// fileread.cc -- read files for gold

// Copyright (C) 2006-2024 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <[email protected]>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#include "gold.h"

#include <cstring>
#include <cerrno>
#include <climits>
#include <fcntl.h>
#include <unistd.h>

#ifdef HAVE_SYS_MMAN_H
#include <sys/mman.h>
#endif

#ifdef HAVE_READV
#include <sys/uio.h>
#endif

#include <sys/stat.h>
#include "filenames.h"

#include "debug.h"
#include "parameters.h"
#include "options.h"
#include "dirsearch.h"
#include "target.h"
#include "binary.h"
#include "descriptors.h"
#include "gold-threads.h"
#include "fileread.h"

// For systems without mmap support.
#ifndef HAVE_MMAP
# define mmap gold_mmap
# define munmap gold_munmap
# ifndef MAP_FAILED
#  define MAP_FAILED (reinterpret_cast<void*>(-1))
# endif
# ifndef PROT_READ
#  define PROT_READ 0
# endif
# ifndef MAP_PRIVATE
#  define MAP_PRIVATE 0
# endif

# ifndef ENOSYS
#  define ENOSYS EINVAL
# endif

static void *
gold_mmap(void *, size_t, int, int, int, off_t)
{
 errno = ENOSYS;
 return MAP_FAILED;
}

static int
gold_munmap(void *, size_t)
{
 errno = ENOSYS;
 return -1;
}

#endif

#ifndef HAVE_READV
struct iovec { void* iov_base; size_t iov_len; };
ssize_t
readv(int, const iovec*, int)
{
 gold_unreachable();
}
#endif

namespace gold
{

// Get the last modified time of an unopened file.

bool
get_mtime(const char* filename, Timespec* mtime)
{
 struct stat file_stat;

 if (stat(filename, &file_stat) < 0)
   return false;
#ifdef HAVE_STAT_ST_MTIM
 mtime->seconds = file_stat.st_mtim.tv_sec;
 mtime->nanoseconds = file_stat.st_mtim.tv_nsec;
#else
 mtime->seconds = file_stat.st_mtime;
 mtime->nanoseconds = 0;
#endif
 return true;
}

// Class File_read.

// A lock for the File_read static variables.
static Lock* file_counts_lock = NULL;
static Initialize_lock file_counts_initialize_lock(&file_counts_lock);

// The File_read static variables.
unsigned long long File_read::total_mapped_bytes;
unsigned long long File_read::current_mapped_bytes;
unsigned long long File_read::maximum_mapped_bytes;
std::vector<std::string> File_read::files_read;

// Class File_read::View.

File_read::View::~View()
{
 gold_assert(!this->is_locked());
 switch (this->data_ownership_)
   {
   case DATA_ALLOCATED_ARRAY:
     free(const_cast<unsigned char*>(this->data_));
     break;
   case DATA_MMAPPED:
     if (::munmap(const_cast<unsigned char*>(this->data_), this->size_) != 0)
       gold_warning(_("munmap failed: %s"), strerror(errno));
     if (!parameters->options_valid() || parameters->options().stats())
       {
         file_counts_initialize_lock.initialize();
         Hold_optional_lock hl(file_counts_lock);
         File_read::current_mapped_bytes -= this->size_;
       }
     break;
   case DATA_NOT_OWNED:
     break;
   default:
     gold_unreachable();
   }
}

void
File_read::View::lock()
{
 ++this->lock_count_;
}

void
File_read::View::unlock()
{
 gold_assert(this->lock_count_ > 0);
 --this->lock_count_;
}

bool
File_read::View::is_locked()
{
 return this->lock_count_ > 0;
}

// Class File_read.

