// dwarf_reader.cc -- parse dwarf2/3 debug information

// Copyright (C) 2007-2024 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <[email protected]>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#include "gold.h"

#include <algorithm>
#include <utility>
#include <vector>

#include "debug.h"
#include "elfcpp_swap.h"
#include "dwarf.h"
#include "object.h"
#include "reloc.h"
#include "dwarf_reader.h"
#include "int_encoding.h"
#include "compressed_output.h"

namespace gold {

// Class Sized_elf_reloc_mapper

// Initialize the relocation tracker for section RELOC_SHNDX.

template<int size, bool big_endian>
bool
Sized_elf_reloc_mapper<size, big_endian>::do_initialize(
   unsigned int reloc_shndx, unsigned int reloc_type)
{
 this->reloc_type_ = reloc_type;
 return this->track_relocs_.initialize(this->object_, reloc_shndx,
                                       reloc_type);
}

// Looks in the symtab to see what section a symbol is in.

template<int size, bool big_endian>
unsigned int
Sized_elf_reloc_mapper<size, big_endian>::symbol_section(
   unsigned int symndx, Address* value, bool* is_ordinary)
{
 const int symsize = elfcpp::Elf_sizes<size>::sym_size;
 gold_assert(static_cast<off_t>((symndx + 1) * symsize) <= this->symtab_size_);
 elfcpp::Sym<size, big_endian> elfsym(this->symtab_ + symndx * symsize);
 *value = elfsym.get_st_value();
 return this->object_->adjust_sym_shndx(symndx, elfsym.get_st_shndx(),
                                        is_ordinary);
}

// Return the section index and offset within the section of
// the target of the relocation for RELOC_OFFSET.

template<int size, bool big_endian>
unsigned int
Sized_elf_reloc_mapper<size, big_endian>::do_get_reloc_target(
   off_t reloc_offset, off_t* target_offset)
{
 this->track_relocs_.advance(reloc_offset);
 if (reloc_offset != this->track_relocs_.next_offset())
   return 0;
 unsigned int symndx = this->track_relocs_.next_symndx();
 typename elfcpp::Elf_types<size>::Elf_Addr value;
 bool is_ordinary;
 unsigned int target_shndx = this->symbol_section(symndx, &value,
                                                  &is_ordinary);
 if (!is_ordinary)
   return 0;
 if (this->reloc_type_ == elfcpp::SHT_RELA)
   value += this->track_relocs_.next_addend();
 *target_offset = value;
 return target_shndx;
}

static inline Elf_reloc_mapper*
make_elf_reloc_mapper(Relobj* object, const unsigned char* symtab,
                     off_t symtab_size)
{
 if (object->elfsize() == 32)
   {
     if (object->is_big_endian())
       {
#ifdef HAVE_TARGET_32_BIG
         return new Sized_elf_reloc_mapper<32, true>(object, symtab,
                                                     symtab_size);
#else
         gold_unreachable();
#endif
       }
     else
       {
#ifdef HAVE_TARGET_32_LITTLE
         return new Sized_elf_reloc_mapper<32, false>(object, symtab,
                                                      symtab_size);
#else
         gold_unreachable();
#endif
       }
   }
 else if (object->elfsize() == 64)
   {
     if (object->is_big_endian())
       {
#ifdef HAVE_TARGET_64_BIG
         return new Sized_elf_reloc_mapper<64, true>(object, symtab,
                                                     symtab_size);
#else
         gold_unreachable();
#endif
       }
     else
       {
#ifdef HAVE_TARGET_64_LITTLE
         return new Sized_elf_reloc_mapper<64, false>(object, symtab,
                                                      symtab_size);
#else
         gold_unreachable();
#endif
       }
   }
 else
   gold_unreachable();
}

// class Dwarf_abbrev_table

void
Dwarf_abbrev_table::clear_abbrev_codes()
{
 for (unsigned int code = 0; code < this->low_abbrev_code_max_; ++code)
   {
     if (this->low_abbrev_codes_[code] != NULL)
       {
         delete this->low_abbrev_codes_[code];
         this->low_abbrev_codes_[code] = NULL;
       }
   }
 for (Abbrev_code_table::iterator it = this->high_abbrev_codes_.begin();
      it != this->high_abbrev_codes_.end();
      ++it)
   {
     if (it->second != NULL)
       delete it->second;
   }
 this->high_abbrev_codes_.clear();
}

// Read the abbrev table from an object file.

bool
Dwarf_abbrev_table::do_read_abbrevs(
   Relobj* object,
   unsigned int abbrev_shndx,
   off_t abbrev_offset)
{
 this->clear_abbrev_codes();

 // If we don't have relocations, abbrev_shndx will be 0, and
 // we'll have to hunt for the .debug_abbrev section.
 if (abbrev_shndx == 0 && this->abbrev_shndx_ > 0)
   abbrev_shndx = this->abbrev_shndx_;
 else if (abbrev_shndx == 0)
   {
     for (unsigned int i = 1; i < object->shnum(); ++i)
       {
         std::string name = object->section_name(i);
         if (name == ".debug_abbrev" || name == ".zdebug_abbrev")
           {
             abbrev_shndx = i;
             // Correct the offset.  For incremental update links, we have a
             // relocated offset that is relative to the output section, but
             // here we need an offset relative to the input section.
             abbrev_offset -= object->output_section_offset(i);
             break;
           }
       }
     if (abbrev_shndx == 0)
       return false;
   }

