// inremental.cc -- incremental linking support for gold

// Copyright (C) 2009-2024 Free Software Foundation, Inc.
// Written by Mikolaj Zalewski <[email protected]>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#include "gold.h"

#include <set>
#include <cstdarg>
#include "libiberty.h"

#include "elfcpp.h"
#include "options.h"
#include "output.h"
#include "symtab.h"
#include "incremental.h"
#include "archive.h"
#include "object.h"
#include "target-select.h"
#include "target.h"
#include "fileread.h"
#include "script.h"

namespace gold {

// Version number for the .gnu_incremental_inputs section.
// Version 1 was the initial checkin.
// Version 2 adds some padding to ensure 8-byte alignment where necessary.
const unsigned int INCREMENTAL_LINK_VERSION = 2;

// This class manages the .gnu_incremental_inputs section, which holds
// the header information, a directory of input files, and separate
// entries for each input file.

template<int size, bool big_endian>
class Output_section_incremental_inputs : public Output_section_data
{
public:
 Output_section_incremental_inputs(const Incremental_inputs* inputs,
                                   const Symbol_table* symtab)
   : Output_section_data(size / 8), inputs_(inputs), symtab_(symtab)
 { }

protected:
 // This is called to update the section size prior to assigning
 // the address and file offset.
 void
 update_data_size()
 { this->set_final_data_size(); }

 // Set the final data size.
 void
 set_final_data_size();

 // Write the data to the file.
 void
 do_write(Output_file*);

 // Write to a map file.
 void
 do_print_to_mapfile(Mapfile* mapfile) const
 { mapfile->print_output_data(this, _("** incremental_inputs")); }

private:
 // Write the section header.
 unsigned char*
 write_header(unsigned char* pov, unsigned int input_file_count,
              section_offset_type command_line_offset);

 // Write the input file entries.
 unsigned char*
 write_input_files(unsigned char* oview, unsigned char* pov,
                   Stringpool* strtab);

 // Write the supplemental information blocks.
 unsigned char*
 write_info_blocks(unsigned char* oview, unsigned char* pov,
                   Stringpool* strtab, unsigned int* global_syms,
                   unsigned int global_sym_count);

 // Write the contents of the .gnu_incremental_symtab section.
 void
 write_symtab(unsigned char* pov, unsigned int* global_syms,
              unsigned int global_sym_count);

 // Write the contents of the .gnu_incremental_got_plt section.
 void
 write_got_plt(unsigned char* pov, off_t view_size);

 // Typedefs for writing the data to the output sections.
 typedef elfcpp::Swap<size, big_endian> Swap;
 typedef elfcpp::Swap<16, big_endian> Swap16;
 typedef elfcpp::Swap<32, big_endian> Swap32;
 typedef elfcpp::Swap<64, big_endian> Swap64;

 // Sizes of various structures.
 static const int sizeof_addr = size / 8;
 static const int header_size =
     Incremental_inputs_reader<size, big_endian>::header_size;
 static const int input_entry_size =
     Incremental_inputs_reader<size, big_endian>::input_entry_size;
 static const unsigned int object_info_size =
     Incremental_inputs_reader<size, big_endian>::object_info_size;
 static const unsigned int input_section_entry_size =
     Incremental_inputs_reader<size, big_endian>::input_section_entry_size;
 static const unsigned int global_sym_entry_size =
     Incremental_inputs_reader<size, big_endian>::global_sym_entry_size;
 static const unsigned int incr_reloc_size =
     Incremental_relocs_reader<size, big_endian>::reloc_size;

 // The Incremental_inputs object.
 const Incremental_inputs* inputs_;

 // The symbol table.
 const Symbol_table* symtab_;
};

// Inform the user why we don't do an incremental link.  Not called in
// the obvious case of missing output file.  TODO: Is this helpful?

void
vexplain_no_incremental(const char* format, va_list args)
{
 char* buf = NULL;
 if (vasprintf(&buf, format, args) < 0)
   gold_nomem();
 gold_info(_("the link might take longer: "
             "cannot perform incremental link: %s"), buf);
 free(buf);
}

void
explain_no_incremental(const char* format, ...)
{
 va_list args;
 va_start(args, format);
 vexplain_no_incremental(format, args);
 va_end(args);
}

// Report an error.

void
Incremental_binary::error(const char* format, ...) const
{
 va_list args;
 va_start(args, format);
 // Current code only checks if the file can be used for incremental linking,
 // so errors shouldn't fail the build, but only result in a fallback to a
 // full build.
 // TODO: when we implement incremental editing of the file, we may need a
 // flag that will cause errors to be treated seriously.
 vexplain_no_incremental(format, args);
 va_end(args);
}

// Return TRUE if a section of type SH_TYPE can be updated in place
// during an incremental update.  We can update sections of type PROGBITS,
// NOBITS, INIT_ARRAY, FINI_ARRAY, PREINIT_ARRAY, NOTE, and
// (processor-specific) unwind sections.  All others will be regenerated.

bool
can_incremental_update(unsigned int sh_type)
{
 return (sh_type == elfcpp::SHT_PROGBITS
         || sh_type == elfcpp::SHT_NOBITS
         || sh_type == elfcpp::SHT_INIT_ARRAY
         || sh_type == elfcpp::SHT_FINI_ARRAY
         || sh_type == elfcpp::SHT_PREINIT_ARRAY
         || sh_type == elfcpp::SHT_NOTE
         || sh_type == parameters->target().unwind_section_type());
}

// Find the .gnu_incremental_inputs section and related sections.

template<int size, bool big_endian>
bool
Sized_incremental_binary<size, big_endian>::find_incremental_inputs_sections(
   unsigned int* p_inputs_shndx,
   unsigned int* p_symtab_shndx,
   unsigned int* p_relocs_shndx,
   unsigned int* p_got_plt_shndx,
   unsigned int* p_strtab_shndx)
{
 unsigned int inputs_shndx =
     this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_INPUTS);
 if (inputs_shndx == elfcpp::SHN_UNDEF)  // Not found.
   return false;

 unsigned int symtab_shndx =
     this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_SYMTAB);
 if (symtab_shndx == elfcpp::SHN_UNDEF)  // Not found.
   return false;
 if (this->elf_file_.section_link(symtab_shndx) != inputs_shndx)
   return false;

 unsigned int relocs_shndx =
     this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_RELOCS);
 if (relocs_shndx == elfcpp::SHN_UNDEF)  // Not found.
   return false;
 if (this->elf_file_.section_link(relocs_shndx) != inputs_shndx)
   return false;

 unsigned int got_plt_shndx =
     this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT);
 if (got_plt_shndx == elfcpp::SHN_UNDEF)  // Not found.
   return false;
 if (this->elf_file_.section_link(got_plt_shndx) != inputs_shndx)
   return false;

 unsigned int strtab_shndx = this->elf_file_.section_link(inputs_shndx);
 if (strtab_shndx == elfcpp::SHN_UNDEF
     || strtab_shndx > this->elf_file_.shnum()
     || this->elf_file_.section_type(strtab_shndx) != elfcpp::SHT_STRTAB)
   return false;

 if (p_inputs_shndx != NULL)
   *p_inputs_shndx = inputs_shndx;
 if (p_symtab_shndx != NULL)
   *p_symtab_shndx = symtab_shndx;
 if (p_relocs_shndx != NULL)
   *p_relocs_shndx = relocs_shndx;
 if (p_got_plt_shndx != NULL)
   *p_got_plt_shndx = got_plt_shndx;
 if (p_strtab_shndx != NULL)
   *p_strtab_shndx = strtab_shndx;
 return true;
}

// Set up the readers into the incremental info sections.

template<int size, bool big_endian>
void
Sized_incremental_binary<size, big_endian>::setup_readers()
{
 unsigned int inputs_shndx;
 unsigned int symtab_shndx;
 unsigned int relocs_shndx;
 unsigned int got_plt_shndx;
 unsigned int strtab_shndx;

 if (!this->find_incremental_inputs_sections(&inputs_shndx, &symtab_shndx,
                                             &relocs_shndx, &got_plt_shndx,
                                             &strtab_shndx))
   return;

 Location inputs_location(this->elf_file_.section_contents(inputs_shndx));
 Location symtab_location(this->elf_file_.section_contents(symtab_shndx));
 Location relocs_location(this->elf_file_.section_contents(relocs_shndx));
 Location got_plt_location(this->elf_file_.section_contents(got_plt_shndx));
 Location strtab_location(this->elf_file_.section_contents(strtab_shndx));

 View inputs_view = this->view(inputs_location);
 View symtab_view = this->view(symtab_location);
 View relocs_view = this->view(relocs_location);
 View got_plt_view = this->view(got_plt_location);
 View strtab_view = this->view(strtab_location);

 elfcpp::Elf_strtab strtab(strtab_view.data(), strtab_location.data_size);

 this->inputs_reader_ =
     Incremental_inputs_reader<size, big_endian>(inputs_view.data(), strtab);
 this->symtab_reader_ =
     Incremental_symtab_reader<big_endian>(symtab_view.data(),
                                           symtab_location.data_size);
 this->relocs_reader_ =
     Incremental_relocs_reader<size, big_endian>(relocs_view.data(),
                                                 relocs_location.data_size);
 this->got_plt_reader_ =
     Incremental_got_plt_reader<big_endian>(got_plt_view.data());

 // Find the main symbol table.
 unsigned int main_symtab_shndx =
     this->elf_file_.find_section_by_type(elfcpp::SHT_SYMTAB);
 gold_assert(main_symtab_shndx != elfcpp::SHN_UNDEF);
 this->main_symtab_loc_ = this->elf_file_.section_contents(main_symtab_shndx);

 // Find the main symbol string table.
 unsigned int main_strtab_shndx =
     this->elf_file_.section_link(main_symtab_shndx);
 gold_assert(main_strtab_shndx != elfcpp::SHN_UNDEF
             && main_strtab_shndx < this->elf_file_.shnum());
 this->main_strtab_loc_ = this->elf_file_.section_contents(main_strtab_shndx);

 // Walk the list of input files (a) to setup an Input_reader for each
 // input file, and (b) to record maps of files added from archive
 // libraries and scripts.
 Incremental_inputs_reader<size, big_endian>& inputs = this->inputs_reader_;
 unsigned int count = inputs.input_file_count();
 this->input_objects_.resize(count);
 this->input_entry_readers_.reserve(count);
 this->library_map_.resize(count);
 this->script_map_.resize(count);
 for (unsigned int i = 0; i < count; i++)
   {
     Input_entry_reader input_file = inputs.input_file(i);
#if __cplusplus >= 2001103L
     this->input_entry_readers_.emplace_back(input_file);
#else
     this->input_entry_readers_.push_back(Sized_input_reader(input_file));
#endif
     switch (input_file.type())
       {
       case INCREMENTAL_INPUT_OBJECT:
       case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
       case INCREMENTAL_INPUT_SHARED_LIBRARY:
         // No special treatment necessary.
         break;
       case INCREMENTAL_INPUT_ARCHIVE:
         {
           Incremental_library* lib =
               new Incremental_library(input_file.filename(), i,
                                       &this->input_entry_readers_[i]);
           this->library_map_[i] = lib;
           unsigned int member_count = input_file.get_member_count();
           for (unsigned int j = 0; j < member_count; j++)
             {
               int member_offset = input_file.get_member_offset(j);
               int member_index = inputs.input_file_index(member_offset);
               this->library_map_[member_index] = lib;
             }
         }
         break;
       case INCREMENTAL_INPUT_SCRIPT:
         {
           Script_info* script = new Script_info(input_file.filename(), i);
           this->script_map_[i] = script;
           unsigned int object_count = input_file.get_object_count();
           for (unsigned int j = 0; j < object_count; j++)
             {
               int object_offset = input_file.get_object_offset(j);
               int object_index = inputs.input_file_index(object_offset);
               this->script_map_[object_index] = script;
             }
         }
         break;
       default:
         gold_unreachable();
       }
   }

 // Initialize the map of global symbols.
 unsigned int nglobals = this->symtab_reader_.symbol_count();
 this->symbol_map_.resize(nglobals);

 this->has_incremental_info_ = true;
}

// Walk the list of input files given on the command line, and build
// a direct map of file index to the corresponding input argument.

void
check_input_args(std::vector<const Input_argument*>& input_args_map,
                Input_arguments::const_iterator begin,
                Input_arguments::const_iterator end)
{
 for (Input_arguments::const_iterator p = begin;
      p != end;
      ++p)
   {
     if (p->is_group())
       {
         const Input_file_group* group = p->group();
         check_input_args(input_args_map, group->begin(), group->end());
       }
     else if (p->is_lib())
       {
         const Input_file_lib* lib = p->lib();
         check_input_args(input_args_map, lib->begin(), lib->end());
       }
     else
       {
         gold_assert(p->is_file());
         unsigned int arg_serial = p->file().arg_serial();
         if (arg_serial > 0)
           {
             gold_assert(arg_serial <= input_args_map.size());
             gold_assert(input_args_map[arg_serial - 1] == 0);
             input_args_map[arg_serial - 1] = &*p;
           }
       }
   }
}

