symbols which go into the output file.
 unsigned int output_local_symbol_count_;
 // The number of local symbols which go into the output file's dynamic
 // symbol table.
 unsigned int output_local_dynsym_count_;
 // The entries in the symbol table for the external symbols.
 Symbols symbols_;
 // Number of symbols defined in object file itself.
 size_t defined_count_;
 // File offset for local symbols (relative to start of symbol table).
 off_t local_symbol_offset_;
 // File offset for local dynamic symbols (absolute).
 off_t local_dynsym_offset_;
 // Values of local symbols.
 Local_values local_values_;
 // PLT offsets for local symbols.
 Local_plt_offsets local_plt_offsets_;
 // Table mapping discarded comdat sections to corresponding kept sections.
 Kept_comdat_section_table kept_comdat_sections_;
 // Whether this object has a GNU style .eh_frame section.
 bool has_eh_frame_;
 // True if the layout of this object was deferred, waiting for plugin
 // replacement files.
 bool is_deferred_layout_;
 // The list of sections whose layout was deferred.
 std::vector<Deferred_layout> deferred_layout_;
 // The list of relocation sections whose layout was deferred.
 std::vector<Deferred_layout> deferred_layout_relocs_;
 // Pointer to the list of output views; valid only during do_relocate().
 const Views* output_views_;
};

// A class to manage the list of all objects.

class Input_objects
{
public:
 Input_objects()
   : relobj_list_(), dynobj_list_(), sonames_(), cref_(NULL)
 { }

 // The type of the list of input relocateable objects.
 typedef std::vector<Relobj*> Relobj_list;
 typedef Relobj_list::const_iterator Relobj_iterator;

 // The type of the list of input dynamic objects.
 typedef std::vector<Dynobj*> Dynobj_list;
 typedef Dynobj_list::const_iterator Dynobj_iterator;

 // Add an object to the list.  Return true if all is well, or false
 // if this object should be ignored.
 bool
 add_object(Object*);

 // Start processing an archive.
 void
 archive_start(Archive*);

 // Stop processing an archive.
 void
 archive_stop(Archive*);

 // For each dynamic object, check whether we've seen all of its
 // explicit dependencies.
 void
 check_dynamic_dependencies() const;

 // Return whether an object was found in the system library
 // directory.
 bool
 found_in_system_library_directory(const Object*) const;

 // Print symbol counts.
 void
 print_symbol_counts(const Symbol_table*) const;

 // Print a cross reference table.
 void
 print_cref(const Symbol_table*, FILE*) const;

 // Iterate over all regular objects.

 Relobj_iterator
 relobj_begin() const
 { return this->relobj_list_.begin(); }

 Relobj_iterator
 relobj_end() const
 { return this->relobj_list_.end(); }

 // Iterate over all dynamic objects.

 Dynobj_iterator
 dynobj_begin() const
 { return this->dynobj_list_.begin(); }

 Dynobj_iterator
 dynobj_end() const
 { return this->dynobj_list_.end(); }

 // Return whether we have seen any dynamic objects.
 bool
 any_dynamic() const
 { return !this->dynobj_list_.empty(); }

 // Return the number of non dynamic objects.
 int
 number_of_relobjs() const
 { return this->relobj_list_.size(); }

 // Return the number of input objects.
 int
 number_of_input_objects() const
 { return this->relobj_list_.size() + this->dynobj_list_.size(); }

private:
 Input_objects(const Input_objects&);
 Input_objects& operator=(const Input_objects&);

 // The list of ordinary objects included in the link.
 Relobj_list relobj_list_;
 // The list of dynamic objects included in the link.
 Dynobj_list dynobj_list_;
 // SONAMEs that we have seen.
 Unordered_map<std::string, Object*> sonames_;
 // Manage cross-references if requested.
 Cref* cref_;
};

// Some of the information we pass to the relocation routines.  We
// group this together to avoid passing a dozen different arguments.

template<int size, bool big_endian>
struct Relocate_info
{
 // Symbol table.
 const Symbol_table* symtab;
 // Layout.
 const Layout* layout;
 // Object being relocated.
 Sized_relobj_file<size, big_endian>* object;
 // Section index of relocation section.
 unsigned int reloc_shndx;
 // Section header of relocation section.
 const unsigned char* reloc_shdr;
 // Info about how relocs should be handled
 Relocatable_relocs* rr;
 // Section index of section being relocated.
 unsigned int data_shndx;
 // Section header of data section.
 const unsigned char* data_shdr;

 // Return a string showing the location of a relocation.  This is
 // only used for error messages.
 std::string
 location(size_t relnum, off_t reloffset) const;
};

// This is used to represent a section in an object and is used as the
// key type for various section maps.
typedef std::pair<Relobj*, unsigned int> Section_id;

// This is similar to Section_id but is used when the section
// pointers are const.
typedef std::pair<const Relobj*, unsigned int> Const_section_id;

// The hash value is based on the address of an object in memory during
// linking.  It is okay to use this for looking up sections but never use
// this in an unordered container that we want to traverse in a repeatable
// manner.

struct Section_id_hash
{
 size_t operator()(const Section_id& loc) const
 { return reinterpret_cast<uintptr_t>(loc.first) ^ loc.second; }
};

struct Const_section_id_hash
{
 size_t operator()(const Const_section_id& loc) const
 { return reinterpret_cast<uintptr_t>(loc.first) ^ loc.second; }
};

// Return whether INPUT_FILE contains an ELF object start at file
// offset OFFSET.  This sets *START to point to a view of the start of
// the file.  It sets *READ_SIZE to the number of bytes in the view.

extern bool
is_elf_object(Input_file* input_file, off_t offset,
             const unsigned char** start, int* read_size);

// Return an Object appropriate for the input file.  P is BYTES long,
// and holds the ELF header.  If PUNCONFIGURED is not NULL, then if
// this sees an object the linker is not configured to support, it
// sets *PUNCONFIGURED to true and returns NULL without giving an
// error message.

extern Object*
make_elf_object(const std::string& name, Input_file*,
               off_t offset, const unsigned char* p,
               section_offset_type bytes, bool* punconfigured);

} // end namespace gold

#endif // !defined(GOLD_OBJECT_H)