 // Get the section contents and decompress if necessary.
 if (abbrev_shndx != this->abbrev_shndx_)
   {
     if (this->owns_buffer_ && this->buffer_ != NULL)
       {
         delete[] this->buffer_;
         this->owns_buffer_ = false;
       }

     section_size_type buffer_size;
     this->buffer_ =
         object->decompressed_section_contents(abbrev_shndx,
                                               &buffer_size,
                                               &this->owns_buffer_);
     this->buffer_end_ = this->buffer_ + buffer_size;
     this->abbrev_shndx_ = abbrev_shndx;
   }

 this->buffer_pos_ = this->buffer_ + abbrev_offset;
 return true;
}

// Lookup the abbrev code entry for CODE.  This function is called
// only when the abbrev code is not in the direct lookup table.
// It may be in the hash table, it may not have been read yet,
// or it may not exist in the abbrev table.

const Dwarf_abbrev_table::Abbrev_code*
Dwarf_abbrev_table::do_get_abbrev(unsigned int code)
{
 // See if the abbrev code is already in the hash table.
 Abbrev_code_table::const_iterator it = this->high_abbrev_codes_.find(code);
 if (it != this->high_abbrev_codes_.end())
   return it->second;

 // Read and store abbrev code definitions until we find the
 // one we're looking for.
 for (;;)
   {
     // Read the abbrev code.  A zero here indicates the end of the
     // abbrev table.
     size_t len;
     if (this->buffer_pos_ >= this->buffer_end_)
       return NULL;
     uint64_t nextcode = read_unsigned_LEB_128(this->buffer_pos_, &len);
     if (nextcode == 0)
       {
         this->buffer_pos_ = this->buffer_end_;
         return NULL;
       }
     this->buffer_pos_ += len;

     // Read the tag.
     if (this->buffer_pos_ >= this->buffer_end_)
       return NULL;
     uint64_t tag = read_unsigned_LEB_128(this->buffer_pos_, &len);
     this->buffer_pos_ += len;

     // Read the has_children flag.
     if (this->buffer_pos_ >= this->buffer_end_)
       return NULL;
     bool has_children = *this->buffer_pos_ == elfcpp::DW_CHILDREN_yes;
     this->buffer_pos_ += 1;

     // Read the list of (attribute, form) pairs.
     Abbrev_code* entry = new Abbrev_code(tag, has_children);
     for (;;)
       {
         // Read the attribute.
         if (this->buffer_pos_ >= this->buffer_end_)
           return NULL;
         uint64_t attr = read_unsigned_LEB_128(this->buffer_pos_, &len);
         this->buffer_pos_ += len;

         // Read the form.
         if (this->buffer_pos_ >= this->buffer_end_)
           return NULL;
         uint64_t form = read_unsigned_LEB_128(this->buffer_pos_, &len);
         this->buffer_pos_ += len;

         // For DW_FORM_implicit_const, read the constant.
         int64_t implicit_const = 0;
         if (form == elfcpp::DW_FORM_implicit_const)
           {
             implicit_const = read_signed_LEB_128(this->buffer_pos_, &len);
             this->buffer_pos_ += len;
           }

         // A (0,0) pair terminates the list.
         if (attr == 0 && form == 0)
           break;

         if (attr == elfcpp::DW_AT_sibling)
           entry->has_sibling_attribute = true;

         entry->add_attribute(attr, form, implicit_const);
       }

     this->store_abbrev(nextcode, entry);
     if (nextcode == code)
       return entry;
   }

 return NULL;
}

// class Dwarf_ranges_table

// Read the ranges table from an object file.

bool
Dwarf_ranges_table::read_ranges_table(
   Relobj* object,
   const unsigned char* symtab,
   off_t symtab_size,
   unsigned int ranges_shndx,
   unsigned int version)
{
 const std::string section_name(version < 5
                                ? ".debug_ranges"
                                : ".debug_rnglists");
 const std::string compressed_section_name(version < 5
                                           ? ".zdebug_ranges"
                                           : ".zdebug_rnglists");

 // If we've already read this abbrev table, return immediately.
 if (this->ranges_shndx_ > 0
     && this->ranges_shndx_ == ranges_shndx)
   return true;

 // If we don't have relocations, ranges_shndx will be 0, and
 // we'll have to hunt for the .debug_ranges section.
 if (ranges_shndx == 0 && this->ranges_shndx_ > 0)
   ranges_shndx = this->ranges_shndx_;
 else if (ranges_shndx == 0)
   {
     for (unsigned int i = 1; i < object->shnum(); ++i)
       {
         std::string name = object->section_name(i);
         if (name == section_name || name == compressed_section_name)
           {
             ranges_shndx = i;
             this->output_section_offset_ = object->output_section_offset(i);
             break;
           }
       }
     if (ranges_shndx == 0)
       return false;
   }

 // Get the section contents and decompress if necessary.
 if (ranges_shndx != this->ranges_shndx_)
   {
     if (this->owns_ranges_buffer_ && this->ranges_buffer_ != NULL)
       {
         delete[] this->ranges_buffer_;
         this->owns_ranges_buffer_ = false;
       }

     section_size_type buffer_size;
     this->ranges_buffer_ =
         object->decompressed_section_contents(ranges_shndx,
                                               &buffer_size,
                                               &this->owns_ranges_buffer_);
     this->ranges_buffer_end_ = this->ranges_buffer_ + buffer_size;
     this->ranges_shndx_ = ranges_shndx;
   }

 if (this->ranges_reloc_mapper_ != NULL)
   {
     delete this->ranges_reloc_mapper_;
     this->ranges_reloc_mapper_ = NULL;
   }