// Determine whether an incremental link based on the existing output file
// can be done.

template<int size, bool big_endian>
bool
Sized_incremental_binary<size, big_endian>::do_check_inputs(
   const Command_line& cmdline,
   Incremental_inputs* incremental_inputs)
{
 Incremental_inputs_reader<size, big_endian>& inputs = this->inputs_reader_;

 if (!this->has_incremental_info_)
   {
     explain_no_incremental(_("no incremental data from previous build"));
     return false;
   }

 if (inputs.version() != INCREMENTAL_LINK_VERSION)
   {
     explain_no_incremental(_("different version of incremental build data"));
     return false;
   }

 if (incremental_inputs->command_line() != inputs.command_line())
   {
     gold_debug(DEBUG_INCREMENTAL,
                "old command line: %s",
                inputs.command_line());
     gold_debug(DEBUG_INCREMENTAL,
                "new command line: %s",
                incremental_inputs->command_line().c_str());
     explain_no_incremental(_("command line changed"));
     return false;
   }

 // Walk the list of input files given on the command line, and build
 // a direct map of argument serial numbers to the corresponding input
 // arguments.
 this->input_args_map_.resize(cmdline.number_of_input_files());
 check_input_args(this->input_args_map_, cmdline.begin(), cmdline.end());

 // Walk the list of input files to check for conditions that prevent
 // an incremental update link.
 unsigned int count = inputs.input_file_count();
 for (unsigned int i = 0; i < count; i++)
   {
     Input_entry_reader input_file = inputs.input_file(i);
     switch (input_file.type())
       {
       case INCREMENTAL_INPUT_OBJECT:
       case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
       case INCREMENTAL_INPUT_SHARED_LIBRARY:
       case INCREMENTAL_INPUT_ARCHIVE:
         // No special treatment necessary.
         break;
       case INCREMENTAL_INPUT_SCRIPT:
         if (this->do_file_has_changed(i))
           {
             explain_no_incremental(_("%s: script file changed"),
                                    input_file.filename());
             return false;
           }
         break;
       default:
         gold_unreachable();
       }
   }

 return true;
}

// Return TRUE if input file N has changed since the last incremental link.

template<int size, bool big_endian>
bool
Sized_incremental_binary<size, big_endian>::do_file_has_changed(
   unsigned int n) const
{
 Input_entry_reader input_file = this->inputs_reader_.input_file(n);
 Incremental_disposition disp = INCREMENTAL_CHECK;

 // For files named in scripts, find the file that was actually named
 // on the command line, so that we can get the incremental disposition
 // flag.
 Script_info* script = this->get_script_info(n);
 if (script != NULL)
   n = script->input_file_index();

 const Input_argument* input_argument = this->get_input_argument(n);
 if (input_argument != NULL)
   disp = input_argument->file().options().incremental_disposition();

 // For files at the beginning of the command line (i.e., those added
 // implicitly by gcc), check whether the --incremental-startup-unchanged
 // option was used.
 if (disp == INCREMENTAL_STARTUP)
   disp = parameters->options().incremental_startup_disposition();

 if (disp != INCREMENTAL_CHECK)
   return disp == INCREMENTAL_CHANGED;

 const char* filename = input_file.filename();
 Timespec old_mtime = input_file.get_mtime();
 Timespec new_mtime;
 if (!get_mtime(filename, &new_mtime))
   {
     // If we can't open get the current modification time, assume it has
     // changed.  If the file doesn't exist, we'll issue an error when we
     // try to open it later.
     return true;
   }

 if (new_mtime.seconds > old_mtime.seconds)
   return true;
 if (new_mtime.seconds == old_mtime.seconds
     && new_mtime.nanoseconds > old_mtime.nanoseconds)
   return true;
 return false;
}

// Initialize the layout of the output file based on the existing
// output file.

template<int size, bool big_endian>
void
Sized_incremental_binary<size, big_endian>::do_init_layout(Layout* layout)
{
 typedef elfcpp::Shdr<size, big_endian> Shdr;
 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;

 // Get views of the section headers and the section string table.
 const off_t shoff = this->elf_file_.shoff();
 const unsigned int shnum = this->elf_file_.shnum();
 const unsigned int shstrndx = this->elf_file_.shstrndx();
 Location shdrs_location(shoff, shnum * shdr_size);
 Location shstrndx_location(this->elf_file_.section_contents(shstrndx));
 View shdrs_view = this->view(shdrs_location);
 View shstrndx_view = this->view(shstrndx_location);
 elfcpp::Elf_strtab shstrtab(shstrndx_view.data(),
                             shstrndx_location.data_size);

 layout->set_incremental_base(this);

 // Initialize the layout.
 this->section_map_.resize(shnum);
 const unsigned char* pshdr = shdrs_view.data() + shdr_size;
 for (unsigned int i = 1; i < shnum; i++)
   {
     Shdr shdr(pshdr);
     const char* name;
     if (!shstrtab.get_c_string(shdr.get_sh_name(), &name))
       name = NULL;
     gold_debug(DEBUG_INCREMENTAL,
                "Output section: %2d %08lx %08lx %08lx %3d %s",
                i,
                static_cast<long>(shdr.get_sh_addr()),
                static_cast<long>(shdr.get_sh_offset()),
                static_cast<long>(shdr.get_sh_size()),
                shdr.get_sh_type(), name ? name : "<null>");
     this->section_map_[i] = layout->init_fixed_output_section(name, shdr);
     pshdr += shdr_size;
   }
}

// Mark regions of the input file that must be kept unchanged.

template<int size, bool big_endian>
void
Sized_incremental_binary<size, big_endian>::do_reserve_layout(
   unsigned int input_file_index)
{
 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;

 Input_entry_reader input_file =
     this->inputs_reader_.input_file(input_file_index);

 if (input_file.type() == INCREMENTAL_INPUT_SHARED_LIBRARY)
   {
     // Reserve the BSS space used for COPY relocations.
     unsigned int nsyms = input_file.get_global_symbol_count();
     Incremental_binary::View symtab_view(NULL);
     unsigned int symtab_count;
     elfcpp::Elf_strtab strtab(NULL, 0);
     this->get_symtab_view(&symtab_view, &symtab_count, &strtab);
     for (unsigned int i = 0; i < nsyms; ++i)
       {
         bool is_def;
         bool is_copy;
         unsigned int output_symndx =
             input_file.get_output_symbol_index(i, &is_def, &is_copy);
         if (is_copy)
           {
             const unsigned char* sym_p = (symtab_view.data()
                                           + output_symndx * sym_size);
             elfcpp::Sym<size, big_endian> gsym(sym_p);
             unsigned int shndx = gsym.get_st_shndx();
             if (shndx < 1 || shndx >= this->section_map_.size())
               continue;
             Output_section* os = this->section_map_[shndx];
             off_t offset = gsym.get_st_value() - os->address();
             os->reserve(offset, gsym.get_st_size());
             gold_debug(DEBUG_INCREMENTAL,
                        "Reserve for COPY reloc: %s, off %d, size %d",
                        os->name(),
                        static_cast<int>(offset),
                        static_cast<int>(gsym.get_st_size()));
           }
       }
     return;
   }

 unsigned int shnum = input_file.get_input_section_count();
 for (unsigned int i = 0; i < shnum; i++)
   {
     typename Input_entry_reader::Input_section_info sect =
         input_file.get_input_section(i);
     if (sect.output_shndx == 0 || sect.sh_offset == -1)
       continue;
     Output_section* os = this->section_map_[sect.output_shndx];
     gold_assert(os != NULL);
     os->reserve(sect.sh_offset, sect.sh_size);
   }
}

// Process the GOT and PLT entries from the existing output file.

template<int size, bool big_endian>
void
Sized_incremental_binary<size, big_endian>::do_process_got_plt(
   Symbol_table* symtab,
   Layout* layout)
{
 Incremental_got_plt_reader<big_endian> got_plt_reader(this->got_plt_reader());
 Sized_target<size, big_endian>* target =
     parameters->sized_target<size, big_endian>();

 // Get the number of symbols in the main symbol table and in the
 // incremental symbol table.  The difference between the two counts
 // is the index of the first forced-local or global symbol in the
 // main symbol table.
 unsigned int symtab_count =
     this->main_symtab_loc_.data_size / elfcpp::Elf_sizes<size>::sym_size;
 unsigned int isym_count = this->symtab_reader_.symbol_count();
 unsigned int first_global = symtab_count - isym_count;

 // Tell the target how big the GOT and PLT sections are.
 unsigned int got_count = got_plt_reader.get_got_entry_count();
 unsigned int plt_count = got_plt_reader.get_plt_entry_count();
 Output_data_got_base* got =
     target->init_got_plt_for_update(symtab, layout, got_count, plt_count);

 // Read the GOT entries from the base file and build the outgoing GOT.
 for (unsigned int i = 0; i < got_count; ++i)
   {
     unsigned int got_type = got_plt_reader.get_got_type(i);
     if ((got_type & 0x7f) == 0x7f)
       {
         // This is the second entry of a pair.
         got->reserve_slot(i);
         continue;
       }
     unsigned int symndx = got_plt_reader.get_got_symndx(i);
     if (got_type & 0x80)
       {
         // This is an entry for a local symbol.  Ignore this entry if
         // the object file was replaced.
         unsigned int input_index = got_plt_reader.get_got_input_index(i);
         gold_debug(DEBUG_INCREMENTAL,
                    "GOT entry %d, type %02x: (local symbol)",
                    i, got_type & 0x7f);
         Sized_relobj_incr<size, big_endian>* obj =
             this->input_object(input_index);
         if (obj != NULL)
           target->reserve_local_got_entry(i, obj, symndx, got_type & 0x7f);
       }
     else
       {
         // This is an entry for a global symbol.  GOT_DESC is the symbol
         // table index.
         // FIXME: This should really be a fatal error (corrupt input).
         gold_assert(symndx >= first_global && symndx < symtab_count);
         Symbol* sym = this->global_symbol(symndx - first_global);
         // Add the GOT entry only if the symbol is still referenced.
         if (sym != NULL && sym->in_reg())
           {
             gold_debug(DEBUG_INCREMENTAL,
                        "GOT entry %d, type %02x: %s",
                        i, got_type, sym->name());
             target->reserve_global_got_entry(i, sym, got_type);
           }
       }
   }

 // Read the PLT entries from the base file and pass each to the target.
 for (unsigned int i = 0; i < plt_count; ++i)
   {
     unsigned int plt_desc = got_plt_reader.get_plt_desc(i);
     // FIXME: This should really be a fatal error (corrupt input).
     gold_assert(plt_desc >= first_global && plt_desc < symtab_count);
     Symbol* sym = this->global_symbol(plt_desc - first_global);
     // Add the PLT entry only if the symbol is still referenced.
     if (sym != NULL && sym->in_reg())
       {
         gold_debug(DEBUG_INCREMENTAL,
                    "PLT entry %d: %s",
                    i, sym->name());
         target->register_global_plt_entry(symtab, layout, i, sym);
       }
   }
}

// Emit COPY relocations from the existing output file.

template<int size, bool big_endian>
void
Sized_incremental_binary<size, big_endian>::do_emit_copy_relocs(
   Symbol_table* symtab)
{
 Sized_target<size, big_endian>* target =
     parameters->sized_target<size, big_endian>();

 for (typename Copy_relocs::iterator p = this->copy_relocs_.begin();
      p != this->copy_relocs_.end();
      ++p)
   {
     if (!(*p).symbol->is_copied_from_dynobj())
       target->emit_copy_reloc(symtab, (*p).symbol, (*p).output_section,
                               (*p).offset);
   }
}

// Apply incremental relocations for symbols whose values have changed.

template<int size, bool big_endian>
void
Sized_incremental_binary<size, big_endian>::do_apply_incremental_relocs(
   const Symbol_table* symtab,
   Layout* layout,
   Output_file* of)
{
 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Addend;
 Incremental_symtab_reader<big_endian> isymtab(this->symtab_reader());
 Incremental_relocs_reader<size, big_endian> irelocs(this->relocs_reader());
 unsigned int nglobals = isymtab.symbol_count();
 const unsigned int incr_reloc_size = irelocs.reloc_size;

 Relocate_info<size, big_endian> relinfo;
 relinfo.symtab = symtab;
 relinfo.layout = layout;
 relinfo.object = NULL;
 relinfo.reloc_shndx = 0;
 relinfo.reloc_shdr = NULL;
 relinfo.data_shndx = 0;
 relinfo.data_shdr = NULL;