File_read::~File_read()
{
 gold_assert(this->token_.is_writable());
 if (this->is_descriptor_opened_)
   {
     release_descriptor(this->descriptor_, true);
     this->descriptor_ = -1;
     this->is_descriptor_opened_ = false;
   }
 this->name_.clear();
 this->clear_views(CLEAR_VIEWS_ALL);
}

// Open the file.

bool
File_read::open(const Task* task, const std::string& name)
{
 gold_assert(this->token_.is_writable()
             && this->descriptor_ < 0
             && !this->is_descriptor_opened_
             && this->name_.empty());
 this->name_ = name;

 this->descriptor_ = open_descriptor(-1, this->name_.c_str(),
                                     O_RDONLY);

 if (this->descriptor_ >= 0)
   {
     this->is_descriptor_opened_ = true;
     struct stat s;
     if (::fstat(this->descriptor_, &s) < 0)
       gold_error(_("%s: fstat failed: %s"),
                  this->name_.c_str(), strerror(errno));
     this->size_ = s.st_size;
     gold_debug(DEBUG_FILES, "Attempt to open %s succeeded",
                this->name_.c_str());
     this->token_.add_writer(task);
     file_counts_initialize_lock.initialize();
     Hold_optional_lock hl(file_counts_lock);
     record_file_read(this->name_);
   }

 return this->descriptor_ >= 0;
}

// Open the file with the contents in memory.

bool
File_read::open(const Task* task, const std::string& name,
               const unsigned char* contents, off_t size)
{
 gold_assert(this->token_.is_writable()
             && this->descriptor_ < 0
             && !this->is_descriptor_opened_
             && this->name_.empty());
 this->name_ = name;
 this->whole_file_view_ = new View(0, size, contents, 0, false,
                                   View::DATA_NOT_OWNED);
 this->add_view(this->whole_file_view_);
 this->size_ = size;
 this->token_.add_writer(task);
 return true;
}

// Reopen a descriptor if necessary.

void
File_read::reopen_descriptor()
{
 if (!this->is_descriptor_opened_)
   {
     this->descriptor_ = open_descriptor(this->descriptor_,
                                         this->name_.c_str(),
                                         O_RDONLY);
     if (this->descriptor_ < 0)
       gold_fatal(_("could not reopen file %s"), this->name_.c_str());
     this->is_descriptor_opened_ = true;
   }
}

// Release the file.  This is called when we are done with the file in
// a Task.

void
File_read::release()
{
 gold_assert(this->is_locked());

 if (!parameters->options_valid() || parameters->options().stats())
   {
     file_counts_initialize_lock.initialize();
     Hold_optional_lock hl(file_counts_lock);
     File_read::total_mapped_bytes += this->mapped_bytes_;
     File_read::current_mapped_bytes += this->mapped_bytes_;
     if (File_read::current_mapped_bytes > File_read::maximum_mapped_bytes)
       File_read::maximum_mapped_bytes = File_read::current_mapped_bytes;
   }

 this->mapped_bytes_ = 0;

 // Only clear views if there is only one attached object.  Otherwise
 // we waste time trying to clear cached archive views.  Similarly
 // for releasing the descriptor.
 if (this->object_count_ <= 1)
   {
     this->clear_views(CLEAR_VIEWS_NORMAL);
     if (this->is_descriptor_opened_)
       {
         release_descriptor(this->descriptor_, false);
         this->is_descriptor_opened_ = false;
       }
   }

 this->released_ = true;
}

// Lock the file.

void
File_read::lock(const Task* task)
{
 gold_assert(this->released_);
 gold_debug(DEBUG_FILES, "Locking file \"%s\"", this->name_.c_str());
 this->token_.add_writer(task);
 this->released_ = false;
}

// Unlock the file.

void
File_read::unlock(const Task* task)
{
 gold_debug(DEBUG_FILES, "Unlocking file \"%s\"", this->name_.c_str());
 this->release();
 this->token_.remove_writer(task);
}

// Return whether the file is locked.

bool
File_read::is_locked() const
{
 if (!this->token_.is_writable())
   return true;
 // The file is not locked, so it should have been released.
 gold_assert(this->released_);
 return false;
}

// See if we have a view which covers the file starting at START for
// SIZE bytes.  Return a pointer to the View if found, NULL if not.
// If BYTESHIFT is not -1U, the returned View must have the specified
// byte shift; otherwise, it may have any byte shift.  If VSHIFTED is
// not NULL, this sets *VSHIFTED to a view which would have worked if
// not for the requested BYTESHIFT.