 // For incremental objects, we have no relocations.
 if (object->is_incremental())
   return true;

 // Find the relocation section for ".debug_ranges".
 unsigned int reloc_shndx = 0;
 unsigned int reloc_type = 0;
 for (unsigned int i = 0; i < object->shnum(); ++i)
   {
     reloc_type = object->section_type(i);
     if ((reloc_type == elfcpp::SHT_REL
          || reloc_type == elfcpp::SHT_RELA)
         && object->section_info(i) == ranges_shndx)
       {
         reloc_shndx = i;
         break;
       }
   }

 this->ranges_reloc_mapper_ = make_elf_reloc_mapper(object, symtab,
                                                    symtab_size);
 this->ranges_reloc_mapper_->initialize(reloc_shndx, reloc_type);
 this->reloc_type_ = reloc_type;

 return true;
}

// Read a range list from section RANGES_SHNDX at offset RANGES_OFFSET.

Dwarf_range_list*
Dwarf_ranges_table::read_range_list(
   Relobj* object,
   const unsigned char* symtab,
   off_t symtab_size,
   unsigned int addr_size,
   unsigned int ranges_shndx,
   off_t offset)
{
 Dwarf_range_list* ranges;

 if (!this->read_ranges_table(object, symtab, symtab_size, ranges_shndx, 4))
   return NULL;

 // Correct the offset.  For incremental update links, we have a
 // relocated offset that is relative to the output section, but
 // here we need an offset relative to the input section.
 offset -= this->output_section_offset_;

 // Read the range list at OFFSET.
 ranges = new Dwarf_range_list();
 off_t base = 0;
 for (;
      this->ranges_buffer_ + offset < this->ranges_buffer_end_;
      offset += 2 * addr_size)
   {
     off_t start;
     off_t end;

     // Read the raw contents of the section.
     if (addr_size == 4)
       {
         start = this->dwinfo_->read_from_pointer<32>(this->ranges_buffer_
                                                      + offset);
         end = this->dwinfo_->read_from_pointer<32>(this->ranges_buffer_
                                                    + offset + 4);
       }
     else
       {
         start = this->dwinfo_->read_from_pointer<64>(this->ranges_buffer_
                                                      + offset);
         end = this->dwinfo_->read_from_pointer<64>(this->ranges_buffer_
                                                    + offset + 8);
       }

     // Check for relocations and adjust the values.
     unsigned int shndx1 = 0;
     unsigned int shndx2 = 0;
     if (this->ranges_reloc_mapper_ != NULL)
       {
         shndx1 = this->lookup_reloc(offset, &start);
         shndx2 = this->lookup_reloc(offset + addr_size, &end);
       }

     // End of list is marked by a pair of zeroes.
     if (shndx1 == 0 && start == 0 && end == 0)
       break;

     // A "base address selection entry" is identified by
     // 0xffffffff for the first value of the pair.  The second
     // value is used as a base for subsequent range list entries.
     if (shndx1 == 0 && start == -1)
       base = end;
     else if (shndx1 == shndx2)
       {
         if (shndx1 == 0 || object->is_section_included(shndx1))
           ranges->add(shndx1, base + start, base + end);
       }
     else
       gold_warning(_("%s: DWARF info may be corrupt; offsets in a "
                      "range list entry are in different sections"),
                    object->name().c_str());
   }

 return ranges;
}

// Read a DWARF 5 range list from section RANGES_SHNDX at offset RANGES_OFFSET.

Dwarf_range_list*
Dwarf_ranges_table::read_range_list_v5(
   Relobj* object,
   const unsigned char* symtab,
   off_t symtab_size,
   unsigned int addr_size,
   unsigned int ranges_shndx,
   off_t offset)
{
 Dwarf_range_list* ranges;

 if (!this->read_ranges_table(object, symtab, symtab_size, ranges_shndx, 5))
   return NULL;

 ranges = new Dwarf_range_list();
 off_t base = 0;
 unsigned int shndx0 = 0;

 // Correct the offset.  For incremental update links, we have a
 // relocated offset that is relative to the output section, but
 // here we need an offset relative to the input section.
 offset -= this->output_section_offset_;

 // Read the range list at OFFSET.
 const unsigned char* prle = this->ranges_buffer_ + offset;
 while (prle < this->ranges_buffer_end_)
   {
     off_t start;
     off_t end;
     unsigned int shndx1 = 0;
     unsigned int shndx2 = 0;
     size_t len;

     // Read the entry type.
     unsigned int rle_type = *prle++;
     offset += 1;

     if (rle_type == elfcpp::DW_RLE_end_of_list)
       break;

     switch (rle_type)
       {
         case elfcpp::DW_RLE_base_address:
           if (addr_size == 4)
             base = this->dwinfo_->read_from_pointer<32>(prle);
           else
             base = this->dwinfo_->read_from_pointer<64>(prle);
           if (this->ranges_reloc_mapper_ != NULL)
               shndx0 = this->lookup_reloc(offset, &base);
           prle += addr_size;
           offset += addr_size;
           break;

         case elfcpp::DW_RLE_offset_pair:
           start = read_unsigned_LEB_128(prle, &len);
           prle += len;
           offset += len;
           end = read_unsigned_LEB_128(prle, &len);
           prle += len;
           offset += len;
           if (shndx0 == 0 || object->is_section_included(shndx0))
             ranges->add(shndx0, base + start, base + end);
           break;