 Sized_target<size, big_endian>* target =
     parameters->sized_target<size, big_endian>();

 for (unsigned int i = 0; i < nglobals; i++)
   {
     const Symbol* gsym = this->global_symbol(i);

     // If the symbol is not referenced from any unchanged input files,
     // we do not need to reapply any of its relocations.
     if (gsym == NULL)
       continue;

     // If the symbol is defined in an unchanged file, we do not need to
     // reapply any of its relocations.
     if (gsym->source() == Symbol::FROM_OBJECT
         && gsym->object()->is_incremental())
       continue;

     gold_debug(DEBUG_INCREMENTAL,
                "Applying incremental relocations for global symbol %s [%d]",
                gsym->name(), i);

     // Follow the linked list of input symbol table entries for this symbol.
     // We don't bother to figure out whether the symbol table entry belongs
     // to a changed or unchanged file because it's easier just to apply all
     // the relocations -- although we might scribble over an area that has
     // been reallocated, we do this before copying any new data into the
     // output file.
     unsigned int offset = isymtab.get_list_head(i);
     while (offset > 0)
       {
         Incremental_global_symbol_reader<big_endian> sym_info =
             this->inputs_reader().global_symbol_reader_at_offset(offset);
         unsigned int r_base = sym_info.reloc_offset();
         unsigned int r_count = sym_info.reloc_count();

         // Apply each relocation for this symbol table entry.
         for (unsigned int j = 0; j < r_count;
              ++j, r_base += incr_reloc_size)
           {
             unsigned int r_type = irelocs.get_r_type(r_base);
             unsigned int r_shndx = irelocs.get_r_shndx(r_base);
             Address r_offset = irelocs.get_r_offset(r_base);
             Addend r_addend = irelocs.get_r_addend(r_base);
             Output_section* os = this->output_section(r_shndx);
             Address address = os->address();
             off_t section_offset = os->offset();
             size_t view_size = os->data_size();
             unsigned char* const view = of->get_output_view(section_offset,
                                                             view_size);

             gold_debug(DEBUG_INCREMENTAL,
                        "  %08lx: %s + %d: type %d addend %ld",
                        (long)(section_offset + r_offset),
                        os->name(),
                        (int)r_offset,
                        r_type,
                        (long)r_addend);

             target->apply_relocation(&relinfo, r_offset, r_type, r_addend,
                                      gsym, view, address, view_size);

             // FIXME: Do something more efficient if write_output_view
             // ever becomes more than a no-op.
             of->write_output_view(section_offset, view_size, view);
           }
         offset = sym_info.next_offset();
       }
   }
}

// Get a view of the main symbol table and the symbol string table.

template<int size, bool big_endian>
void
Sized_incremental_binary<size, big_endian>::get_symtab_view(
   View* symtab_view,
   unsigned int* nsyms,
   elfcpp::Elf_strtab* strtab)
{
 *symtab_view = this->view(this->main_symtab_loc_);
 *nsyms = this->main_symtab_loc_.data_size / elfcpp::Elf_sizes<size>::sym_size;

 View strtab_view(this->view(this->main_strtab_loc_));
 *strtab = elfcpp::Elf_strtab(strtab_view.data(),
                              this->main_strtab_loc_.data_size);
}

namespace
{

// Create a Sized_incremental_binary object of the specified size and
// endianness. Fails if the target architecture is not supported.

template<int size, bool big_endian>
Incremental_binary*
make_sized_incremental_binary(Output_file* file,
                             const elfcpp::Ehdr<size, big_endian>& ehdr)
{
 Target* target = select_target(NULL, 0, // XXX
                                ehdr.get_e_machine(), size, big_endian,
                                ehdr.get_ei_osabi(),
                                ehdr.get_ei_abiversion());
 if (target == NULL)
   {
     explain_no_incremental(_("unsupported ELF machine number %d"),
              ehdr.get_e_machine());
     return NULL;
   }

 if (!parameters->target_valid())
   set_parameters_target(target);
 else if (target != &parameters->target())
   gold_error(_("%s: incompatible target"), file->filename());

 return new Sized_incremental_binary<size, big_endian>(file, ehdr, target);
}

}  // End of anonymous namespace.

// Create an Incremental_binary object for FILE.  Returns NULL is this is not
// possible, e.g. FILE is not an ELF file or has an unsupported target.  FILE
// should be opened.

Incremental_binary*
open_incremental_binary(Output_file* file)
{
 off_t filesize = file->filesize();
 int want = elfcpp::Elf_recognizer::max_header_size;
 if (filesize < want)
   want = filesize;

 const unsigned char* p = file->get_input_view(0, want);
 if (!elfcpp::Elf_recognizer::is_elf_file(p, want))
   {
     explain_no_incremental(_("output is not an ELF file."));
     return NULL;
   }

 int size = 0;
 bool big_endian = false;
 std::string error;
 if (!elfcpp::Elf_recognizer::is_valid_header(p, want, &size, &big_endian,
                                              &error))
   {
     explain_no_incremental(error.c_str());
     return NULL;
   }

 Incremental_binary* result = NULL;
 if (size == 32)
   {
     if (big_endian)
       {
#ifdef HAVE_TARGET_32_BIG
         result = make_sized_incremental_binary<32, true>(
             file, elfcpp::Ehdr<32, true>(p));
#else
         explain_no_incremental(_("unsupported file: 32-bit, big-endian"));
#endif
       }
     else
       {
#ifdef HAVE_TARGET_32_LITTLE
         result = make_sized_incremental_binary<32, false>(
             file, elfcpp::Ehdr<32, false>(p));
#else
         explain_no_incremental(_("unsupported file: 32-bit, little-endian"));
#endif
       }
   }
 else if (size == 64)
   {
     if (big_endian)
       {
#ifdef HAVE_TARGET_64_BIG
         result = make_sized_incremental_binary<64, true>(
             file, elfcpp::Ehdr<64, true>(p));
#else
         explain_no_incremental(_("unsupported file: 64-bit, big-endian"));
#endif
       }
     else
       {
#ifdef HAVE_TARGET_64_LITTLE
         result = make_sized_incremental_binary<64, false>(
             file, elfcpp::Ehdr<64, false>(p));
#else
         explain_no_incremental(_("unsupported file: 64-bit, little-endian"));
#endif
       }
   }
 else
   gold_unreachable();

 return result;
}

// Class Incremental_inputs.

// Add the command line to the string table, setting
// command_line_key_.  In incremental builds, the command line is
// stored in .gnu_incremental_inputs so that the next linker run can
// check if the command line options didn't change.

void
Incremental_inputs::report_command_line(int argc, const char* const* argv)
{
 // Always store 'gold' as argv[0] to avoid a full relink if the user used a
 // different path to the linker.
 std::string args("gold");
 // Copied from collect_argv in main.cc.
 for (int i = 1; i < argc; ++i)
   {
     // Adding/removing these options should not result in a full relink.
     if (strcmp(argv[i], "--incremental") == 0
         || strcmp(argv[i], "--incremental-full") == 0
         || strcmp(argv[i], "--incremental-update") == 0
         || strcmp(argv[i], "--incremental-changed") == 0
         || strcmp(argv[i], "--incremental-unchanged") == 0
         || strcmp(argv[i], "--incremental-unknown") == 0
         || strcmp(argv[i], "--incremental-startup-unchanged") == 0
         || is_prefix_of("--incremental-base=", argv[i])
         || is_prefix_of("--incremental-patch=", argv[i])
         || is_prefix_of("--debug=", argv[i]))
       continue;
     if (strcmp(argv[i], "--incremental-base") == 0
         || strcmp(argv[i], "--incremental-patch") == 0
         || strcmp(argv[i], "--debug") == 0)
       {
         // When these options are used without the '=', skip the
         // following parameter as well.
         ++i;
         continue;
       }

     args.append(" '");
     // Now append argv[i], but with all single-quotes escaped
     const char* argpos = argv[i];
     while (1)
       {
         const int len = strcspn(argpos, "'");
         args.append(argpos, len);
         if (argpos[len] == '\0')
           break;
         args.append("'\"'\"'");
         argpos += len + 1;
       }
     args.append("'");
   }

 this->command_line_ = args;
 this->strtab_->add(this->command_line_.c_str(), false,
                    &this->command_line_key_);
}

// Record the input archive file ARCHIVE.  This is called by the
// Add_archive_symbols task before determining which archive members
// to include.  We create the Incremental_archive_entry here and
// attach it to the Archive, but we do not add it to the list of
// input objects until report_archive_end is called.

void
Incremental_inputs::report_archive_begin(Library_base* arch,
                                        unsigned int arg_serial,
                                        Script_info* script_info)
{
 Stringpool::Key filename_key;
 Timespec mtime = arch->get_mtime();

 // For a file loaded from a script, don't record its argument serial number.
 if (script_info != NULL)
   arg_serial = 0;

 this->strtab_->add(arch->filename().c_str(), false, &filename_key);
 Incremental_archive_entry* entry =
     new Incremental_archive_entry(filename_key, arg_serial, mtime);
 arch->set_incremental_info(entry);

 if (script_info != NULL)
   {
     Incremental_script_entry* script_entry = script_info->incremental_info();
     gold_assert(script_entry != NULL);
     script_entry->add_object(entry);
   }
}

// Visitor class for processing the unused global symbols in a library.
// An instance of this class is passed to the library's
// for_all_unused_symbols() iterator, which will call the visit()
// function for each global symbol defined in each unused library
// member.  We add those symbol names to the incremental info for the
// library.

class Unused_symbol_visitor : public Library_base::Symbol_visitor_base
{
public:
 Unused_symbol_visitor(Incremental_archive_entry* entry, Stringpool* strtab)
   : entry_(entry), strtab_(strtab)
 { }

 void
 visit(const char* sym)
 {
   Stringpool::Key symbol_key;
   this->strtab_->add(sym, true, &symbol_key);
   this->entry_->add_unused_global_symbol(symbol_key);
 }

private:
 Incremental_archive_entry* entry_;
 Stringpool* strtab_;
};

// Finish recording the input archive file ARCHIVE.  This is called by the
// Add_archive_symbols task after determining which archive members
// to include.

void
Incremental_inputs::report_archive_end(Library_base* arch)
{
 Incremental_archive_entry* entry = arch->incremental_info();

 gold_assert(entry != NULL);
 this->inputs_.push_back(entry);

 // Collect unused global symbols.
 Unused_symbol_visitor v(entry, this->strtab_);
 arch->for_all_unused_symbols(&v);
}

// Record the input object file OBJ.  If ARCH is not NULL, attach
// the object file to the archive.  This is called by the
// Add_symbols task after finding out the type of the file.

void
Incremental_inputs::report_object(Object* obj, unsigned int arg_serial,
                                 Library_base* arch, Script_info* script_info)
{
 Stringpool::Key filename_key;
 Timespec mtime = obj->get_mtime();

 // For a file loaded from a script, don't record its argument serial number.
 if (script_info != NULL)
   arg_serial = 0;

 this->strtab_->add(obj->name().c_str(), false, &filename_key);

 Incremental_input_entry* input_entry;

 this->current_object_ = obj;

 if (!obj->is_dynamic())
   {
     this->current_object_entry_ =
         new Incremental_object_entry(filename_key, obj, arg_serial, mtime);
     input_entry = this->current_object_entry_;
     if (arch != NULL)
       {
         Incremental_archive_entry* arch_entry = arch->incremental_info();
         gold_assert(arch_entry != NULL);
         arch_entry->add_object(this->current_object_entry_);
       }
   }
 else
   {
     this->current_object_entry_ = NULL;
     Stringpool::Key soname_key;
     Dynobj* dynobj = obj->dynobj();
     gold_assert(dynobj != NULL);
     this->strtab_->add(dynobj->soname(), false, &soname_key);
     input_entry = new Incremental_dynobj_entry(filename_key, soname_key, obj,
                                                arg_serial, mtime);
   }

 if (obj->is_in_system_directory())
   input_entry->set_is_in_system_directory();

 if (obj->as_needed())
   input_entry->set_as_needed();

 this->inputs_.push_back(input_entry);

 if (script_info != NULL)
   {
     Incremental_script_entry* script_entry = script_info->incremental_info();
     gold_assert(script_entry != NULL);
     script_entry->add_object(input_entry);
   }
}

// Record an input section SHNDX from object file OBJ.

void
Incremental_inputs::report_input_section(Object* obj, unsigned int shndx,
                                        const char* name, off_t sh_size)
{
 Stringpool::Key key = 0;

 if (name != NULL)
   this->strtab_->add(name, true, &key);

 gold_assert(obj == this->current_object_);
 gold_assert(this->current_object_entry_ != NULL);
 this->current_object_entry_->add_input_section(shndx, key, sh_size);
}

// Record a kept COMDAT group belonging to object file OBJ.

