// ehframe.h -- handle exception frame sections for gold  -*- C++ -*-

// Copyright (C) 2006-2024 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <[email protected]>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#ifndef GOLD_EHFRAME_H
#define GOLD_EHFRAME_H

#include <map>
#include <set>
#include <vector>

#include "output.h"
#include "merge.h"

namespace gold
{

template<int size, bool big_endian>
class Track_relocs;

class Eh_frame;

// This class manages the .eh_frame_hdr section, which holds the data
// for the PT_GNU_EH_FRAME segment.  gcc's unwind support code uses
// the PT_GNU_EH_FRAME segment to find the list of FDEs.  This saves
// the time required to register the exception handlers at startup
// time and when a shared object is loaded, and the time required to
// deregister the exception handlers when a shared object is unloaded.

class Eh_frame_hdr : public Output_section_data
{
public:
 Eh_frame_hdr(Output_section* eh_frame_section, const Eh_frame*);

 // Record that we found an unrecognized .eh_frame section.
 void
 found_unrecognized_eh_frame_section()
 { this->any_unrecognized_eh_frame_sections_ = true; }

 // Record an FDE.
 void
 record_fde(section_offset_type fde_offset, unsigned char fde_encoding)
 {
   if (!this->any_unrecognized_eh_frame_sections_)
     this->fde_offsets_.push_back(std::make_pair(fde_offset, fde_encoding));
 }

protected:
 // Set the final data size.
 void
 set_final_data_size();

 // Write the data to the file.
 void
 do_write(Output_file*);

 // Write to a map file.
 void
 do_print_to_mapfile(Mapfile* mapfile) const
 { mapfile->print_output_data(this, _("** eh_frame_hdr")); }

private:
 // Write the data to the file with the right endianness.
 template<int size, bool big_endian>
 void
 do_sized_write(Output_file*);

 // The data we record for one FDE: the offset of the FDE within the
 // .eh_frame section, and the FDE encoding.
 typedef std::pair<section_offset_type, unsigned char> Fde_offset;

 // The list of information we record for an FDE.
 typedef std::vector<Fde_offset> Fde_offsets;

 // When writing out the header, we convert the FDE offsets into FDE
 // addresses.  This is a list of pairs of the offset from the header
 // to the FDE PC and to the FDE itself.
 template<int size>
 class Fde_addresses
 {
  public:
   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
   typedef typename std::pair<Address, Address> Fde_address;
   typedef typename std::vector<Fde_address> Fde_address_list;
   typedef typename Fde_address_list::iterator iterator;

   Fde_addresses(unsigned int reserve)
     : fde_addresses_()
   { this->fde_addresses_.reserve(reserve); }

   void
   push_back(Address pc_address, Address fde_address)
   {
     this->fde_addresses_.push_back(std::make_pair(pc_address, fde_address));
   }

   iterator
   begin()
   { return this->fde_addresses_.begin(); }

   iterator
   end()
   { return this->fde_addresses_.end(); }

  private:
   Fde_address_list fde_addresses_;
 };

 // Compare Fde_address objects.
 template<int size>
 struct Fde_address_compare
 {
   bool
   operator()(const typename Fde_addresses<size>::Fde_address& f1,
              const typename Fde_addresses<size>::Fde_address& f2) const
   { return f1.first < f2.first; }
 };

 // Return the PC to which an FDE refers.
 template<int size, bool big_endian>
 typename elfcpp::Elf_types<size>::Elf_Addr
 get_fde_pc(typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address,
            const unsigned char* eh_frame_contents,
            section_offset_type fde_offset, unsigned char fde_encoding);

 // Convert Fde_offsets to Fde_addresses.
 template<int size, bool big_endian>
 void
 get_fde_addresses(Output_file* of,
                   const Fde_offsets* fde_offsets,
                   Fde_addresses<size>* fde_addresses);

 // The .eh_frame section.
 Output_section* eh_frame_section_;
 // The .eh_frame section data.
 const Eh_frame* eh_frame_data_;
 // Data from the FDEs in the .eh_frame sections.
 Fde_offsets fde_offsets_;
 // Whether we found any .eh_frame sections which we could not
 // process.
 bool any_unrecognized_eh_frame_sections_;
};