         case elfcpp::DW_RLE_start_end:
           if (addr_size == 4)
             {
               start = this->dwinfo_->read_from_pointer<32>(prle);
               end = this->dwinfo_->read_from_pointer<32>(prle + 4);
             }
           else
             {
               start = this->dwinfo_->read_from_pointer<64>(prle);
               end = this->dwinfo_->read_from_pointer<64>(prle + 8);
             }
           if (this->ranges_reloc_mapper_ != NULL)
             {
               shndx1 = this->lookup_reloc(offset, &start);
               shndx2 = this->lookup_reloc(offset + addr_size, &end);
               if (shndx1 != shndx2)
                 gold_warning(_("%s: DWARF info may be corrupt; offsets in a "
                                "range list entry are in different sections"),
                              object->name().c_str());
             }
           prle += addr_size * 2;
           offset += addr_size * 2;
           if (shndx1 == 0 || object->is_section_included(shndx1))
             ranges->add(shndx1, start, end);
           break;

         case elfcpp::DW_RLE_start_length:
           if (addr_size == 4)
             start = this->dwinfo_->read_from_pointer<32>(prle);
           else
             start = this->dwinfo_->read_from_pointer<64>(prle);
           if (this->ranges_reloc_mapper_ != NULL)
             shndx1 = this->lookup_reloc(offset, &start);
           prle += addr_size;
           offset += addr_size;
           end = start + read_unsigned_LEB_128(prle, &len);
           prle += len;
           offset += len;
           if (shndx1 == 0 || object->is_section_included(shndx1))
             ranges->add(shndx1, start, end);
           break;

         default:
           gold_warning(_("%s: DWARF range list contains "
                          "unsupported entry type (%d)"),
                        object->name().c_str(), rle_type);
           break;
       }
   }

 return ranges;
}

// Look for a relocation at offset OFF in the range table,
// and return the section index and offset of the target.

unsigned int
Dwarf_ranges_table::lookup_reloc(off_t off, off_t* target_off)
{
 off_t value;
 unsigned int shndx =
     this->ranges_reloc_mapper_->get_reloc_target(off, &value);
 if (shndx == 0)
   return 0;
 if (this->reloc_type_ == elfcpp::SHT_REL)
   *target_off += value;
 else
   *target_off = value;
 return shndx;
}

// class Dwarf_pubnames_table

// Read the pubnames section from the object file.

bool
Dwarf_pubnames_table::read_section(Relobj* object, const unsigned char* symtab,
                                  off_t symtab_size)
{
 section_size_type buffer_size;
 unsigned int shndx = 0;
 const char* name = this->is_pubtypes_ ? "pubtypes" : "pubnames";
 const char* gnu_name = (this->is_pubtypes_
                         ? "gnu_pubtypes"
                         : "gnu_pubnames");

 for (unsigned int i = 1; i < object->shnum(); ++i)
   {
     std::string section_name = object->section_name(i);
     const char* section_name_suffix = section_name.c_str();
     if (is_prefix_of(".debug_", section_name_suffix))
       section_name_suffix += 7;
     else if (is_prefix_of(".zdebug_", section_name_suffix))
       section_name_suffix += 8;
     else
       continue;
     if (strcmp(section_name_suffix, name) == 0)
       {
         shndx = i;
         break;
       }
     else if (strcmp(section_name_suffix, gnu_name) == 0)
       {
         shndx = i;
         this->is_gnu_style_ = true;
         break;
       }
   }
 if (shndx == 0)
   return false;

 this->buffer_ = object->decompressed_section_contents(shndx,
                                                       &buffer_size,
                                                       &this->owns_buffer_);
 if (this->buffer_ == NULL)
   return false;
 this->buffer_end_ = this->buffer_ + buffer_size;

 // For incremental objects, we have no relocations.
 if (object->is_incremental())
   return true;

 // Find the relocation section
 unsigned int reloc_shndx = 0;
 unsigned int reloc_type = 0;
 for (unsigned int i = 0; i < object->shnum(); ++i)
   {
     reloc_type = object->section_type(i);
     if ((reloc_type == elfcpp::SHT_REL
          || reloc_type == elfcpp::SHT_RELA)
         && object->section_info(i) == shndx)
       {
         reloc_shndx = i;
         break;
       }
   }

 this->reloc_mapper_ = make_elf_reloc_mapper(object, symtab, symtab_size);
 this->reloc_mapper_->initialize(reloc_shndx, reloc_type);
 this->reloc_type_ = reloc_type;

 return true;
}

// Read the header for the set at OFFSET.

bool
Dwarf_pubnames_table::read_header(off_t offset)
{
 // Make sure we have actually read the section.
 gold_assert(this->buffer_ != NULL);

 if (offset < 0 || offset + 14 >= this->buffer_end_ - this->buffer_)
   return false;

 const unsigned char* pinfo = this->buffer_ + offset;

 // Read the unit_length field.
 uint64_t unit_length = this->dwinfo_->read_from_pointer<32>(pinfo);
 pinfo += 4;
 if (unit_length == 0xffffffff)
   {
     unit_length = this->dwinfo_->read_from_pointer<64>(pinfo);
     this->unit_length_ = unit_length + 12;
     pinfo += 8;
     this->offset_size_ = 8;
   }
 else
   {
     this->unit_length_ = unit_length + 4;
     this->offset_size_ = 4;
   }
 this->end_of_table_ = pinfo + unit_length;

 // If unit_length is too big, maybe we should reject the whole table,
 // but in cases we know about, it seems OK to assume that the table
 // is valid through the actual end of the section.
 if (this->end_of_table_ > this->buffer_end_)
   this->end_of_table_ = this->buffer_end_;