void
Incremental_inputs::report_comdat_group(Object* obj, const char* name)
{
 Stringpool::Key key = 0;

 if (name != NULL)
   this->strtab_->add(name, true, &key);
 gold_assert(obj == this->current_object_);
 gold_assert(this->current_object_entry_ != NULL);
 this->current_object_entry_->add_comdat_group(key);
}

// Record that the input argument INPUT is a script SCRIPT.  This is
// called by read_script after parsing the script and reading the list
// of inputs added by this script.

void
Incremental_inputs::report_script(Script_info* script,
                                 unsigned int arg_serial,
                                 Timespec mtime)
{
 Stringpool::Key filename_key;

 this->strtab_->add(script->filename().c_str(), false, &filename_key);
 Incremental_script_entry* entry =
     new Incremental_script_entry(filename_key, arg_serial, script, mtime);
 this->inputs_.push_back(entry);
 script->set_incremental_info(entry);
}

// Finalize the incremental link information.  Called from
// Layout::finalize.

void
Incremental_inputs::finalize()
{
 // Finalize the string table.
 this->strtab_->set_string_offsets();
}

// Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.

void
Incremental_inputs::create_data_sections(Symbol_table* symtab)
{
 int reloc_align = 4;

 switch (parameters->size_and_endianness())
   {
#ifdef HAVE_TARGET_32_LITTLE
   case Parameters::TARGET_32_LITTLE:
     this->inputs_section_ =
         new Output_section_incremental_inputs<32, false>(this, symtab);
     reloc_align = 4;
     break;
#endif
#ifdef HAVE_TARGET_32_BIG
   case Parameters::TARGET_32_BIG:
     this->inputs_section_ =
         new Output_section_incremental_inputs<32, true>(this, symtab);
     reloc_align = 4;
     break;
#endif
#ifdef HAVE_TARGET_64_LITTLE
   case Parameters::TARGET_64_LITTLE:
     this->inputs_section_ =
         new Output_section_incremental_inputs<64, false>(this, symtab);
     reloc_align = 8;
     break;
#endif
#ifdef HAVE_TARGET_64_BIG
   case Parameters::TARGET_64_BIG:
     this->inputs_section_ =
         new Output_section_incremental_inputs<64, true>(this, symtab);
     reloc_align = 8;
     break;
#endif
   default:
     gold_unreachable();
   }
 this->symtab_section_ = new Output_data_space(4, "** incremental_symtab");
 this->relocs_section_ = new Output_data_space(reloc_align,
                                               "** incremental_relocs");
 this->got_plt_section_ = new Output_data_space(4, "** incremental_got_plt");
}

// Return the sh_entsize value for the .gnu_incremental_relocs section.
unsigned int
Incremental_inputs::relocs_entsize() const
{
 return 8 + 2 * parameters->target().get_size() / 8;
}

// Class Output_section_incremental_inputs.

// Finalize the offsets for each input section and supplemental info block,
// and set the final data size of the incremental output sections.

template<int size, bool big_endian>
void
Output_section_incremental_inputs<size, big_endian>::set_final_data_size()
{
 const Incremental_inputs* inputs = this->inputs_;

 // Offset of each input entry.
 unsigned int input_offset = this->header_size;

 // Offset of each supplemental info block.
 unsigned int file_index = 0;
 unsigned int info_offset = this->header_size;
 info_offset += this->input_entry_size * inputs->input_file_count();

 // Count each input file and its supplemental information block.
 for (Incremental_inputs::Input_list::const_iterator p =
          inputs->input_files().begin();
      p != inputs->input_files().end();
      ++p)
   {
     // Set the index and offset of the input file entry.
     (*p)->set_offset(file_index, input_offset);
     ++file_index;
     input_offset += this->input_entry_size;

     // Set the offset of the supplemental info block.
     switch ((*p)->type())
       {
       case INCREMENTAL_INPUT_SCRIPT:
         {
           Incremental_script_entry *entry = (*p)->script_entry();
           gold_assert(entry != NULL);
           (*p)->set_info_offset(info_offset);
           // Object count.
           info_offset += 4;
           // Each member.
           info_offset += (entry->get_object_count() * 4);
         }
         break;
       case INCREMENTAL_INPUT_OBJECT:
       case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
         {
           Incremental_object_entry* entry = (*p)->object_entry();
           gold_assert(entry != NULL);
           (*p)->set_info_offset(info_offset);
           // Input section count, global symbol count, local symbol offset,
           // local symbol count, first dynamic reloc, dynamic reloc count,
           // comdat group count.
           info_offset += this->object_info_size;
           // Each input section.
           info_offset += (entry->get_input_section_count()
                           * this->input_section_entry_size);
           // Each global symbol.
           const Object::Symbols* syms = entry->object()->get_global_symbols();
           info_offset += syms->size() * this->global_sym_entry_size;
           // Each comdat group.
           info_offset += entry->get_comdat_group_count() * 4;
         }
         break;
       case INCREMENTAL_INPUT_SHARED_LIBRARY:
         {
           Incremental_dynobj_entry* entry = (*p)->dynobj_entry();
           gold_assert(entry != NULL);
           (*p)->set_info_offset(info_offset);
           // Global symbol count, soname index.
           info_offset += 8;
           // Each global symbol.
           const Object::Symbols* syms = entry->object()->get_global_symbols();
           gold_assert(syms != NULL);
           unsigned int nsyms = syms->size();
           unsigned int nsyms_out = 0;
           for (unsigned int i = 0; i < nsyms; ++i)
             {
               const Symbol* sym = (*syms)[i];
               if (sym == NULL)
                 continue;
               if (sym->is_forwarder())
                 sym = this->symtab_->resolve_forwards(sym);
               if (sym->symtab_index() != -1U)
                 ++nsyms_out;
             }
           info_offset += nsyms_out * 4;
         }
         break;
       case INCREMENTAL_INPUT_ARCHIVE:
         {
           Incremental_archive_entry* entry = (*p)->archive_entry();
           gold_assert(entry != NULL);
           (*p)->set_info_offset(info_offset);
           // Member count + unused global symbol count.
           info_offset += 8;
           // Each member.
           info_offset += (entry->get_member_count() * 4);
           // Each global symbol.
           info_offset += (entry->get_unused_global_symbol_count() * 4);
         }
         break;
       default:
         gold_unreachable();
       }

    // Pad so each supplemental info block begins at an 8-byte boundary.
    if (info_offset & 4)
      info_offset += 4;
  }

 this->set_data_size(info_offset);

 // Set the size of the .gnu_incremental_symtab section.
 inputs->symtab_section()->set_current_data_size(this->symtab_->output_count()
                                                 * sizeof(unsigned int));

 // Set the size of the .gnu_incremental_relocs section.
 inputs->relocs_section()->set_current_data_size(inputs->get_reloc_count()
                                                 * this->incr_reloc_size);

 // Set the size of the .gnu_incremental_got_plt section.
 Sized_target<size, big_endian>* target =
   parameters->sized_target<size, big_endian>();
 unsigned int got_count = target->got_entry_count();
 unsigned int plt_count = target->plt_entry_count();
 unsigned int got_plt_size = 8;  // GOT entry count, PLT entry count.
 got_plt_size = (got_plt_size + got_count + 3) & ~3;  // GOT type array.
 got_plt_size += got_count * 8 + plt_count * 4;  // GOT array, PLT array.
 inputs->got_plt_section()->set_current_data_size(got_plt_size);
}

// Write the contents of the .gnu_incremental_inputs and
// .gnu_incremental_symtab sections.

template<int size, bool big_endian>
void
Output_section_incremental_inputs<size, big_endian>::do_write(Output_file* of)
{
 const Incremental_inputs* inputs = this->inputs_;
 Stringpool* strtab = inputs->get_stringpool();

 // Get a view into the .gnu_incremental_inputs section.
 const off_t off = this->offset();
 const off_t oview_size = this->data_size();
 unsigned char* const oview = of->get_output_view(off, oview_size);
 unsigned char* pov = oview;

 // Get a view into the .gnu_incremental_symtab section.
 const off_t symtab_off = inputs->symtab_section()->offset();
 const off_t symtab_size = inputs->symtab_section()->data_size();
 unsigned char* const symtab_view = of->get_output_view(symtab_off,
                                                        symtab_size);

 // Allocate an array of linked list heads for the .gnu_incremental_symtab
 // section.  Each element corresponds to a global symbol in the output
 // symbol table, and points to the head of the linked list that threads
 // through the object file input entries.  The value of each element
 // is the section-relative offset to a global symbol entry in a
 // supplemental information block.
 unsigned int global_sym_count = this->symtab_->output_count();
 unsigned int* global_syms = new unsigned int[global_sym_count];
 memset(global_syms, 0, global_sym_count * sizeof(unsigned int));

 // Write the section header.
 Stringpool::Key command_line_key = inputs->command_line_key();
 pov = this->write_header(pov, inputs->input_file_count(),
                          strtab->get_offset_from_key(command_line_key));

 // Write the list of input files.
 pov = this->write_input_files(oview, pov, strtab);

 // Write the supplemental information blocks for each input file.
 pov = this->write_info_blocks(oview, pov, strtab, global_syms,
                               global_sym_count);

 gold_assert(pov - oview == oview_size);

 // Write the .gnu_incremental_symtab section.
 gold_assert(static_cast<off_t>(global_sym_count) * 4 == symtab_size);
 this->write_symtab(symtab_view, global_syms, global_sym_count);

 delete[] global_syms;

 // Write the .gnu_incremental_got_plt section.
 const off_t got_plt_off = inputs->got_plt_section()->offset();
 const off_t got_plt_size = inputs->got_plt_section()->data_size();
 unsigned char* const got_plt_view = of->get_output_view(got_plt_off,
                                                         got_plt_size);
 this->write_got_plt(got_plt_view, got_plt_size);

 of->write_output_view(off, oview_size, oview);
 of->write_output_view(symtab_off, symtab_size, symtab_view);
 of->write_output_view(got_plt_off, got_plt_size, got_plt_view);
}

// Write the section header: version, input file count, offset of command line
// in the string table, and 4 bytes of padding.

template<int size, bool big_endian>
unsigned char*
Output_section_incremental_inputs<size, big_endian>::write_header(
   unsigned char* pov,
   unsigned int input_file_count,
   section_offset_type command_line_offset)
{
 Swap32::writeval(pov, INCREMENTAL_LINK_VERSION);
 Swap32::writeval(pov + 4, input_file_count);
 Swap32::writeval(pov + 8, command_line_offset);
 Swap32::writeval(pov + 12, 0);
 gold_assert(this->header_size == 16);
 return pov + this->header_size;
}

// Write the input file entries.

template<int size, bool big_endian>
unsigned char*
Output_section_incremental_inputs<size, big_endian>::write_input_files(
   unsigned char* oview,
   unsigned char* pov,
   Stringpool* strtab)
{
 const Incremental_inputs* inputs = this->inputs_;

 for (Incremental_inputs::Input_list::const_iterator p =
          inputs->input_files().begin();
      p != inputs->input_files().end();
      ++p)
   {
     gold_assert(static_cast<unsigned int>(pov - oview) == (*p)->get_offset());
     section_offset_type filename_offset =
         strtab->get_offset_from_key((*p)->get_filename_key());
     const Timespec& mtime = (*p)->get_mtime();
     unsigned int flags = (*p)->type();
     if ((*p)->is_in_system_directory())
       flags |= INCREMENTAL_INPUT_IN_SYSTEM_DIR;
     if ((*p)->as_needed())
       flags |= INCREMENTAL_INPUT_AS_NEEDED;
     Swap32::writeval(pov, filename_offset);
     Swap32::writeval(pov + 4, (*p)->get_info_offset());
     Swap64::writeval(pov + 8, mtime.seconds);
     Swap32::writeval(pov + 16, mtime.nanoseconds);
     Swap16::writeval(pov + 20, flags);
     Swap16::writeval(pov + 22, (*p)->arg_serial());
     gold_assert(this->input_entry_size == 24);
     pov += this->input_entry_size;
   }
 return pov;
}

// Write the supplemental information blocks.

template<int size, bool big_endian>
unsigned char*
Output_section_incremental_inputs<size, big_endian>::write_info_blocks(
   unsigned char* oview,
   unsigned char* pov,
   Stringpool* strtab,
   unsigned int* global_syms,
   unsigned int global_sym_count)
{
 const Incremental_inputs* inputs = this->inputs_;
 unsigned int first_global_index = this->symtab_->first_global_index();

 for (Incremental_inputs::Input_list::const_iterator p =
          inputs->input_files().begin();
      p != inputs->input_files().end();
      ++p)
   {
     switch ((*p)->type())
       {
       case INCREMENTAL_INPUT_SCRIPT:
         {
           gold_assert(static_cast<unsigned int>(pov - oview)
                       == (*p)->get_info_offset());
           Incremental_script_entry* entry = (*p)->script_entry();
           gold_assert(entry != NULL);