// This class holds an FDE.

class Fde
{
public:
 Fde(Relobj* object, unsigned int shndx, section_offset_type input_offset,
     const unsigned char* contents, size_t length)
   : object_(object),
     contents_(reinterpret_cast<const char*>(contents), length)
 {
   this->u_.from_object.shndx = shndx;
   this->u_.from_object.input_offset = input_offset;
 }

 // Create an FDE associated with a PLT.
 Fde(Output_data* plt, const unsigned char* contents, size_t length,
     bool post_map)
   : object_(NULL),
     contents_(reinterpret_cast<const char*>(contents), length)
 {
   this->u_.from_linker.plt = plt;
   this->u_.from_linker.post_map = post_map;
 }

 // Return the length of this FDE.  Add 4 for the length and 4 for
 // the offset to the CIE.
 size_t
 length() const
 { return this->contents_.length() + 8; }

 // Add a mapping for this FDE to MERGE_MAP, so that relocations
 // against the FDE are applied to right part of the output file.
 void
 add_mapping(section_offset_type output_offset,
             Output_section_data* output_data) const
 {
   if (this->object_ != NULL)
     this->object_->add_merge_mapping(output_data, this->u_.from_object.shndx,
                            this->u_.from_object.input_offset, this->length(),
                            output_offset);
 }

 // Return whether this FDE was added after merge mapping.
 bool
 post_map() const
 { return this->object_ == NULL && this->u_.from_linker.post_map; }

 // Return whether this FDE was added for the PLT after merge mapping.
 bool
 post_map(const Output_data* plt) const
 { return this->post_map() && this->u_.from_linker.plt == plt; }

 // Write the FDE to OVIEW starting at OFFSET.  FDE_ENCODING is the
 // encoding, from the CIE.  Round up the bytes to ADDRALIGN if
 // necessary.  ADDRESS is the virtual address of OVIEW.  Record the
 // FDE in EH_FRAME_HDR.  Return the new offset.
 template<int size, bool big_endian>
 section_offset_type
 write(unsigned char* oview, section_offset_type output_section_offset,
       section_offset_type offset, uint64_t address, unsigned int addralign,
       section_offset_type cie_offset, unsigned char fde_encoding,
       Eh_frame_hdr* eh_frame_hdr);

private:
 // The object in which this FDE was seen.  This will be NULL for a
 // linker generated FDE.
 Relobj* object_;
 union
 {
   // These fields are used if the FDE is from an input object (the
   // object_ field is not NULL).
   struct
   {
     // Input section index for this FDE.
     unsigned int shndx;
     // Offset within the input section for this FDE.
     section_offset_type input_offset;
   } from_object;
   // This field is used if the FDE is generated by the linker (the
   // object_ field is NULL).
   struct
   {
     // The only linker generated FDEs are for PLT sections, and this
     // points to the PLT section.
     Output_data* plt;
     // Set if the FDE was added after merge mapping.
     bool post_map;
   } from_linker;
 } u_;
 // FDE data.
 std::string contents_;
};

// A FDE plus some info from a CIE to allow later writing of the FDE.

struct Post_fde
{
 Post_fde(Fde* f, section_offset_type cie_off, unsigned char encoding)
   : fde(f), cie_offset(cie_off), fde_encoding(encoding)
 { }

 Fde* fde;
 section_offset_type cie_offset;
 unsigned char fde_encoding;
};

typedef std::vector<Post_fde> Post_fdes;

// This class holds a CIE.

class Cie
{
public:
 Cie(Relobj* object, unsigned int shndx, section_offset_type input_offset,
     unsigned char fde_encoding, const char* personality_name,
     const unsigned char* contents, size_t length)
   : object_(object),
     shndx_(shndx),
     input_offset_(input_offset),
     fde_encoding_(fde_encoding),
     personality_name_(personality_name),
     fdes_(),
     contents_(reinterpret_cast<const char*>(contents), length)
 { }

 ~Cie();

 // We permit copying a CIE when there are no FDEs.  This is
 // convenient in the code which creates them.
 Cie(const Cie& cie)
   : object_(cie.object_),
     shndx_(cie.shndx_),
     input_offset_(cie.input_offset_),
     fde_encoding_(cie.fde_encoding_),
     personality_name_(cie.personality_name_),
     fdes_(),
     contents_(cie.contents_)
 { gold_assert(cie.fdes_.empty()); }