 // Check the version.
 unsigned int version = this->dwinfo_->read_from_pointer<16>(pinfo);
 pinfo += 2;
 if (version != 2)
   return false;

 this->reloc_mapper_->get_reloc_target(pinfo - this->buffer_,
                                       &this->cu_offset_);

 // Skip the debug_info_offset and debug_info_size fields.
 pinfo += 2 * this->offset_size_;

 if (pinfo >= this->buffer_end_)
   return false;

 this->pinfo_ = pinfo;
 return true;
}

// Read the next name from the set.

const char*
Dwarf_pubnames_table::next_name(uint8_t* flag_byte)
{
 const unsigned char* pinfo = this->pinfo_;

 // Check for end of list.  The table should be terminated by an
 // entry containing nothing but a DIE offset of 0.
 if (pinfo + this->offset_size_ >= this->end_of_table_)
   return NULL;

 // Skip the offset within the CU.  If this is zero, but we're not
 // at the end of the table, then we have a real pubnames entry
 // whose DIE offset is 0 (likely to be a GCC bug).  Since we
 // don't actually use the DIE offset in building .gdb_index,
 // it's harmless.
 pinfo += this->offset_size_;

 if (this->is_gnu_style_)
   *flag_byte = *pinfo++;
 else
   *flag_byte = 0;

 // Return a pointer to the string at the current location,
 // and advance the pointer to the next entry.
 const char* ret = reinterpret_cast<const char*>(pinfo);
 while (pinfo < this->buffer_end_ && *pinfo != '\0')
   ++pinfo;
 if (pinfo < this->buffer_end_)
   ++pinfo;

 this->pinfo_ = pinfo;
 return ret;
}

// class Dwarf_die

Dwarf_die::Dwarf_die(
   Dwarf_info_reader* dwinfo,
   off_t die_offset,
   Dwarf_die* parent)
 : dwinfo_(dwinfo), parent_(parent), die_offset_(die_offset),
   child_offset_(0), sibling_offset_(0), abbrev_code_(NULL), attributes_(),
   attributes_read_(false), name_(NULL), name_off_(-1), linkage_name_(NULL),
   linkage_name_off_(-1), string_shndx_(0), specification_(0),
   abstract_origin_(0)
{
 size_t len;
 const unsigned char* pdie = dwinfo->buffer_at_offset(die_offset);
 if (pdie == NULL)
   return;
 unsigned int code = read_unsigned_LEB_128(pdie, &len);
 if (code == 0)
   {
     if (parent != NULL)
       parent->set_sibling_offset(die_offset + len);
     return;
   }
 this->attr_offset_ = len;

 // Lookup the abbrev code in the abbrev table.
 this->abbrev_code_ = dwinfo->get_abbrev(code);
}

// Read all the attributes of the DIE.

bool
Dwarf_die::read_attributes()
{
 if (this->attributes_read_)
   return true;

 gold_assert(this->abbrev_code_ != NULL);

 const unsigned char* pdie =
     this->dwinfo_->buffer_at_offset(this->die_offset_);
 if (pdie == NULL)
   return false;
 const unsigned char* pattr = pdie + this->attr_offset_;