           // Write the object count.
           unsigned int nobjects = entry->get_object_count();
           Swap32::writeval(pov, nobjects);
           pov += 4;

           // For each object, write the offset to its input file entry.
           for (unsigned int i = 0; i < nobjects; ++i)
             {
               Incremental_input_entry* obj = entry->get_object(i);
               Swap32::writeval(pov, obj->get_offset());
               pov += 4;
             }
         }
         break;

       case INCREMENTAL_INPUT_OBJECT:
       case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
         {
           gold_assert(static_cast<unsigned int>(pov - oview)
                       == (*p)->get_info_offset());
           Incremental_object_entry* entry = (*p)->object_entry();
           gold_assert(entry != NULL);
           const Object* obj = entry->object();
           const Relobj* relobj = static_cast<const Relobj*>(obj);
           const Object::Symbols* syms = obj->get_global_symbols();
           // Write the input section count and global symbol count.
           unsigned int nsections = entry->get_input_section_count();
           unsigned int nsyms = syms->size();
           off_t locals_offset = relobj->local_symbol_offset();
           unsigned int nlocals = relobj->output_local_symbol_count();
           unsigned int first_dynrel = relobj->first_dyn_reloc();
           unsigned int ndynrel = relobj->dyn_reloc_count();
           unsigned int ncomdat = entry->get_comdat_group_count();
           Swap32::writeval(pov, nsections);
           Swap32::writeval(pov + 4, nsyms);
           Swap32::writeval(pov + 8, static_cast<unsigned int>(locals_offset));
           Swap32::writeval(pov + 12, nlocals);
           Swap32::writeval(pov + 16, first_dynrel);
           Swap32::writeval(pov + 20, ndynrel);
           Swap32::writeval(pov + 24, ncomdat);
           Swap32::writeval(pov + 28, 0);
           gold_assert(this->object_info_size == 32);
           pov += this->object_info_size;

           // Build a temporary array to map input section indexes
           // from the original object file index to the index in the
           // incremental info table.
           unsigned int* index_map = new unsigned int[obj->shnum()];
           memset(index_map, 0, obj->shnum() * sizeof(unsigned int));

           // For each input section, write the name, output section index,
           // offset within output section, and input section size.
           for (unsigned int i = 0; i < nsections; i++)
             {
               unsigned int shndx = entry->get_input_section_index(i);
               index_map[shndx] = i + 1;
               Stringpool::Key key = entry->get_input_section_name_key(i);
               off_t name_offset = 0;
               if (key != 0)
                 name_offset = strtab->get_offset_from_key(key);
               int out_shndx = 0;
               off_t out_offset = 0;
               off_t sh_size = 0;
               Output_section* os = obj->output_section(shndx);
               if (os != NULL)
                 {
                   out_shndx = os->out_shndx();
                   out_offset = obj->output_section_offset(shndx);
                   sh_size = entry->get_input_section_size(i);
                 }
               Swap32::writeval(pov, name_offset);
               Swap32::writeval(pov + 4, out_shndx);
               Swap::writeval(pov + 8, out_offset);
               Swap::writeval(pov + 8 + sizeof_addr, sh_size);
               gold_assert(this->input_section_entry_size
                           == 8 + 2 * sizeof_addr);
               pov += this->input_section_entry_size;
             }

           // For each global symbol, write its associated relocations,
           // add it to the linked list of globals, then write the
           // supplemental information:  global symbol table index,
           // input section index, linked list chain pointer, relocation
           // count, and offset to the relocations.
           for (unsigned int i = 0; i < nsyms; i++)
             {
               const Symbol* sym = (*syms)[i];
               if (sym->is_forwarder())
                 sym = this->symtab_->resolve_forwards(sym);
               unsigned int shndx = 0;
               if (sym->source() != Symbol::FROM_OBJECT)
                 {
                   // The symbol was defined by the linker (e.g., common).
                   // We mark these symbols with a special SHNDX of -1,
                   // but exclude linker-predefined symbols and symbols
                   // copied from shared objects.
                   if (!sym->is_predefined()
                       && !sym->is_copied_from_dynobj())
                     shndx = -1U;
                 }
               else if (sym->object() == obj && sym->is_defined())
                 {
                   bool is_ordinary;
                   unsigned int orig_shndx = sym->shndx(&is_ordinary);
                   if (is_ordinary)
                     shndx = index_map[orig_shndx];
                   else
                     shndx = 1;
                 }
               unsigned int symtab_index = sym->symtab_index();
               unsigned int chain = 0;
               unsigned int first_reloc = 0;
               unsigned int nrelocs = obj->get_incremental_reloc_count(i);
               if (nrelocs > 0)
                 {
                   gold_assert(symtab_index != -1U
                               && (symtab_index - first_global_index
                                   < global_sym_count));
                   first_reloc = obj->get_incremental_reloc_base(i);
                   chain = global_syms[symtab_index - first_global_index];
                   global_syms[symtab_index - first_global_index] =
                       pov - oview;
                 }
               Swap32::writeval(pov, symtab_index);
               Swap32::writeval(pov + 4, shndx);
               Swap32::writeval(pov + 8, chain);
               Swap32::writeval(pov + 12, nrelocs);
               Swap32::writeval(pov + 16,
                                first_reloc * (8 + 2 * sizeof_addr));
               gold_assert(this->global_sym_entry_size == 20);
               pov += this->global_sym_entry_size;
             }

           // For each kept COMDAT group, write the group signature.
           for (unsigned int i = 0; i < ncomdat; i++)
             {
               Stringpool::Key key = entry->get_comdat_signature_key(i);
               off_t name_offset = 0;
               if (key != 0)
                 name_offset = strtab->get_offset_from_key(key);
               Swap32::writeval(pov, name_offset);
               pov += 4;
             }

           delete[] index_map;
         }
         break;

       case INCREMENTAL_INPUT_SHARED_LIBRARY:
         {
           gold_assert(static_cast<unsigned int>(pov - oview)
                       == (*p)->get_info_offset());
           Incremental_dynobj_entry* entry = (*p)->dynobj_entry();
           gold_assert(entry != NULL);
           Object* obj = entry->object();
           Dynobj* dynobj = obj->dynobj();
           gold_assert(dynobj != NULL);
           const Object::Symbols* syms = obj->get_global_symbols();

           // Write the soname string table index.
           section_offset_type soname_offset =
               strtab->get_offset_from_key(entry->get_soname_key());
           Swap32::writeval(pov, soname_offset);
           pov += 4;

           // Skip the global symbol count for now.
           unsigned char* orig_pov = pov;
           pov += 4;

           // For each global symbol, write the global symbol table index.
           unsigned int nsyms = syms->size();
           unsigned int nsyms_out = 0;
           for (unsigned int i = 0; i < nsyms; i++)
             {
               const Symbol* sym = (*syms)[i];
               if (sym == NULL)
                 continue;
               if (sym->is_forwarder())
                 sym = this->symtab_->resolve_forwards(sym);
               if (sym->symtab_index() == -1U)
                 continue;
               unsigned int flags = 0;
               // If the symbol has hidden or internal visibility, we
               // mark it as defined in the shared object so we don't
               // try to resolve it during an incremental update.
               if (sym->visibility() == elfcpp::STV_HIDDEN
                   || sym->visibility() == elfcpp::STV_INTERNAL)
                 flags = INCREMENTAL_SHLIB_SYM_DEF;
               else if (sym->source() == Symbol::FROM_OBJECT
                        && sym->object() == obj
                        && sym->is_defined())
                 flags = INCREMENTAL_SHLIB_SYM_DEF;
               else if (sym->is_copied_from_dynobj()
                        && this->symtab_->get_copy_source(sym) == dynobj)
                 flags = INCREMENTAL_SHLIB_SYM_COPY;
               flags <<= INCREMENTAL_SHLIB_SYM_FLAGS_SHIFT;
               Swap32::writeval(pov, sym->symtab_index() | flags);
               pov += 4;
               ++nsyms_out;
             }

           // Now write the global symbol count.
           Swap32::writeval(orig_pov, nsyms_out);
         }
         break;

       case INCREMENTAL_INPUT_ARCHIVE:
         {
           gold_assert(static_cast<unsigned int>(pov - oview)
                       == (*p)->get_info_offset());
           Incremental_archive_entry* entry = (*p)->archive_entry();
           gold_assert(entry != NULL);

           // Write the member count and unused global symbol count.
           unsigned int nmembers = entry->get_member_count();
           unsigned int nsyms = entry->get_unused_global_symbol_count();
           Swap32::writeval(pov, nmembers);
           Swap32::writeval(pov + 4, nsyms);
           pov += 8;

           // For each member, write the offset to its input file entry.
           for (unsigned int i = 0; i < nmembers; ++i)
             {
               Incremental_object_entry* member = entry->get_member(i);
               Swap32::writeval(pov, member->get_offset());
               pov += 4;
             }

           // For each global symbol, write the name offset.
           for (unsigned int i = 0; i < nsyms; ++i)
             {
               Stringpool::Key key = entry->get_unused_global_symbol(i);
               Swap32::writeval(pov, strtab->get_offset_from_key(key));
               pov += 4;
             }
         }
         break;

       default:
         gold_unreachable();
       }

    // Pad the info block to a multiple of 8 bytes.
    if (static_cast<unsigned int>(pov - oview) & 4)
     {
       Swap32::writeval(pov, 0);
       pov += 4;
     }
   }
 return pov;
}

// Write the contents of the .gnu_incremental_symtab section.

template<int size, bool big_endian>
void
Output_section_incremental_inputs<size, big_endian>::write_symtab(
   unsigned char* pov,
   unsigned int* global_syms,
   unsigned int global_sym_count)
{
 for (unsigned int i = 0; i < global_sym_count; ++i)
   {
     Swap32::writeval(pov, global_syms[i]);
     pov += 4;
   }
}

// This struct holds the view information needed to write the
// .gnu_incremental_got_plt section.

struct Got_plt_view_info
{
 // Start of the GOT type array in the output view.
 unsigned char* got_type_p;
 // Start of the GOT descriptor array in the output view.
 unsigned char* got_desc_p;
 // Start of the PLT descriptor array in the output view.
 unsigned char* plt_desc_p;
 // Number of GOT entries.
 unsigned int got_count;
 // Number of PLT entries.
 unsigned int plt_count;
 // Offset of the first non-reserved PLT entry (this is a target-dependent value).
 unsigned int first_plt_entry_offset;
 // Size of a PLT entry (this is a target-dependent value).
 unsigned int plt_entry_size;
 // Size of a GOT entry (this is a target-dependent value).
 unsigned int got_entry_size;
 // Symbol index to write in the GOT descriptor array.  For global symbols,
 // this is the global symbol table index; for local symbols, it is the
 // local symbol table index.
 unsigned int sym_index;
 // Input file index to write in the GOT descriptor array.  For global
 // symbols, this is 0; for local symbols, it is the index of the input
 // file entry in the .gnu_incremental_inputs section.
 unsigned int input_index;
};

// Functor class for processing a GOT offset list for local symbols.
// Writes the GOT type and symbol index into the GOT type and descriptor
// arrays in the output section.

template<int size, bool big_endian>
class Local_got_offset_visitor : public Got_offset_list::Visitor
{
public:
 Local_got_offset_visitor(struct Got_plt_view_info& info)
   : info_(info)
 { }

 void
 visit(unsigned int got_type, unsigned int got_offset, uint64_t)
 {
   unsigned int got_index = got_offset / this->info_.got_entry_size;
   gold_assert(got_index < this->info_.got_count);
   // We can only handle GOT entry types in the range 0..0x7e
   // because we use a byte array to store them, and we use the
   // high bit to flag a local symbol.
   gold_assert(got_type < 0x7f);
   this->info_.got_type_p[got_index] = got_type | 0x80;
   unsigned char* pov = this->info_.got_desc_p + got_index * 8;
   elfcpp::Swap<32, big_endian>::writeval(pov, this->info_.sym_index);
   elfcpp::Swap<32, big_endian>::writeval(pov + 4, this->info_.input_index);
   // FIXME: the uint64_t addend should be written here if powerpc64
   // sym+addend got entries are to be supported, with similar changes
   // to Global_got_offset_visitor and support to read them back in
   // do_process_got_plt.
   // FIXME: don't we need this for section symbol plus addend anyway?
   // (See 2015-12-03 commit 7ef8ae7c5f35)
 }

private:
 struct Got_plt_view_info& info_;
};

// Functor class for processing a GOT offset list.  Writes the GOT type
// and symbol index into the GOT type and descriptor arrays in the output
// section.