inline File_read::View*
File_read::find_view(off_t start, section_size_type size,
                    unsigned int byteshift, File_read::View** vshifted) const
{
 gold_assert(start <= this->size_
             && (static_cast<unsigned long long>(size)
                 <= static_cast<unsigned long long>(this->size_ - start)));

 if (vshifted != NULL)
   *vshifted = NULL;

 // If we have the whole file mmapped, and the alignment is right,
 // we can return it.
 if (this->whole_file_view_)
   if (byteshift == -1U || byteshift == 0)
     return this->whole_file_view_;

 off_t page = File_read::page_offset(start);

 unsigned int bszero = 0;
 Views::const_iterator p = this->views_.upper_bound(std::make_pair(page - 1,
                                                                   bszero));

 while (p != this->views_.end() && p->first.first <= page)
   {
     if (p->second->start() <= start
         && (p->second->start() + static_cast<off_t>(p->second->size())
             >= start + static_cast<off_t>(size)))
       {
         if (byteshift == -1U || byteshift == p->second->byteshift())
           {
             p->second->set_accessed();
             return p->second;
           }

         if (vshifted != NULL && *vshifted == NULL)
           *vshifted = p->second;
       }

     ++p;
   }

 return NULL;
}

// Read SIZE bytes from the file starting at offset START.  Read into
// the buffer at P.

void
File_read::do_read(off_t start, section_size_type size, void* p)
{
 ssize_t bytes;
 if (this->whole_file_view_ != NULL)
   {
     // See PR 23765 for an example of a testcase that triggers this error.
     if (((ssize_t) start) < 0)
       gold_fatal(_("%s: read failed, starting offset (%#llx) less than zero"),
                  this->filename().c_str(),
                  static_cast<long long>(start));

     bytes = this->size_ - start;
     if (static_cast<section_size_type>(bytes) >= size)
       {
         memcpy(p, this->whole_file_view_->data() + start, size);
         return;
       }
   }
 else
   {
     this->reopen_descriptor();

     char *read_ptr = static_cast<char *>(p);
     off_t read_pos = start;
     size_t to_read = size;
     do
       {
         bytes = ::pread(this->descriptor_, read_ptr, to_read, read_pos);
         if (bytes < 0)
           gold_fatal(_("%s: pread failed: %s"),
                      this->filename().c_str(), strerror(errno));

         read_pos += bytes;
         read_ptr += bytes;
         to_read -= bytes;
         if (to_read == 0)
           return;
       }
     while (bytes > 0);

     bytes = size - to_read;
   }

 gold_fatal(_("%s: file too short: read only %lld of %lld bytes at %lld"),
            this->filename().c_str(),
            static_cast<long long>(bytes),
            static_cast<long long>(size),
            static_cast<long long>(start));
}

// Read data from the file.

void
File_read::read(off_t start, section_size_type size, void* p)
{
 const File_read::View* pv = this->find_view(start, size, -1U, NULL);
 if (pv != NULL)
   {
     memcpy(p, pv->data() + (start - pv->start() + pv->byteshift()), size);
     return;
   }

 this->do_read(start, size, p);
}

// Add a new view.  There may already be an existing view at this
// offset.  If there is, the new view will be larger, and should
// replace the old view.

void
File_read::add_view(File_read::View* v)
{
 std::pair<Views::iterator, bool> ins =
   this->views_.insert(std::make_pair(std::make_pair(v->start(),
                                                     v->byteshift()),
                                      v));
 if (ins.second)
   return;

 // There was an existing view at this offset.  It must not be large
 // enough.  We can't delete it here, since something might be using
 // it; we put it on a list to be deleted when the file is unlocked.
 File_read::View* vold = ins.first->second;
 gold_assert(vold->size() < v->size());
 if (vold->should_cache())
   {
     v->set_cache();
     vold->clear_cache();
   }
 this->saved_views_.push_back(vold);

 ins.first->second = v;
}

// Make a new view with a specified byteshift, reading the data from
// the file.