 unsigned int nattr = this->abbrev_code_->attributes.size();
 this->attributes_.reserve(nattr);
 for (unsigned int i = 0; i < nattr; ++i)
   {
     size_t len;
     unsigned int attr = this->abbrev_code_->attributes[i].attr;
     unsigned int form = this->abbrev_code_->attributes[i].form;
     if (form == elfcpp::DW_FORM_indirect)
       {
         form = read_unsigned_LEB_128(pattr, &len);
         pattr += len;
       }
     off_t attr_off = this->die_offset_ + (pattr - pdie);
     bool ref_form = false;
     Attribute_value attr_value;
     attr_value.attr = attr;
     attr_value.form = form;
     attr_value.aux.shndx = 0;
     switch(form)
       {
         case elfcpp::DW_FORM_flag_present:
           attr_value.val.intval = 1;
           break;
         case elfcpp::DW_FORM_implicit_const:
           attr_value.val.intval =
               this->abbrev_code_->attributes[i].implicit_const;
           break;
         case elfcpp::DW_FORM_strp:
         case elfcpp::DW_FORM_strp_sup:
         case elfcpp::DW_FORM_line_strp:
           {
             off_t str_off;
             if (this->dwinfo_->offset_size() == 4)
               str_off = this->dwinfo_->read_from_pointer<32>(&pattr);
             else
               str_off = this->dwinfo_->read_from_pointer<64>(&pattr);
             unsigned int shndx =
                 this->dwinfo_->lookup_reloc(attr_off, &str_off);
             attr_value.aux.shndx = shndx;
             attr_value.val.refval = str_off;
             break;
           }
         case elfcpp::DW_FORM_strx:
         case elfcpp::DW_FORM_GNU_str_index:
           attr_value.val.uintval = read_unsigned_LEB_128(pattr, &len);
           pattr += len;
           break;
         case elfcpp::DW_FORM_strx1:
           attr_value.val.uintval = *pattr++;
           break;
         case elfcpp::DW_FORM_strx2:
           attr_value.val.uintval =
               this->dwinfo_->read_from_pointer<16>(&pattr);
           break;
         case elfcpp::DW_FORM_strx3:
           attr_value.val.uintval =
               this->dwinfo_->read_3bytes_from_pointer(&pattr);
           break;
         case elfcpp::DW_FORM_strx4:
           attr_value.val.uintval =
               this->dwinfo_->read_from_pointer<32>(&pattr);
           break;
         case elfcpp::DW_FORM_sec_offset:
           {
             off_t sec_off;
             if (this->dwinfo_->offset_size() == 4)
               sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
             else
               sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
             unsigned int shndx =
                 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
             attr_value.aux.shndx = shndx;
             attr_value.val.refval = sec_off;
             ref_form = true;
             break;
           }
         case elfcpp::DW_FORM_addr:
           {
             off_t sec_off;
             if (this->dwinfo_->address_size() == 4)
               sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
             else
               sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
             unsigned int shndx =
                 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
             attr_value.aux.shndx = shndx;
             attr_value.val.refval = sec_off;
             break;
           }
         case elfcpp::DW_FORM_ref_addr:
           {
             off_t sec_off;
             if (this->dwinfo_->ref_addr_size() == 4)
               sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
             else
               sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
             unsigned int shndx =
                 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
             attr_value.aux.shndx = shndx;
             attr_value.val.refval = sec_off;
             ref_form = true;
             break;
           }
         case elfcpp::DW_FORM_block1:
           attr_value.aux.blocklen = *pattr++;
           attr_value.val.blockval = pattr;
           pattr += attr_value.aux.blocklen;
           break;
         case elfcpp::DW_FORM_block2:
           attr_value.aux.blocklen =
               this->dwinfo_->read_from_pointer<16>(&pattr);
           attr_value.val.blockval = pattr;
           pattr += attr_value.aux.blocklen;
           break;
         case elfcpp::DW_FORM_block4:
           attr_value.aux.blocklen =
               this->dwinfo_->read_from_pointer<32>(&pattr);
           attr_value.val.blockval = pattr;
           pattr += attr_value.aux.blocklen;
           break;
         case elfcpp::DW_FORM_block:
         case elfcpp::DW_FORM_exprloc:
           attr_value.aux.blocklen = read_unsigned_LEB_128(pattr, &len);
           attr_value.val.blockval = pattr + len;
           pattr += len + attr_value.aux.blocklen;
           break;
         case elfcpp::DW_FORM_data1:
         case elfcpp::DW_FORM_flag:
           attr_value.val.intval = *pattr++;
           break;
         case elfcpp::DW_FORM_ref1:
           attr_value.val.refval = *pattr++;
           ref_form = true;
           break;
         case elfcpp::DW_FORM_data2:
           attr_value.val.intval =
               this->dwinfo_->read_from_pointer<16>(&pattr);
           break;
         case elfcpp::DW_FORM_ref2:
           attr_value.val.refval =
               this->dwinfo_->read_from_pointer<16>(&pattr);
           ref_form = true;
           break;
         case elfcpp::DW_FORM_data4:
           {
             off_t sec_off;
             sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
             unsigned int shndx =
                 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
             attr_value.aux.shndx = shndx;
             attr_value.val.intval = sec_off;
             break;
           }
         case elfcpp::DW_FORM_ref4:
         case elfcpp::DW_FORM_ref_sup4:
           {
             off_t sec_off;
             sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
             unsigned int shndx =
                 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
             attr_value.aux.shndx = shndx;
             attr_value.val.refval = sec_off;
             ref_form = true;
             break;
           }
         case elfcpp::DW_FORM_data8:
           {
             off_t sec_off;
             sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
             unsigned int shndx =
                 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
             attr_value.aux.shndx = shndx;
             attr_value.val.intval = sec_off;
             break;
           }
         case elfcpp::DW_FORM_data16:
           {
             // For now, treat this as a 16-byte block.
             attr_value.val.blockval = pattr;
             attr_value.aux.blocklen = 16;
             pattr += 16;
             break;
           }
         case elfcpp::DW_FORM_ref_sig8:
           attr_value.val.uintval =
               this->dwinfo_->read_from_pointer<64>(&pattr);
           break;
         case elfcpp::DW_FORM_ref8:
         case elfcpp::DW_FORM_ref_sup8:
           {
             off_t sec_off;
             sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
             unsigned int shndx =
                 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
             attr_value.aux.shndx = shndx;
             attr_value.val.refval = sec_off;
             ref_form = true;
             break;
           }
         case elfcpp::DW_FORM_ref_udata:
           attr_value.val.refval = read_unsigned_LEB_128(pattr, &len);
           ref_form = true;
           pattr += len;
           break;
         case elfcpp::DW_FORM_udata:
           attr_value.val.uintval = read_unsigned_LEB_128(pattr, &len);
           pattr += len;
           break;
         case elfcpp::DW_FORM_addrx:
         case elfcpp::DW_FORM_GNU_addr_index:
           attr_value.val.uintval = read_unsigned_LEB_128(pattr, &len);
           pattr += len;
           break;
         case elfcpp::DW_FORM_addrx1:
           attr_value.val.uintval = *pattr++;
           break;
         case elfcpp::DW_FORM_addrx2:
           attr_value.val.uintval =
               this->dwinfo_->read_from_pointer<16>(&pattr);
           break;
         case elfcpp::DW_FORM_addrx3:
           attr_value.val.uintval =
               this->dwinfo_->read_3bytes_from_pointer(&pattr);
           break;
         case elfcpp::DW_FORM_addrx4:
           attr_value.val.uintval =
               this->dwinfo_->read_from_pointer<32>(&pattr);
           break;
         case elfcpp::DW_FORM_sdata:
           attr_value.val.intval = read_signed_LEB_128(pattr, &len);
           pattr += len;
           break;
         case elfcpp::DW_FORM_string:
           attr_value.val.stringval = reinterpret_cast<const char*>(pattr);
           len = strlen(attr_value.val.stringval);
           pattr += len + 1;
           break;
         case elfcpp::DW_FORM_loclistx:
         case elfcpp::DW_FORM_rnglistx:
           attr_value.val.uintval = read_unsigned_LEB_128(pattr, &len);
           pattr += len;
           break;
         default:
           return false;
       }