template<int size, bool big_endian>
class Global_got_offset_visitor : public Got_offset_list::Visitor
{
public:
 Global_got_offset_visitor(struct Got_plt_view_info& info)
   : info_(info)
 { }

 void
 visit(unsigned int got_type, unsigned int got_offset, uint64_t)
 {
   unsigned int got_index = got_offset / this->info_.got_entry_size;
   gold_assert(got_index < this->info_.got_count);
   // We can only handle GOT entry types in the range 0..0x7e
   // because we use a byte array to store them, and we use the
   // high bit to flag a local symbol.
   gold_assert(got_type < 0x7f);
   this->info_.got_type_p[got_index] = got_type;
   unsigned char* pov = this->info_.got_desc_p + got_index * 8;
   elfcpp::Swap<32, big_endian>::writeval(pov, this->info_.sym_index);
   elfcpp::Swap<32, big_endian>::writeval(pov + 4, 0);
 }

private:
 struct Got_plt_view_info& info_;
};

// Functor class for processing the global symbol table.  Processes the
// GOT offset list for the symbol, and writes the symbol table index
// into the PLT descriptor array in the output section.

template<int size, bool big_endian>
class Global_symbol_visitor_got_plt
{
public:
 Global_symbol_visitor_got_plt(struct Got_plt_view_info& info)
   : info_(info)
 { }

 void
 operator()(const Sized_symbol<size>* sym)
 {
   typedef Global_got_offset_visitor<size, big_endian> Got_visitor;
   const Got_offset_list* got_offsets = sym->got_offset_list();
   if (got_offsets != NULL)
     {
       this->info_.sym_index = sym->symtab_index();
       this->info_.input_index = 0;
       Got_visitor v(this->info_);
       got_offsets->for_all_got_offsets(&v);
     }
   if (sym->has_plt_offset())
     {
       unsigned int plt_index =
           ((sym->plt_offset() - this->info_.first_plt_entry_offset)
            / this->info_.plt_entry_size);
       gold_assert(plt_index < this->info_.plt_count);
       unsigned char* pov = this->info_.plt_desc_p + plt_index * 4;
       elfcpp::Swap<32, big_endian>::writeval(pov, sym->symtab_index());
     }
 }

private:
 struct Got_plt_view_info& info_;
};

// Write the contents of the .gnu_incremental_got_plt section.

template<int size, bool big_endian>
void
Output_section_incremental_inputs<size, big_endian>::write_got_plt(
   unsigned char* pov,
   off_t view_size)
{
 Sized_target<size, big_endian>* target =
   parameters->sized_target<size, big_endian>();

 // Set up the view information for the functors.
 struct Got_plt_view_info view_info;
 view_info.got_count = target->got_entry_count();
 view_info.plt_count = target->plt_entry_count();
 view_info.first_plt_entry_offset = target->first_plt_entry_offset();
 view_info.plt_entry_size = target->plt_entry_size();
 view_info.got_entry_size = target->got_entry_size();
 view_info.got_type_p = pov + 8;
 view_info.got_desc_p = (view_info.got_type_p
                         + ((view_info.got_count + 3) & ~3));
 view_info.plt_desc_p = view_info.got_desc_p + view_info.got_count * 8;

 gold_assert(pov + view_size ==
             view_info.plt_desc_p + view_info.plt_count * 4);

 // Write the section header.
 Swap32::writeval(pov, view_info.got_count);
 Swap32::writeval(pov + 4, view_info.plt_count);

 // Initialize the GOT type array to 0xff (reserved).
 memset(view_info.got_type_p, 0xff, view_info.got_count);

 // Write the incremental GOT descriptors for local symbols.
 typedef Local_got_offset_visitor<size, big_endian> Got_visitor;
 for (Incremental_inputs::Input_list::const_iterator p =
          this->inputs_->input_files().begin();
      p != this->inputs_->input_files().end();
      ++p)
   {
     if ((*p)->type() != INCREMENTAL_INPUT_OBJECT
         && (*p)->type() != INCREMENTAL_INPUT_ARCHIVE_MEMBER)
       continue;
     Incremental_object_entry* entry = (*p)->object_entry();
     gold_assert(entry != NULL);
     const Object* obj = entry->object();
     gold_assert(obj != NULL);
     view_info.input_index = (*p)->get_file_index();
     Got_visitor v(view_info);
     obj->for_all_local_got_entries(&v);
   }

 // Write the incremental GOT and PLT descriptors for global symbols.
 typedef Global_symbol_visitor_got_plt<size, big_endian> Symbol_visitor;
 symtab_->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(view_info));
}

// Class Sized_relobj_incr.  Most of these methods are not used for
// Incremental objects, but are required to be implemented by the
// base class Object.

template<int size, bool big_endian>
Sized_relobj_incr<size, big_endian>::Sized_relobj_incr(
   const std::string& name,
   Sized_incremental_binary<size, big_endian>* ibase,
   unsigned int input_file_index)
 : Sized_relobj<size, big_endian>(name, NULL), ibase_(ibase),
   input_file_index_(input_file_index),
   input_reader_(ibase->inputs_reader().input_file(input_file_index)),
   local_symbol_count_(0), output_local_dynsym_count_(0),
   local_symbol_index_(0), local_symbol_offset_(0), local_dynsym_offset_(0),
   symbols_(), defined_count_(0), incr_reloc_offset_(-1U),
   incr_reloc_count_(0), incr_reloc_output_index_(0), incr_relocs_(NULL),
   local_symbols_()
{
 if (this->input_reader_.is_in_system_directory())
   this->set_is_in_system_directory();
 const unsigned int shnum = this->input_reader_.get_input_section_count() + 1;
 this->set_shnum(shnum);
 ibase->set_input_object(input_file_index, this);
}

// Read the symbols.

template<int size, bool big_endian>
void
Sized_relobj_incr<size, big_endian>::do_read_symbols(Read_symbols_data*)
{
 gold_unreachable();
}

// Lay out the input sections.

template<int size, bool big_endian>
void
Sized_relobj_incr<size, big_endian>::do_layout(
   Symbol_table*,
   Layout* layout,
   Read_symbols_data*)
{
 const unsigned int shnum = this->shnum();
 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
 gold_assert(incremental_inputs != NULL);
 Output_sections& out_sections(this->output_sections());
 out_sections.resize(shnum);
 this->section_offsets().resize(shnum);

 // Keep track of .debug_info and .debug_types sections.
 std::vector<unsigned int> debug_info_sections;
 std::vector<unsigned int> debug_types_sections;

 for (unsigned int i = 1; i < shnum; i++)
   {
     typename Input_entry_reader::Input_section_info sect =
         this->input_reader_.get_input_section(i - 1);
     // Add the section to the incremental inputs layout.
     incremental_inputs->report_input_section(this, i, sect.name,
                                              sect.sh_size);
     if (sect.output_shndx == 0 || sect.sh_offset == -1)
       continue;
     Output_section* os = this->ibase_->output_section(sect.output_shndx);
     gold_assert(os != NULL);
     out_sections[i] = os;
     this->section_offsets()[i] = static_cast<Address>(sect.sh_offset);

     // When generating a .gdb_index section, we do additional
     // processing of .debug_info and .debug_types sections after all
     // the other sections.
     if (parameters->options().gdb_index())
       {
         const char* name = os->name();
         if (strcmp(name, ".debug_info") == 0)
           debug_info_sections.push_back(i);
         else if (strcmp(name, ".debug_types") == 0)
           debug_types_sections.push_back(i);
       }
   }

 // Process the COMDAT groups.
 unsigned int ncomdat = this->input_reader_.get_comdat_group_count();
 for (unsigned int i = 0; i < ncomdat; i++)
   {
     const char* signature = this->input_reader_.get_comdat_group_signature(i);
     if (signature == NULL || signature[0] == '\0')
       this->error(_("COMDAT group has no signature"));
     bool keep = layout->find_or_add_kept_section(signature, this, i, true,
                                                  true, NULL);
     if (keep)
       incremental_inputs->report_comdat_group(this, signature);
     else
       this->error(_("COMDAT group %s included twice in incremental link"),
                   signature);
   }

 // When building a .gdb_index section, scan the .debug_info and
 // .debug_types sections.
 for (std::vector<unsigned int>::const_iterator p
          = debug_info_sections.begin();
      p != debug_info_sections.end();
      ++p)
   {
     unsigned int i = *p;
     layout->add_to_gdb_index(false, this, NULL, 0, i, 0, 0);
   }
 for (std::vector<unsigned int>::const_iterator p
          = debug_types_sections.begin();
      p != debug_types_sections.end();
      ++p)
   {
     unsigned int i = *p;
     layout->add_to_gdb_index(true, this, 0, 0, i, 0, 0);
   }
}

// Layout sections whose layout was deferred while waiting for
// input files from a plugin.
template<int size, bool big_endian>
void
Sized_relobj_incr<size, big_endian>::do_layout_deferred_sections(Layout*)
{
}

// Add the symbols to the symbol table.

template<int size, bool big_endian>
void
Sized_relobj_incr<size, big_endian>::do_add_symbols(
   Symbol_table* symtab,
   Read_symbols_data*,
   Layout*)
{
 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
 unsigned char symbuf[sym_size];
 elfcpp::Sym_write<size, big_endian> osym(symbuf);

 typedef typename elfcpp::Elf_types<size>::Elf_WXword Elf_size_type;

 unsigned int nsyms = this->input_reader_.get_global_symbol_count();
 this->symbols_.resize(nsyms);

 Incremental_binary::View symtab_view(NULL);
 unsigned int symtab_count;
 elfcpp::Elf_strtab strtab(NULL, 0);
 this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);

 Incremental_symtab_reader<big_endian> isymtab(this->ibase_->symtab_reader());
 unsigned int isym_count = isymtab.symbol_count();
 unsigned int first_global = symtab_count - isym_count;

 const unsigned char* sym_p;
 for (unsigned int i = 0; i < nsyms; ++i)
   {
     Incremental_global_symbol_reader<big_endian> info =
         this->input_reader_.get_global_symbol_reader(i);
     unsigned int output_symndx = info.output_symndx();
     sym_p = symtab_view.data() + output_symndx * sym_size;
     elfcpp::Sym<size, big_endian> gsym(sym_p);
     const char* name;
     if (!strtab.get_c_string(gsym.get_st_name(), &name))
       name = "";

     typename elfcpp::Elf_types<size>::Elf_Addr v = gsym.get_st_value();
     unsigned int shndx = gsym.get_st_shndx();
     elfcpp::STB st_bind = gsym.get_st_bind();
     elfcpp::STT st_type = gsym.get_st_type();

     // Local hidden symbols start out as globals, but get converted to
     // to local during output.
     if (st_bind == elfcpp::STB_LOCAL)
       st_bind = elfcpp::STB_GLOBAL;

     unsigned int input_shndx = info.shndx();
     if (input_shndx == 0 || input_shndx == -1U)
       {
         shndx = elfcpp::SHN_UNDEF;
         v = 0;
       }
     else if (shndx != elfcpp::SHN_ABS)
       {
         // Find the input section and calculate the section-relative value.
         gold_assert(shndx != elfcpp::SHN_UNDEF);
         Output_section* os = this->ibase_->output_section(shndx);
         gold_assert(os != NULL && os->has_fixed_layout());
         typename Input_entry_reader::Input_section_info sect =
             this->input_reader_.get_input_section(input_shndx - 1);
         gold_assert(sect.output_shndx == shndx);
         if (st_type != elfcpp::STT_TLS)
           v -= os->address();
         v -= sect.sh_offset;
         shndx = input_shndx;
       }

     osym.put_st_name(0);
     osym.put_st_value(v);
     osym.put_st_size(gsym.get_st_size());
     osym.put_st_info(st_bind, st_type);
     osym.put_st_other(gsym.get_st_other());
     osym.put_st_shndx(shndx);

     elfcpp::Sym<size, big_endian> sym(symbuf);
     Symbol* res = symtab->add_from_incrobj(this, name, NULL, &sym);

     if (shndx != elfcpp::SHN_UNDEF)
       ++this->defined_count_;

     // If this is a linker-defined symbol that hasn't yet been defined,
     // define it now.
     if (input_shndx == -1U && !res->is_defined())
       {
         shndx = gsym.get_st_shndx();
         v = gsym.get_st_value();
         Elf_size_type symsize = gsym.get_st_size();
         if (shndx == elfcpp::SHN_ABS)
           {
             symtab->define_as_constant(name, NULL,
                                        Symbol_table::INCREMENTAL_BASE,
                                        v, symsize, st_type, st_bind,
                                        gsym.get_st_visibility(), 0,
                                        false, false);
           }
         else
           {
             Output_section* os = this->ibase_->output_section(shndx);
             gold_assert(os != NULL && os->has_fixed_layout());
             v -= os->address();
             if (symsize > 0)
               os->reserve(v, symsize);
             symtab->define_in_output_data(name, NULL,
                                           Symbol_table::INCREMENTAL_BASE,
                                           os, v, symsize, st_type, st_bind,
                                           gsym.get_st_visibility(), 0,
                                           false, false);
           }
       }

     this->symbols_[i] = res;
     this->ibase_->add_global_symbol(output_symndx - first_global, res);
   }
}