File_read::View*
File_read::make_view(off_t start, section_size_type size,
                    unsigned int byteshift, bool cache)
{
 gold_assert(size > 0);
 gold_assert(start <= this->size_
             && (static_cast<unsigned long long>(size)
                 <= static_cast<unsigned long long>(this->size_ - start)));

 off_t poff = File_read::page_offset(start);

 section_size_type psize = File_read::pages(size + (start - poff));

 if (poff + static_cast<off_t>(psize) >= this->size_)
   {
     psize = this->size_ - poff;
     gold_assert(psize >= size);
   }

 void* p;
 View::Data_ownership ownership;
 if (byteshift != 0)
   {
     p = malloc(psize + byteshift);
     if (p == NULL)
       gold_nomem();
     memset(p, 0, byteshift);
     this->do_read(poff, psize, static_cast<unsigned char*>(p) + byteshift);
     ownership = View::DATA_ALLOCATED_ARRAY;
   }
 else
   {
     this->reopen_descriptor();
     p = ::mmap(NULL, psize, PROT_READ, MAP_PRIVATE, this->descriptor_, poff);
     if (p != MAP_FAILED)
       {
         ownership = View::DATA_MMAPPED;
         this->mapped_bytes_ += psize;
       }
     else
       {
         p = malloc(psize);
         if (p == NULL)
           gold_nomem();
         this->do_read(poff, psize, p);
         ownership = View::DATA_ALLOCATED_ARRAY;
       }
   }

 const unsigned char* pbytes = static_cast<const unsigned char*>(p);
 File_read::View* v = new File_read::View(poff, psize, pbytes, byteshift,
                                          cache, ownership);

 this->add_view(v);

 return v;
}

// Find a View or make a new one, shifted as required by the file
// offset OFFSET and ALIGNED.

File_read::View*
File_read::find_or_make_view(off_t offset, off_t start,
                            section_size_type size, bool aligned, bool cache)
{
 // Check that start and end of the view are within the file.
 if (start > this->size_
     || (static_cast<unsigned long long>(size)
         > static_cast<unsigned long long>(this->size_ - start)))
   gold_fatal(_("%s: attempt to map %lld bytes at offset %lld exceeds "
                "size of file; the file may be corrupt"),
                  this->filename().c_str(),
                  static_cast<long long>(size),
                  static_cast<long long>(start));

 unsigned int byteshift;
 if (offset == 0)
   byteshift = 0;
 else
   {
     unsigned int target_size = (!parameters->target_valid()
                                 ? 64
                                 : parameters->target().get_size());
     byteshift = offset & ((target_size / 8) - 1);

     // Set BYTESHIFT to the number of dummy bytes which must be
     // inserted before the data in order for this data to be
     // aligned.
     if (byteshift != 0)
       byteshift = (target_size / 8) - byteshift;
   }

 // If --map-whole-files is set, make sure we have a
 // whole file view.  Options may not yet be ready, e.g.,
 // when reading a version script.  We then default to
 // --no-map-whole-files.
 if (this->whole_file_view_ == NULL
     && parameters->options_valid()
     && parameters->options().map_whole_files())
   this->whole_file_view_ = this->make_view(0, this->size_, 0, cache);

 // Try to find a View with the required BYTESHIFT.
 File_read::View* vshifted;
 File_read::View* v = this->find_view(offset + start, size,
                                      aligned ? byteshift : -1U,
                                      &vshifted);
 if (v != NULL)
   {
     if (cache)
       v->set_cache();
     return v;
   }

 // If VSHIFTED is not NULL, then it has the data we need, but with
 // the wrong byteshift.
 v = vshifted;
 if (v != NULL)
   {
     gold_assert(aligned);

     unsigned char* pbytes;
     pbytes = static_cast<unsigned char*>(malloc(v->size() + byteshift));
     if (pbytes == NULL)
       gold_nomem();
     memset(pbytes, 0, byteshift);
     memcpy(pbytes + byteshift, v->data() + v->byteshift(), v->size());