     // Cache the most frequently-requested attributes.
     switch (attr)
       {
         case elfcpp::DW_AT_name:
           if (form == elfcpp::DW_FORM_string)
             this->name_ = attr_value.val.stringval;
           else if (form == elfcpp::DW_FORM_strp)
             {
               // All indirect strings should refer to the same
               // string section, so we just save the last one seen.
               this->string_shndx_ = attr_value.aux.shndx;
               this->name_off_ = attr_value.val.refval;
             }
           break;
         case elfcpp::DW_AT_linkage_name:
         case elfcpp::DW_AT_MIPS_linkage_name:
           if (form == elfcpp::DW_FORM_string)
             this->linkage_name_ = attr_value.val.stringval;
           else if (form == elfcpp::DW_FORM_strp)
             {
               // All indirect strings should refer to the same
               // string section, so we just save the last one seen.
               this->string_shndx_ = attr_value.aux.shndx;
               this->linkage_name_off_ = attr_value.val.refval;
             }
           break;
         case elfcpp::DW_AT_specification:
           if (ref_form)
             this->specification_ = attr_value.val.refval;
           break;
         case elfcpp::DW_AT_abstract_origin:
           if (ref_form)
             this->abstract_origin_ = attr_value.val.refval;
           break;
         case elfcpp::DW_AT_sibling:
           if (ref_form && attr_value.aux.shndx == 0)
             this->sibling_offset_ = attr_value.val.refval;
         default:
           break;
       }

     this->attributes_.push_back(attr_value);
   }

 // Now that we know where the next DIE begins, record the offset
 // to avoid later recalculation.
 if (this->has_children())
   this->child_offset_ = this->die_offset_ + (pattr - pdie);
 else
   this->sibling_offset_ = this->die_offset_ + (pattr - pdie);

 this->attributes_read_ = true;
 return true;
}

// Skip all the attributes of the DIE and return the offset of the next DIE.

off_t
Dwarf_die::skip_attributes()
{
 gold_assert(this->abbrev_code_ != NULL);

 const unsigned char* pdie =
     this->dwinfo_->buffer_at_offset(this->die_offset_);
 if (pdie == NULL)
   return 0;
 const unsigned char* pattr = pdie + this->attr_offset_;

 for (unsigned int i = 0; i < this->abbrev_code_->attributes.size(); ++i)
   {
     size_t len;
     unsigned int form = this->abbrev_code_->attributes[i].form;
     if (form == elfcpp::DW_FORM_indirect)
       {
         form = read_unsigned_LEB_128(pattr, &len);
         pattr += len;
       }
     switch(form)
       {
         case elfcpp::DW_FORM_flag_present:
         case elfcpp::DW_FORM_implicit_const:
           break;
         case elfcpp::DW_FORM_strp:
         case elfcpp::DW_FORM_sec_offset:
         case elfcpp::DW_FORM_strp_sup:
         case elfcpp::DW_FORM_line_strp:
           pattr += this->dwinfo_->offset_size();
           break;
         case elfcpp::DW_FORM_addr:
           pattr += this->dwinfo_->address_size();
           break;
         case elfcpp::DW_FORM_ref_addr:
           pattr += this->dwinfo_->ref_addr_size();
           break;
         case elfcpp::DW_FORM_block1:
           pattr += 1 + *pattr;
           break;
         case elfcpp::DW_FORM_block2:
           {
             uint16_t block_size;
             block_size = this->dwinfo_->read_from_pointer<16>(&pattr);
             pattr += block_size;
             break;
           }
         case elfcpp::DW_FORM_block4:
           {
             uint32_t block_size;
             block_size = this->dwinfo_->read_from_pointer<32>(&pattr);
             pattr += block_size;
             break;
           }
         case elfcpp::DW_FORM_block:
         case elfcpp::DW_FORM_exprloc:
           {
             uint64_t block_size;
             block_size = read_unsigned_LEB_128(pattr, &len);
             pattr += len + block_size;
             break;
           }
         case elfcpp::DW_FORM_data1:
         case elfcpp::DW_FORM_ref1:
         case elfcpp::DW_FORM_flag:
         case elfcpp::DW_FORM_strx1:
         case elfcpp::DW_FORM_addrx1:
           pattr += 1;
           break;
         case elfcpp::DW_FORM_data2:
         case elfcpp::DW_FORM_ref2:
         case elfcpp::DW_FORM_strx2:
         case elfcpp::DW_FORM_addrx2:
           pattr += 2;
           break;
         case elfcpp::DW_FORM_strx3:
         case elfcpp::DW_FORM_addrx3:
           pattr += 3;
           break;
         case elfcpp::DW_FORM_data4:
         case elfcpp::DW_FORM_ref4:
         case elfcpp::DW_FORM_ref_sup4:
         case elfcpp::DW_FORM_strx4:
         case elfcpp::DW_FORM_addrx4:
           pattr += 4;
           break;
         case elfcpp::DW_FORM_data8:
         case elfcpp::DW_FORM_ref8:
         case elfcpp::DW_FORM_ref_sig8:
         case elfcpp::DW_FORM_ref_sup8:
           pattr += 8;
           break;
         case elfcpp::DW_FORM_data16:
           pattr += 16;
           break;
         case elfcpp::DW_FORM_ref_udata:
         case elfcpp::DW_FORM_udata:
         case elfcpp::DW_FORM_addrx:
         case elfcpp::DW_FORM_strx:
         case elfcpp::DW_FORM_loclistx:
         case elfcpp::DW_FORM_rnglistx:
         case elfcpp::DW_FORM_GNU_addr_index:
         case elfcpp::DW_FORM_GNU_str_index:
           read_unsigned_LEB_128(pattr, &len);
           pattr += len;
           break;
         case elfcpp::DW_FORM_sdata:
           read_signed_LEB_128(pattr, &len);
           pattr += len;
           break;
         case elfcpp::DW_FORM_string:
           len = strlen(reinterpret_cast<const char*>(pattr));
           pattr += len + 1;
           break;
         default:
           return 0;
       }
   }