// Return TRUE if we should include this object from an archive library.

template<int size, bool big_endian>
Archive::Should_include
Sized_relobj_incr<size, big_endian>::do_should_include_member(
   Symbol_table*,
   Layout*,
   Read_symbols_data*,
   std::string*)
{
 gold_unreachable();
}

// Iterate over global symbols, calling a visitor class V for each.

template<int size, bool big_endian>
void
Sized_relobj_incr<size, big_endian>::do_for_all_global_symbols(
   Read_symbols_data*,
   Library_base::Symbol_visitor_base*)
{
 // This routine is not used for incremental objects.
}

// Get the size of a section.

template<int size, bool big_endian>
uint64_t
Sized_relobj_incr<size, big_endian>::do_section_size(unsigned int)
{
 gold_unreachable();
}

// Get the name of a section.  This returns the name of the output
// section, because we don't usually track the names of the input
// sections.

template<int size, bool big_endian>
std::string
Sized_relobj_incr<size, big_endian>::do_section_name(unsigned int shndx) const
{
 const Output_sections& out_sections(this->output_sections());
 const Output_section* os = out_sections[shndx];
 if (os == NULL)
   return std::string();
 return os->name();
}

// Return a view of the contents of a section.

template<int size, bool big_endian>
const unsigned char*
Sized_relobj_incr<size, big_endian>::do_section_contents(
   unsigned int shndx,
   section_size_type* plen,
   bool)
{
 Output_sections& out_sections(this->output_sections());
 Output_section* os = out_sections[shndx];
 gold_assert(os != NULL);
 off_t section_offset = os->offset();
 typename Input_entry_reader::Input_section_info sect =
     this->input_reader_.get_input_section(shndx - 1);
 section_offset += sect.sh_offset;
 *plen = sect.sh_size;
 return this->ibase_->view(section_offset, sect.sh_size).data();
}

// Return section flags.

template<int size, bool big_endian>
uint64_t
Sized_relobj_incr<size, big_endian>::do_section_flags(unsigned int)
{
 gold_unreachable();
}

// Return section entsize.

template<int size, bool big_endian>
uint64_t
Sized_relobj_incr<size, big_endian>::do_section_entsize(unsigned int)
{
 gold_unreachable();
}

// Return section address.

template<int size, bool big_endian>
uint64_t
Sized_relobj_incr<size, big_endian>::do_section_address(unsigned int)
{
 gold_unreachable();
}

// Return section type.

template<int size, bool big_endian>
unsigned int
Sized_relobj_incr<size, big_endian>::do_section_type(unsigned int)
{
 gold_unreachable();
}

// Return the section link field.

template<int size, bool big_endian>
unsigned int
Sized_relobj_incr<size, big_endian>::do_section_link(unsigned int)
{
 gold_unreachable();
}

// Return the section link field.

template<int size, bool big_endian>
unsigned int
Sized_relobj_incr<size, big_endian>::do_section_info(unsigned int)
{
 gold_unreachable();
}

// Return the section alignment.

template<int size, bool big_endian>
uint64_t
Sized_relobj_incr<size, big_endian>::do_section_addralign(unsigned int)
{
 gold_unreachable();
}

// Return the Xindex structure to use.

template<int size, bool big_endian>
Xindex*
Sized_relobj_incr<size, big_endian>::do_initialize_xindex()
{
 gold_unreachable();
}

// Get symbol counts.

template<int size, bool big_endian>
void
Sized_relobj_incr<size, big_endian>::do_get_global_symbol_counts(
   const Symbol_table*,
   size_t* defined,
   size_t* used) const
{
 *defined = this->defined_count_;
 size_t count = 0;
 for (typename Symbols::const_iterator p = this->symbols_.begin();
      p != this->symbols_.end();
      ++p)
   if (*p != NULL
       && (*p)->source() == Symbol::FROM_OBJECT
       && (*p)->object() == this
       && (*p)->is_defined())
     ++count;
 *used = count;
}

// Read the relocs.

template<int size, bool big_endian>
void
Sized_relobj_incr<size, big_endian>::do_read_relocs(Read_relocs_data*)
{
}

// Process the relocs to find list of referenced sections. Used only
// during garbage collection.

template<int size, bool big_endian>
void
Sized_relobj_incr<size, big_endian>::do_gc_process_relocs(Symbol_table*,
                                                         Layout*,
                                                         Read_relocs_data*)
{
 gold_unreachable();
}

// Scan the relocs and adjust the symbol table.

template<int size, bool big_endian>
void
Sized_relobj_incr<size, big_endian>::do_scan_relocs(Symbol_table*,
                                                   Layout* layout,
                                                   Read_relocs_data*)
{
 // Count the incremental relocations for this object.
 unsigned int nsyms = this->input_reader_.get_global_symbol_count();
 this->allocate_incremental_reloc_counts();
 for (unsigned int i = 0; i < nsyms; i++)
   {
     Incremental_global_symbol_reader<big_endian> sym =
         this->input_reader_.get_global_symbol_reader(i);
     unsigned int reloc_count = sym.reloc_count();
     if (reloc_count > 0 && this->incr_reloc_offset_ == -1U)
       this->incr_reloc_offset_ = sym.reloc_offset();
     this->incr_reloc_count_ += reloc_count;
     for (unsigned int j = 0; j < reloc_count; j++)
       this->count_incremental_reloc(i);
   }
 this->incr_reloc_output_index_ =
     layout->incremental_inputs()->get_reloc_count();
 this->finalize_incremental_relocs(layout, false);

 // The incoming incremental relocations may not end up in the same
 // location after the incremental update, because the incremental info
 // is regenerated in each link.  Because the new location may overlap
 // with other data in the updated output file, we need to copy the
 // relocations into a buffer so that we can still read them safely
 // after we start writing updates to the output file.
 if (this->incr_reloc_count_ > 0)
   {
     const Incremental_relocs_reader<size, big_endian>& relocs_reader =
         this->ibase_->relocs_reader();
     const unsigned int incr_reloc_size = relocs_reader.reloc_size;
     unsigned int len = this->incr_reloc_count_ * incr_reloc_size;
     this->incr_relocs_ = new unsigned char[len];
     memcpy(this->incr_relocs_,
            relocs_reader.data(this->incr_reloc_offset_),
            len);
   }
}

// Count the local symbols.

template<int size, bool big_endian>
void
Sized_relobj_incr<size, big_endian>::do_count_local_symbols(
   Stringpool_template<char>* pool,
   Stringpool_template<char>*)
{
 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;

 // Set the count of local symbols based on the incremental info.
 unsigned int nlocals = this->input_reader_.get_local_symbol_count();
 this->local_symbol_count_ = nlocals;
 this->local_symbols_.reserve(nlocals);

 // Get views of the base file's symbol table and string table.
 Incremental_binary::View symtab_view(NULL);
 unsigned int symtab_count;
 elfcpp::Elf_strtab strtab(NULL, 0);
 this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);

 // Read the local symbols from the base file's symbol table.
 off_t off = this->input_reader_.get_local_symbol_offset();
 const unsigned char* symp = symtab_view.data() + off;
 for (unsigned int i = 0; i < nlocals; ++i, symp += sym_size)
   {
     elfcpp::Sym<size, big_endian> sym(symp);
     const char* name;
     if (!strtab.get_c_string(sym.get_st_name(), &name))
       name = "";
     gold_debug(DEBUG_INCREMENTAL, "Local symbol %d: %s", i, name);
     name = pool->add(name, true, NULL);
     this->local_symbols_.push_back(Local_symbol(name,
                                                 sym.get_st_value(),
                                                 sym.get_st_size(),
                                                 sym.get_st_shndx(),
                                                 sym.get_st_type(),
                                                 false));
   }
}

// Finalize the local symbols.

template<int size, bool big_endian>
unsigned int
Sized_relobj_incr<size, big_endian>::do_finalize_local_symbols(
   unsigned int index,
   off_t off,
   Symbol_table*)
{
 this->local_symbol_index_ = index;
 this->local_symbol_offset_ = off;
 return index + this->local_symbol_count_;
}

// Set the offset where local dynamic symbol information will be stored.

template<int size, bool big_endian>
unsigned int
Sized_relobj_incr<size, big_endian>::do_set_local_dynsym_indexes(
   unsigned int index)
{
 // FIXME: set local dynsym indexes.
 return index;
}

// Set the offset where local dynamic symbol information will be stored.

template<int size, bool big_endian>
unsigned int
Sized_relobj_incr<size, big_endian>::do_set_local_dynsym_offset(off_t)
{
 return 0;
}

// Relocate the input sections and write out the local symbols.
// We don't actually do any relocation here.  For unchanged input files,
// we reapply relocations only for symbols that have changed; that happens
// in Layout_task_runner::run().  We do need to rewrite the incremental
// relocations for this object.

template<int size, bool big_endian>
void
Sized_relobj_incr<size, big_endian>::do_relocate(const Symbol_table*,
                                                const Layout* layout,
                                                Output_file* of)
{
 if (this->incr_reloc_count_ == 0)
   return;

 const unsigned int incr_reloc_size =
     Incremental_relocs_reader<size, big_endian>::reloc_size;

 // Get a view for the .gnu_incremental_relocs section.
 Incremental_inputs* inputs = layout->incremental_inputs();
 gold_assert(inputs != NULL);
 const off_t relocs_off = inputs->relocs_section()->offset();
 const off_t relocs_size = inputs->relocs_section()->data_size();
 unsigned char* const view = of->get_output_view(relocs_off, relocs_size);

 // Copy the relocations from the buffer.
 off_t off = this->incr_reloc_output_index_ * incr_reloc_size;
 unsigned int len = this->incr_reloc_count_ * incr_reloc_size;
 memcpy(view + off, this->incr_relocs_, len);

 // The output section table may have changed, so we need to map
 // the old section index to the new section index for each relocation.
 for (unsigned int i = 0; i < this->incr_reloc_count_; ++i)
   {
     unsigned char* pov = view + off + i * incr_reloc_size;
     unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(pov + 4);
     Output_section* os = this->ibase_->output_section(shndx);
     gold_assert(os != NULL);
     shndx = os->out_shndx();
     elfcpp::Swap<32, big_endian>::writeval(pov + 4, shndx);
   }

 of->write_output_view(off, len, view);

 // Get views into the output file for the portions of the symbol table
 // and the dynamic symbol table that we will be writing.
 off_t symtab_off = layout->symtab_section()->offset();
 off_t output_size = this->local_symbol_count_ * This::sym_size;
 unsigned char* oview = NULL;
 if (output_size > 0)
   oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
                               output_size);

 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
 unsigned char* dyn_oview = NULL;
 if (dyn_output_size > 0)
   dyn_oview = of->get_output_view(this->local_dynsym_offset_,
                                   dyn_output_size);

 // Write the local symbols.
 unsigned char* ov = oview;
 unsigned char* dyn_ov = dyn_oview;
 const Stringpool* sympool = layout->sympool();
 const Stringpool* dynpool = layout->dynpool();
 Output_symtab_xindex* symtab_xindex = layout->symtab_xindex();
 Output_symtab_xindex* dynsym_xindex = layout->dynsym_xindex();
 for (unsigned int i = 0; i < this->local_symbol_count_; ++i)
   {
     Local_symbol& lsym(this->local_symbols_[i]);

     bool is_ordinary;
     unsigned int st_shndx = this->adjust_sym_shndx(i, lsym.st_shndx,
                                                    &is_ordinary);
     if (is_ordinary)
       {
         Output_section* os = this->ibase_->output_section(st_shndx);
         st_shndx = os->out_shndx();
         if (st_shndx >= elfcpp::SHN_LORESERVE)
           {
             symtab_xindex->add(this->local_symbol_index_ + i, st_shndx);
             if (lsym.needs_dynsym_entry)
               dynsym_xindex->add(lsym.output_dynsym_index, st_shndx);
             st_shndx = elfcpp::SHN_XINDEX;
           }
       }

     // Write the symbol to the output symbol table.
     {
       elfcpp::Sym_write<size, big_endian> osym(ov);
       osym.put_st_name(sympool->get_offset(lsym.name));
       osym.put_st_value(lsym.st_value);
       osym.put_st_size(lsym.st_size);
       osym.put_st_info(elfcpp::STB_LOCAL,
                        static_cast<elfcpp::STT>(lsym.st_type));
       osym.put_st_other(0);
       osym.put_st_shndx(st_shndx);
       ov += sym_size;
     }