     File_read::View* shifted_view =
         new File_read::View(v->start(), v->size(), pbytes, byteshift,
                             cache, View::DATA_ALLOCATED_ARRAY);

     this->add_view(shifted_view);
     return shifted_view;
   }

 // Make a new view.  If we don't need an aligned view, use a
 // byteshift of 0, so that we can use mmap.
 return this->make_view(offset + start, size,
                        aligned ? byteshift : 0,
                        cache);
}

// Get a view into the file.

const unsigned char*
File_read::get_view(off_t offset, off_t start, section_size_type size,
                   bool aligned, bool cache)
{
 File_read::View* pv = this->find_or_make_view(offset, start, size,
                                               aligned, cache);
 return pv->data() + (offset + start - pv->start() + pv->byteshift());
}

File_view*
File_read::get_lasting_view(off_t offset, off_t start, section_size_type size,
                           bool aligned, bool cache)
{
 File_read::View* pv = this->find_or_make_view(offset, start, size,
                                               aligned, cache);
 pv->lock();
 return new File_view(*this, pv,
                      (pv->data()
                       + (offset + start - pv->start() + pv->byteshift())));
}

// Use readv to read COUNT entries from RM starting at START.  BASE
// must be added to all file offsets in RM.

void
File_read::do_readv(off_t base, const Read_multiple& rm, size_t start,
                   size_t count)
{
 unsigned char discard[File_read::page_size];
 iovec iov[File_read::max_readv_entries * 2];
 size_t iov_index = 0;

 off_t first_offset = rm[start].file_offset;
 off_t last_offset = first_offset;
 ssize_t want = 0;
 for (size_t i = 0; i < count; ++i)
   {
     const Read_multiple_entry& i_entry(rm[start + i]);

     if (i_entry.file_offset > last_offset)
       {
         size_t skip = i_entry.file_offset - last_offset;
         gold_assert(skip <= sizeof discard);

         iov[iov_index].iov_base = discard;
         iov[iov_index].iov_len = skip;
         ++iov_index;

         want += skip;
       }

     iov[iov_index].iov_base = i_entry.buffer;
     iov[iov_index].iov_len = i_entry.size;
     ++iov_index;

     want += i_entry.size;

     last_offset = i_entry.file_offset + i_entry.size;
   }

 this->reopen_descriptor();

 gold_assert(iov_index < sizeof iov / sizeof iov[0]);

 if (::lseek(this->descriptor_, base + first_offset, SEEK_SET) < 0)
   gold_fatal(_("%s: lseek failed: %s"),
              this->filename().c_str(), strerror(errno));

 ssize_t got = ::readv(this->descriptor_, iov, iov_index);

 if (got < 0)
   gold_fatal(_("%s: readv failed: %s"),
              this->filename().c_str(), strerror(errno));
 if (got != want)
   gold_fatal(_("%s: file too short: read only %zd of %zd bytes at %lld"),
              this->filename().c_str(),
              got, want, static_cast<long long>(base + first_offset));
}

// Portable IOV_MAX.

#if !defined(HAVE_READV)
#define GOLD_IOV_MAX 1
#elif defined(IOV_MAX)
#define GOLD_IOV_MAX IOV_MAX
#else
#define GOLD_IOV_MAX (File_read::max_readv_entries * 2)
#endif

// Read several pieces of data from the file.

void
File_read::read_multiple(off_t base, const Read_multiple& rm)
{
 static size_t iov_max = GOLD_IOV_MAX;
 size_t count = rm.size();
 size_t i = 0;
 while (i < count)
   {
     // Find up to MAX_READV_ENTRIES consecutive entries which are
     // less than one page apart.
     const Read_multiple_entry& i_entry(rm[i]);
     off_t i_off = i_entry.file_offset;
     off_t end_off = i_off + i_entry.size;
     size_t j;
     for (j = i + 1; j < count; ++j)
       {
         if (j - i >= File_read::max_readv_entries || j - i >= iov_max / 2)
           break;
         const Read_multiple_entry& j_entry(rm[j]);
         off_t j_off = j_entry.file_offset;
         gold_assert(j_off >= end_off);
         off_t j_end_off = j_off + j_entry.size;
         if (j_end_off - end_off >= File_read::page_size)
           break;
         end_off = j_end_off;
       }