 // Add an FDE associated with this CIE.
 void
 add_fde(Fde* fde)
 { this->fdes_.push_back(fde); }

 // Remove the last FDE associated with this CIE.
 void
 remove_fde()
 { this->fdes_.pop_back(); }

 // Access the last FDE associated with this CIE.
 const Fde*
 last_fde() const
 { return this->fdes_.back(); }

 // Return the number of FDEs.
 unsigned int
 fde_count() const
 { return this->fdes_.size(); }

 // Set the output offset of this CIE to OUTPUT_OFFSET.  It will be
 // followed by all its FDEs.  ADDRALIGN is the required address
 // alignment, typically 4 or 8.  This updates MERGE_MAP with the
 // mapping.  It returns the new output offset.
 section_offset_type
 set_output_offset(section_offset_type output_offset, unsigned int addralign,
                   Output_section_data*);

 // Write the CIE to OVIEW starting at OFFSET.  Round up the bytes to
 // ADDRALIGN.  ADDRESS is the virtual address of OVIEW.
 // EH_FRAME_HDR is the exception frame header for FDE recording.
 // POST_FDES stashes FDEs created after mappings were done, for later
 // writing.  Return the new offset.
 template<int size, bool big_endian>
 section_offset_type
 write(unsigned char* oview, section_offset_type output_section_offset,
       section_offset_type offset, uint64_t address,
       unsigned int addralign, Eh_frame_hdr* eh_frame_hdr,
       Post_fdes* post_fdes);

 // Return the FDE encoding.
 unsigned char
 fde_encoding() const
 { return this->fde_encoding_; }

 friend bool operator<(const Cie&, const Cie&);
 friend bool operator==(const Cie&, const Cie&);

private:
 // The class is not assignable.
 Cie& operator=(const Cie&);

 // The object in which this CIE was first seen.  This will be NULL
 // for a linker generated CIE.
 Relobj* object_;
 // Input section index for this CIE.  This will be 0 for a linker
 // generated CIE.
 unsigned int shndx_;
 // Offset within the input section for this CIE.  This will be 0 for
 // a linker generated CIE.
 section_offset_type input_offset_;
 // The encoding of the FDE.  This is a DW_EH_PE code.
 unsigned char fde_encoding_;
 // The name of the personality routine.  This will be the name of a
 // global symbol, or will be the empty string.
 std::string personality_name_;
 // List of FDEs.
 std::vector<Fde*> fdes_;
 // CIE data.
 std::string contents_;
};

extern bool operator<(const Cie&, const Cie&);
extern bool operator==(const Cie&, const Cie&);

// This class manages .eh_frame sections.  It discards duplicate
// exception information.

class Eh_frame : public Output_section_data
{
public:
 enum Eh_frame_section_disposition
 {
   EH_EMPTY_SECTION,
   EH_UNRECOGNIZED_SECTION,
   EH_OPTIMIZABLE_SECTION,
   EH_END_MARKER_SECTION
 };

 Eh_frame();

 // Record the associated Eh_frame_hdr, if any.
 void
 set_eh_frame_hdr(Eh_frame_hdr* hdr)
 { this->eh_frame_hdr_ = hdr; }

 // Add the input section SHNDX in OBJECT.  SYMBOLS is the contents
 // of the symbol table section (size SYMBOLS_SIZE), SYMBOL_NAMES is
 // the symbol names section (size SYMBOL_NAMES_SIZE).  RELOC_SHNDX
 // is the relocation section if any (0 for none, -1U for multiple).
 // RELOC_TYPE is the type of the relocation section if any.  This
 // returns whether the section was incorporated into the .eh_frame
 // data.
 template<int size, bool big_endian>
 Eh_frame_section_disposition
 add_ehframe_input_section(Sized_relobj_file<size, big_endian>* object,
                           const unsigned char* symbols,
                           section_size_type symbols_size,
                           const unsigned char* symbol_names,
                           section_size_type symbol_names_size,
                           unsigned int shndx, unsigned int reloc_shndx,
                           unsigned int reloc_type);