     // Write the symbol to the output dynamic symbol table.
     if (lsym.needs_dynsym_entry)
       {
         gold_assert(dyn_ov < dyn_oview + dyn_output_size);
         elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
         osym.put_st_name(dynpool->get_offset(lsym.name));
         osym.put_st_value(lsym.st_value);
         osym.put_st_size(lsym.st_size);
         osym.put_st_info(elfcpp::STB_LOCAL,
                          static_cast<elfcpp::STT>(lsym.st_type));
         osym.put_st_other(0);
         osym.put_st_shndx(st_shndx);
         dyn_ov += sym_size;
       }
   }

 if (output_size > 0)
   {
     gold_assert(ov - oview == output_size);
     of->write_output_view(symtab_off + this->local_symbol_offset_,
                           output_size, oview);
   }

 if (dyn_output_size > 0)
   {
     gold_assert(dyn_ov - dyn_oview == dyn_output_size);
     of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
                           dyn_oview);
   }
}

// Set the offset of a section.

template<int size, bool big_endian>
void
Sized_relobj_incr<size, big_endian>::do_set_section_offset(unsigned int,
                                                          uint64_t)
{
}

// Class Sized_incr_dynobj.  Most of these methods are not used for
// Incremental objects, but are required to be implemented by the
// base class Object.

template<int size, bool big_endian>
Sized_incr_dynobj<size, big_endian>::Sized_incr_dynobj(
   const std::string& name,
   Sized_incremental_binary<size, big_endian>* ibase,
   unsigned int input_file_index)
 : Dynobj(name, NULL), ibase_(ibase),
   input_file_index_(input_file_index),
   input_reader_(ibase->inputs_reader().input_file(input_file_index)),
   symbols_(), defined_count_(0)
{
 if (this->input_reader_.is_in_system_directory())
   this->set_is_in_system_directory();
 if (this->input_reader_.as_needed())
   this->set_as_needed();
 this->set_soname_string(this->input_reader_.get_soname());
 this->set_shnum(0);
}

// Read the symbols.

template<int size, bool big_endian>
void
Sized_incr_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data*)
{
 gold_unreachable();
}

// Lay out the input sections.

template<int size, bool big_endian>
void
Sized_incr_dynobj<size, big_endian>::do_layout(
   Symbol_table*,
   Layout*,
   Read_symbols_data*)
{
}

// Add the symbols to the symbol table.

template<int size, bool big_endian>
void
Sized_incr_dynobj<size, big_endian>::do_add_symbols(
   Symbol_table* symtab,
   Read_symbols_data*,
   Layout*)
{
 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
 unsigned char symbuf[sym_size];
 elfcpp::Sym_write<size, big_endian> osym(symbuf);

 unsigned int nsyms = this->input_reader_.get_global_symbol_count();
 this->symbols_.resize(nsyms);

 Incremental_binary::View symtab_view(NULL);
 unsigned int symtab_count;
 elfcpp::Elf_strtab strtab(NULL, 0);
 this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);

 Incremental_symtab_reader<big_endian> isymtab(this->ibase_->symtab_reader());
 unsigned int isym_count = isymtab.symbol_count();
 unsigned int first_global = symtab_count - isym_count;

 // We keep a set of symbols that we have generated COPY relocations
 // for, indexed by the symbol value. We do not need more than one
 // COPY relocation per address.
 typedef typename std::set<Address> Copied_symbols;
 Copied_symbols copied_symbols;

 const unsigned char* sym_p;
 for (unsigned int i = 0; i < nsyms; ++i)
   {
     bool is_def;
     bool is_copy;
     unsigned int output_symndx =
         this->input_reader_.get_output_symbol_index(i, &is_def, &is_copy);
     sym_p = symtab_view.data() + output_symndx * sym_size;
     elfcpp::Sym<size, big_endian> gsym(sym_p);
     const char* name;
     if (!strtab.get_c_string(gsym.get_st_name(), &name))
       name = "";

     Address v;
     unsigned int shndx;
     elfcpp::STB st_bind = gsym.get_st_bind();
     elfcpp::STT st_type = gsym.get_st_type();

     // Local hidden symbols start out as globals, but get converted to
     // to local during output.
     if (st_bind == elfcpp::STB_LOCAL)
       st_bind = elfcpp::STB_GLOBAL;

     if (!is_def)
       {
         shndx = elfcpp::SHN_UNDEF;
         v = 0;
       }
     else
       {
         // For a symbol defined in a shared object, the section index
         // is meaningless, as long as it's not SHN_UNDEF.
         shndx = 1;
         v = gsym.get_st_value();
         ++this->defined_count_;
       }

     osym.put_st_name(0);
     osym.put_st_value(v);
     osym.put_st_size(gsym.get_st_size());
     osym.put_st_info(st_bind, st_type);
     osym.put_st_other(gsym.get_st_other());
     osym.put_st_shndx(shndx);

     elfcpp::Sym<size, big_endian> sym(symbuf);
     Sized_symbol<size>* res =
         symtab->add_from_incrobj<size, big_endian>(this, name, NULL, &sym);
     this->symbols_[i] = res;
     this->ibase_->add_global_symbol(output_symndx - first_global,
                                     this->symbols_[i]);

     if (is_copy)
       {
         std::pair<typename Copied_symbols::iterator, bool> ins =
             copied_symbols.insert(v);
         if (ins.second)
           {
             unsigned int shndx = gsym.get_st_shndx();
             Output_section* os = this->ibase_->output_section(shndx);
             off_t offset = v - os->address();
             this->ibase_->add_copy_reloc(this->symbols_[i], os, offset);
           }
       }
   }
}

// Return TRUE if we should include this object from an archive library.

template<int size, bool big_endian>
Archive::Should_include
Sized_incr_dynobj<size, big_endian>::do_should_include_member(
   Symbol_table*,
   Layout*,
   Read_symbols_data*,
   std::string*)
{
 gold_unreachable();
}

// Iterate over global symbols, calling a visitor class V for each.

template<int size, bool big_endian>
void
Sized_incr_dynobj<size, big_endian>::do_for_all_global_symbols(
   Read_symbols_data*,
   Library_base::Symbol_visitor_base*)
{
 // This routine is not used for dynamic libraries.
}

// Iterate over local symbols, calling a visitor class V for each GOT offset
// associated with a local symbol.

template<int size, bool big_endian>
void
Sized_incr_dynobj<size, big_endian>::do_for_all_local_got_entries(
   Got_offset_list::Visitor*) const
{
}

// Get the size of a section.

template<int size, bool big_endian>
uint64_t
Sized_incr_dynobj<size, big_endian>::do_section_size(unsigned int)
{
 gold_unreachable();
}

// Get the name of a section.

template<int size, bool big_endian>
std::string
Sized_incr_dynobj<size, big_endian>::do_section_name(unsigned int) const
{
 gold_unreachable();
}

// Return a view of the contents of a section.

template<int size, bool big_endian>
const unsigned char*
Sized_incr_dynobj<size, big_endian>::do_section_contents(
   unsigned int,
   section_size_type*,
   bool)
{
 gold_unreachable();
}

// Return section flags.

template<int size, bool big_endian>
uint64_t
Sized_incr_dynobj<size, big_endian>::do_section_flags(unsigned int)
{
 gold_unreachable();
}

// Return section entsize.

template<int size, bool big_endian>
uint64_t
Sized_incr_dynobj<size, big_endian>::do_section_entsize(unsigned int)
{
 gold_unreachable();
}

// Return section address.

template<int size, bool big_endian>
uint64_t
Sized_incr_dynobj<size, big_endian>::do_section_address(unsigned int)
{
 gold_unreachable();
}

// Return section type.

template<int size, bool big_endian>
unsigned int
Sized_incr_dynobj<size, big_endian>::do_section_type(unsigned int)
{
 gold_unreachable();
}

// Return the section link field.

template<int size, bool big_endian>
unsigned int
Sized_incr_dynobj<size, big_endian>::do_section_link(unsigned int)
{
 gold_unreachable();
}

// Return the section link field.

template<int size, bool big_endian>
unsigned int
Sized_incr_dynobj<size, big_endian>::do_section_info(unsigned int)
{
 gold_unreachable();
}

// Return the section alignment.

template<int size, bool big_endian>
uint64_t
Sized_incr_dynobj<size, big_endian>::do_section_addralign(unsigned int)
{
 gold_unreachable();
}

// Return the Xindex structure to use.

template<int size, bool big_endian>
Xindex*
Sized_incr_dynobj<size, big_endian>::do_initialize_xindex()
{
 gold_unreachable();
}

// Get symbol counts.

template<int size, bool big_endian>
void
Sized_incr_dynobj<size, big_endian>::do_get_global_symbol_counts(
   const Symbol_table*,
   size_t* defined,
   size_t* used) const
{
 *defined = this->defined_count_;
 size_t count = 0;
 for (typename Symbols::const_iterator p = this->symbols_.begin();
      p != this->symbols_.end();
      ++p)
   if (*p != NULL
       && (*p)->source() == Symbol::FROM_OBJECT
       && (*p)->object() == this
       && (*p)->is_defined()
       && (*p)->dynsym_index() != -1U)
     ++count;
 *used = count;
}

// Allocate an incremental object of the appropriate size and endianness.

Object*
make_sized_incremental_object(
   Incremental_binary* ibase,
   unsigned int input_file_index,
   Incremental_input_type input_type,
   const Incremental_binary::Input_reader* input_reader)
{
 Object* obj = NULL;
 std::string name(input_reader->filename());

 switch (parameters->size_and_endianness())
   {
#ifdef HAVE_TARGET_32_LITTLE
   case Parameters::TARGET_32_LITTLE:
     {
       Sized_incremental_binary<32, false>* sized_ibase =
           static_cast<Sized_incremental_binary<32, false>*>(ibase);
       if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
         obj = new Sized_incr_dynobj<32, false>(name, sized_ibase,
                                                input_file_index);
       else
         obj = new Sized_relobj_incr<32, false>(name, sized_ibase,
                                                input_file_index);
     }
     break;
#endif
#ifdef HAVE_TARGET_32_BIG
   case Parameters::TARGET_32_BIG:
     {
       Sized_incremental_binary<32, true>* sized_ibase =
           static_cast<Sized_incremental_binary<32, true>*>(ibase);
       if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
         obj = new Sized_incr_dynobj<32, true>(name, sized_ibase,
                                               input_file_index);
       else
         obj = new Sized_relobj_incr<32, true>(name, sized_ibase,
                                               input_file_index);
     }
     break;
#endif
#ifdef HAVE_TARGET_64_LITTLE
   case Parameters::TARGET_64_LITTLE:
     {
       Sized_incremental_binary<64, false>* sized_ibase =
           static_cast<Sized_incremental_binary<64, false>*>(ibase);
       if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
         obj = new Sized_incr_dynobj<64, false>(name, sized_ibase,
                                                input_file_index);
       else
         obj = new Sized_relobj_incr<64, false>(name, sized_ibase,
                                                input_file_index);
    }
     break;
#endif
#ifdef HAVE_TARGET_64_BIG
   case Parameters::TARGET_64_BIG:
     {
       Sized_incremental_binary<64, true>* sized_ibase =
           static_cast<Sized_incremental_binary<64, true>*>(ibase);
       if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
         obj = new Sized_incr_dynobj<64, true>(name, sized_ibase,
                                               input_file_index);
       else
         obj = new Sized_relobj_incr<64, true>(name, sized_ibase,
                                               input_file_index);
     }
     break;
#endif
   default:
     gold_unreachable();
   }

 gold_assert(obj != NULL);
 return obj;
}

// Copy the unused symbols from the incremental input info.
// We need to do this because we may be overwriting the incremental
// input info in the base file before we write the new incremental
// info.
void
Incremental_library::copy_unused_symbols()
{
 unsigned int symcount = this->input_reader_->get_unused_symbol_count();
 this->unused_symbols_.reserve(symcount);
 for (unsigned int i = 0; i < symcount; ++i)
   {
     std::string name(this->input_reader_->get_unused_symbol(i));
     this->unused_symbols_.push_back(name);
   }
}

// Iterator for unused global symbols in the library.
void
Incremental_library::do_for_all_unused_symbols(Symbol_visitor_base* v) const
{
 for (Symbol_list::const_iterator p = this->unused_symbols_.begin();
      p != this->unused_symbols_.end();
      ++p)
 v->visit(p->c_str());
}

// Instantiate the templates we need.

#ifdef HAVE_TARGET_32_LITTLE
template
class Sized_incremental_binary<32, false>;

template
class Sized_relobj_incr<32, false>;

template
class Sized_incr_dynobj<32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
class Sized_incremental_binary<32, true>;

template
class Sized_relobj_incr<32, true>;

template
class Sized_incr_dynobj<32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
class Sized_incremental_binary<64, false>;

template
class Sized_relobj_incr<64, false>;

template
class Sized_incr_dynobj<64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
class Sized_incremental_binary<64, true>;

template
class Sized_relobj_incr<64, true>;

template
class Sized_incr_dynobj<64, true>;
#endif

} // End namespace gold.