     if (j == i + 1)
       this->read(base + i_off, i_entry.size, i_entry.buffer);
     else
       {
         File_read::View* view = this->find_view(base + i_off,
                                                 end_off - i_off,
                                                 -1U, NULL);
         if (view == NULL)
           this->do_readv(base, rm, i, j - i);
         else
           {
             const unsigned char* v = (view->data()
                                       + (base + i_off - view->start()
                                          + view->byteshift()));
             for (size_t k = i; k < j; ++k)
               {
                 const Read_multiple_entry& k_entry(rm[k]);
                 gold_assert((convert_to_section_size_type(k_entry.file_offset
                                                          - i_off)
                              + k_entry.size)
                             <= convert_to_section_size_type(end_off
                                                             - i_off));
                 memcpy(k_entry.buffer,
                        v + (k_entry.file_offset - i_off),
                        k_entry.size);
               }
           }
       }

     i = j;
   }
}

// Mark all views as no longer cached.

void
File_read::clear_view_cache_marks()
{
 // Just ignore this if there are multiple objects associated with
 // the file.  Otherwise we will wind up uncaching and freeing some
 // views for other objects.
 if (this->object_count_ > 1)
   return;

 for (Views::iterator p = this->views_.begin();
      p != this->views_.end();
      ++p)
   p->second->clear_cache();
 for (Saved_views::iterator p = this->saved_views_.begin();
      p != this->saved_views_.end();
      ++p)
   (*p)->clear_cache();
}

// Remove all the file views.  For a file which has multiple
// associated objects (i.e., an archive), we keep accessed views
// around until next time, in the hopes that they will be useful for
// the next object.

void
File_read::clear_views(Clear_views_mode mode)
{
 bool keep_files_mapped = (parameters->options_valid()
                           && parameters->options().keep_files_mapped());
 Views::iterator p = this->views_.begin();
 while (p != this->views_.end())
   {
     bool should_delete;
     if (p->second->is_locked() || p->second->is_permanent_view())
       should_delete = false;
     else if (mode == CLEAR_VIEWS_ALL)
       should_delete = true;
     else if ((p->second->should_cache()
               || p->second == this->whole_file_view_)
              && keep_files_mapped)
       should_delete = false;
     else if (this->object_count_ > 1
              && p->second->accessed()
              && mode != CLEAR_VIEWS_ARCHIVE)
       should_delete = false;
     else
       should_delete = true;

     if (should_delete)
       {
         if (p->second == this->whole_file_view_)
           this->whole_file_view_ = NULL;
         delete p->second;

         // map::erase invalidates only the iterator to the deleted
         // element.
         Views::iterator pe = p;
         ++p;
         this->views_.erase(pe);
       }
     else
       {
         p->second->clear_accessed();
         ++p;
       }
   }

 Saved_views::iterator q = this->saved_views_.begin();
 while (q != this->saved_views_.end())
   {
     if (!(*q)->is_locked())
       {
         delete *q;
         q = this->saved_views_.erase(q);
       }
     else
       {
         gold_assert(mode != CLEAR_VIEWS_ALL);
         ++q;
       }
   }
}

// Print statistical information to stderr.  This is used for --stats.

void
File_read::print_stats()
{
 fprintf(stderr, _("%s: total bytes mapped for read: %llu\n"),
         program_name, File_read::total_mapped_bytes);
 fprintf(stderr, _("%s: maximum bytes mapped for read at one time: %llu\n"),
         program_name, File_read::maximum_mapped_bytes);
}

// Class File_view.

File_view::~File_view()
{
 gold_assert(this->file_.is_locked());
 this->view_->unlock();
}

// Class Input_file.

// Create a file given just the filename.