 // Add a CIE and an FDE for a PLT section, to permit unwinding
 // through a PLT.  The FDE data should start with 8 bytes of zero,
 // which will be replaced by a 4 byte PC relative reference to the
 // address of PLT and a 4 byte size of PLT.
 void
 add_ehframe_for_plt(Output_data* plt, const unsigned char* cie_data,
                     size_t cie_length, const unsigned char* fde_data,
                     size_t fde_length);

 // Remove all post-map unwind information for a PLT.
 void
 remove_ehframe_for_plt(Output_data* plt, const unsigned char* cie_data,
                        size_t cie_length);

 // Return the number of FDEs.
 unsigned int
 fde_count() const;

protected:
 // Set the final data size.
 void
 set_final_data_size();

 // Return the output address for an input address.
 bool
 do_output_offset(const Relobj*, unsigned int shndx,
                  section_offset_type offset,
                  section_offset_type* poutput) const;

 // Write the data to the file.
 void
 do_write(Output_file*);

 // Write to a map file.
 void
 do_print_to_mapfile(Mapfile* mapfile) const
 { mapfile->print_output_data(this, _("** eh_frame")); }

private:
 // The comparison routine for the CIE map.
 struct Cie_less
 {
   bool
   operator()(const Cie* cie1, const Cie* cie2) const
   { return *cie1 < *cie2; }
 };

 // A set of unique CIEs.
 typedef std::set<Cie*, Cie_less> Cie_offsets;

 // A list of unmergeable CIEs.
 typedef std::vector<Cie*> Unmergeable_cie_offsets;

 // A mapping from offsets to CIEs.  This is used while reading an
 // input section.
 typedef std::map<uint64_t, Cie*> Offsets_to_cie;

 // A list of CIEs, and a bool indicating whether the CIE is
 // mergeable.
 typedef std::vector<std::pair<Cie*, bool> > New_cies;

 // Skip an LEB128.
 static bool
 skip_leb128(const unsigned char**, const unsigned char*);

 // The implementation of add_ehframe_input_section.
 template<int size, bool big_endian>
 bool
 do_add_ehframe_input_section(Sized_relobj_file<size, big_endian>* object,
                              const unsigned char* symbols,
                              section_size_type symbols_size,
                              const unsigned char* symbol_names,
                              section_size_type symbol_names_size,
                              unsigned int shndx,
                              unsigned int reloc_shndx,
                              unsigned int reloc_type,
                              const unsigned char* pcontents,
                              section_size_type contents_len,
                              New_cies*);

 // Read a CIE.
 template<int size, bool big_endian>
 bool
 read_cie(Sized_relobj_file<size, big_endian>* object,
          unsigned int shndx,
          const unsigned char* symbols,
          section_size_type symbols_size,
          const unsigned char* symbol_names,
          section_size_type symbol_names_size,
          const unsigned char* pcontents,
          const unsigned char* pcie,
          const unsigned char* pcieend,
          Track_relocs<size, big_endian>* relocs,
          Offsets_to_cie* cies,
          New_cies* new_cies);

 // Read an FDE.
 template<int size, bool big_endian>
 bool
 read_fde(Sized_relobj_file<size, big_endian>* object,
          unsigned int shndx,
          const unsigned char* symbols,
          section_size_type symbols_size,
          const unsigned char* pcontents,
          unsigned int offset,
          const unsigned char* pfde,
          const unsigned char* pfdeend,
          Track_relocs<size, big_endian>* relocs,
          Offsets_to_cie* cies);

 // Template version of write function.
 template<int size, bool big_endian>
 void
 do_sized_write(unsigned char* oview);

 // The exception frame header, if any.
 Eh_frame_hdr* eh_frame_hdr_;
 // A mapping from all unique CIEs to their offset in the output
 // file.
 Cie_offsets cie_offsets_;
 // A mapping from unmergeable CIEs to their offset in the output
 // file.
 Unmergeable_cie_offsets unmergeable_cie_offsets_;
 // Whether we have created the mappings to the output section.
 bool mappings_are_done_;
 // The final data size.  This is only set if mappings_are_done_ is
 // true.
 section_size_type final_data_size_;
};

} // End namespace gold.

#endif // !defined(GOLD_EHFRAME_H)