Input_file::Input_file(const char* name)
 : found_name_(), file_(), is_in_sysroot_(false), format_(FORMAT_NONE)
{
 this->input_argument_ =
   new Input_file_argument(name, Input_file_argument::INPUT_FILE_TYPE_FILE,
                           "", false, Position_dependent_options());
}

// Create a file for testing.

Input_file::Input_file(const Task* task, const char* name,
                      const unsigned char* contents, off_t size)
 : file_()
{
 this->input_argument_ =
   new Input_file_argument(name, Input_file_argument::INPUT_FILE_TYPE_FILE,
                           "", false, Position_dependent_options());
 bool ok = this->file_.open(task, name, contents, size);
 gold_assert(ok);
}

// Return the position dependent options in force for this file.

const Position_dependent_options&
Input_file::options() const
{
 return this->input_argument_->options();
}

// Return the name given by the user.  For -lc this will return "c".

const char*
Input_file::name() const
{
 return this->input_argument_->name();
}

// Return whether this file is in a system directory.

bool
Input_file::is_in_system_directory() const
{
 if (this->is_in_sysroot())
   return true;
 return parameters->options().is_in_system_directory(this->filename());
}

// Return whether we are only reading symbols.

bool
Input_file::just_symbols() const
{
 return this->input_argument_->just_symbols();
}

// Return whether this is a file that we will search for in the list
// of directories.

bool
Input_file::will_search_for() const
{
 return (!IS_ABSOLUTE_PATH(this->input_argument_->name())
         && (this->input_argument_->is_lib()
             || this->input_argument_->is_searched_file()
             || this->input_argument_->extra_search_path() != NULL));
}

// Return the file last modification time.  Calls gold_fatal if the stat
// system call failed.

Timespec
File_read::get_mtime()
{
 struct stat file_stat;
 this->reopen_descriptor();

 if (fstat(this->descriptor_, &file_stat) < 0)
   gold_fatal(_("%s: stat failed: %s"), this->name_.c_str(),
              strerror(errno));
#ifdef HAVE_STAT_ST_MTIM
 return Timespec(file_stat.st_mtim.tv_sec, file_stat.st_mtim.tv_nsec);
#else
 return Timespec(file_stat.st_mtime, 0);
#endif
}

// Try to find a file in the extra search dirs.  Returns true on success.

bool
Input_file::try_extra_search_path(int* pindex,
                                 const Input_file_argument* input_argument,
                                 std::string filename, std::string* found_name,
                                 std::string* namep)
{
 if (input_argument->extra_search_path() == NULL)
   return false;

 std::string name = input_argument->extra_search_path();
 if (!IS_DIR_SEPARATOR(name[name.length() - 1]))
   name += '/';
 name += filename;

 struct stat dummy_stat;
 if (*pindex > 0 || ::stat(name.c_str(), &dummy_stat) < 0)
   return false;

 *found_name = filename;
 *namep = name;
 return true;
}

// Find the actual file.
// If the filename is not absolute, we assume it is in the current
// directory *except* when:
//    A) input_argument_->is_lib() is true;
//    B) input_argument_->is_searched_file() is true; or
//    C) input_argument_->extra_search_path() is not empty.
// In each, we look in extra_search_path + library_path to find
// the file location, rather than the current directory.

bool
Input_file::find_file(const Dirsearch& dirpath, int* pindex,
                     const Input_file_argument* input_argument,
                     bool* is_in_sysroot,
                     std::string* found_name, std::string* namep)
{
 std::string name;

 // Case 1: name is an absolute file, just try to open it
 // Case 2: name is relative but is_lib is false, is_searched_file is false,
 //         and extra_search_path is empty
 if (IS_ABSOLUTE_PATH(input_argument->name())
     || (!input_argument->is_lib()
         && !input_argument->is_searched_file()
         && input_argument->extra_search_path() == NULL))
   {
     name = input_argument->name();
     *found_name = name;
     *namep = name;
     return true;
   }
 // Case 3: is_lib is true or is_searched_file is true
 else if (input_argument->is_lib()
          || input_argument->is_searched_file())
   {
     std::vector<std::string> names;
     names.reserve(2);
     if (input_argument->is_lib())
       {
         std::string prefix = "lib";
         prefix += input_argument->name();
         if (parameters->options().is_static()
             || !input_argument->options().Bdynamic())
           names.push_back(prefix + ".a");
         else
           {
             names.push_back(prefix + ".so");
             names.push_back(prefix + ".a");
           }
       }
     else
       names.push_back(input_argument->name());

     for (std::vector<std::string>::const_iterator n = names.begin();
          n != names.end();
          ++n)
       if (Input_file::try_extra_search_path(pindex, input_argument, *n,
                                             found_name, namep))
         return true;

     // It is not in the extra_search_path.
     name = dirpath.find(names, is_in_sysroot, pindex, found_name);
     if (name.empty())
       {
         gold_error(_("cannot find %s%s"),
                    input_argument->is_lib() ? "-l" : "",
                    input_argument->name());
         return false;
       }
     *namep = name;
     return true;
   }
 // Case 4: extra_search_path is not empty
 else
   {
     gold_assert(input_argument->extra_search_path() != NULL);

     if (try_extra_search_path(pindex, input_argument, input_argument->name(),
                               found_name, namep))
       return true;

     // extra_search_path failed, so check the normal search-path.
     int index = *pindex;
     if (index > 0)
       --index;
     name = dirpath.find(std::vector<std::string>(1, input_argument->name()),
                         is_in_sysroot, &index, found_name);
     if (name.empty())
       {
         gold_error(_("cannot find %s"),
                    input_argument->name());
         return false;
       }
     *namep = name;
     *pindex = index + 1;
     return true;
   }
}

// Open the file.

bool
Input_file::open(const Dirsearch& dirpath, const Task* task, int* pindex)
{
 std::string name;
 if (!Input_file::find_file(dirpath, pindex, this->input_argument_,
                            &this->is_in_sysroot_, &this->found_name_, &name))
   return false;

 // Now that we've figured out where the file lives, try to open it.

 General_options::Object_format format =
   this->input_argument_->options().format_enum();
 bool ok;
 if (format == General_options::OBJECT_FORMAT_ELF)
   {
     ok = this->file_.open(task, name);
     this->format_ = FORMAT_ELF;
   }
 else
   {
     gold_assert(format == General_options::OBJECT_FORMAT_BINARY);
     ok = this->open_binary(task, name);
     this->format_ = FORMAT_BINARY;
   }

 if (!ok)
   {
     gold_error(_("cannot open %s: %s"),
                name.c_str(), strerror(errno));
     this->format_ = FORMAT_NONE;
     return false;
   }

 return true;
}

// Open a file for --format binary.

bool
Input_file::open_binary(const Task* task, const std::string& name)
{
 // In order to open a binary file, we need machine code, size, and
 // endianness.  We may not have a valid target at this point, in
 // which case we use the default target.
 parameters_force_valid_target();
 const Target& target(parameters->target());

 Binary_to_elf binary_to_elf(target.machine_code(),
                             target.get_size(),
                             target.is_big_endian(),
                             name);
 if (!binary_to_elf.convert(task))
   return false;
 return this->file_.open(task, name, binary_to_elf.converted_data_leak(),
                         binary_to_elf.converted_size());
}

void
File_read::record_file_read(const std::string& name)
{
 File_read::files_read.push_back(name);
}

void
File_read::write_dependency_file(const char* dependency_file_name,
                                const char* output_file_name)
{
 FILE *depfile = fopen(dependency_file_name, "w");

 fprintf(depfile, "%s:", output_file_name);
 for (std::vector<std::string>::const_iterator it = files_read.begin();
      it != files_read.end();
      ++it)
   fprintf(depfile, " \\\n  %s", it->c_str());
 fprintf(depfile, "\n");

 for (std::vector<std::string>::const_iterator it = files_read.begin();
      it != files_read.end();
      ++it)
   fprintf(depfile, "\n%s:\n", it->c_str());

 fclose(depfile);
}

} // End namespace gold.