 return this->die_offset_ + (pattr - pdie);
}

// Get the name of the DIE and cache it.

void
Dwarf_die::set_name()
{
 if (this->name_ != NULL || !this->read_attributes())
   return;
 if (this->name_off_ != -1)
   this->name_ = this->dwinfo_->get_string(this->name_off_,
                                           this->string_shndx_);
}

// Get the linkage name of the DIE and cache it.

void
Dwarf_die::set_linkage_name()
{
 if (this->linkage_name_ != NULL || !this->read_attributes())
   return;
 if (this->linkage_name_off_ != -1)
   this->linkage_name_ = this->dwinfo_->get_string(this->linkage_name_off_,
                                                   this->string_shndx_);
}

// Return the value of attribute ATTR.

const Dwarf_die::Attribute_value*
Dwarf_die::attribute(unsigned int attr)
{
 if (!this->read_attributes())
   return NULL;
 for (unsigned int i = 0; i < this->attributes_.size(); ++i)
   {
     if (this->attributes_[i].attr == attr)
       return &this->attributes_[i];
   }
 return NULL;
}

const char*
Dwarf_die::string_attribute(unsigned int attr)
{
 const Attribute_value* attr_val = this->attribute(attr);
 if (attr_val == NULL)
   return NULL;
 switch (attr_val->form)
   {
     case elfcpp::DW_FORM_string:
       return attr_val->val.stringval;
     case elfcpp::DW_FORM_strp:
       return this->dwinfo_->get_string(attr_val->val.refval,
                                        attr_val->aux.shndx);
     default:
       return NULL;
   }
}

int64_t
Dwarf_die::int_attribute(unsigned int attr)
{
 const Attribute_value* attr_val = this->attribute(attr);
 if (attr_val == NULL)
   return 0;
 switch (attr_val->form)
   {
     case elfcpp::DW_FORM_flag_present:
     case elfcpp::DW_FORM_data1:
     case elfcpp::DW_FORM_flag:
     case elfcpp::DW_FORM_data2:
     case elfcpp::DW_FORM_data4:
     case elfcpp::DW_FORM_data8:
     case elfcpp::DW_FORM_sdata:
       return attr_val->val.intval;
     default:
       return 0;
   }
}

uint64_t
Dwarf_die::uint_attribute(unsigned int attr)
{
 const Attribute_value* attr_val = this->attribute(attr);
 if (attr_val == NULL)
   return 0;
 switch (attr_val->form)
   {
     case elfcpp::DW_FORM_flag_present:
     case elfcpp::DW_FORM_data1:
     case elfcpp::DW_FORM_flag:
     case elfcpp::DW_FORM_data4:
     case elfcpp::DW_FORM_data8:
     case elfcpp::DW_FORM_ref_sig8:
     case elfcpp::DW_FORM_udata:
       return attr_val->val.uintval;
     default:
       return 0;
   }
}

off_t
Dwarf_die::ref_attribute(unsigned int attr, unsigned int* shndx)
{
 const Attribute_value* attr_val = this->attribute(attr);
 if (attr_val == NULL)
   return -1;
 switch (attr_val->form)
   {
     case elfcpp::DW_FORM_sec_offset:
     case elfcpp::DW_FORM_addr:
     case elfcpp::DW_FORM_ref_addr:
     case elfcpp::DW_FORM_ref1:
     case elfcpp::DW_FORM_ref2:
     case elfcpp::DW_FORM_ref4:
     case elfcpp::DW_FORM_ref8:
     case elfcpp::DW_FORM_ref_udata:
       *shndx = attr_val->aux.shndx;
       return attr_val->val.refval;
     case elfcpp::DW_FORM_ref_sig8:
       *shndx = attr_val->aux.shndx;
       return attr_val->val.uintval;
     case elfcpp::DW_FORM_data4:
     case elfcpp::DW_FORM_data8:
       *shndx = attr_val->aux.shndx;
       return attr_val->val.intval;
     default:
       return -1;
   }
}

off_t
Dwarf_die::address_attribute(unsigned int attr, unsigned int* shndx)
{
 const Attribute_value* attr_val = this->attribute(attr);
 if (attr_val == NULL || attr_val->form != elfcpp::DW_FORM_addr)
   return -1;

 *shndx = attr_val->aux.shndx;
 return attr_val->val.refval;
}

// Return the offset of this DIE's first child.

off_t
Dwarf_die::child_offset()
{
 gold_assert(this->abbrev_code_ != NULL);
 if (!this->has_children())
   return 0;
 if (this->child_offset_ == 0)
   this->child_offset_ = this->skip_attributes();
 return this->child_offset_;
}

// Return the offset of this DIE's next sibling.

off_t
Dwarf_die::sibling_offset()
{
 gold_assert(this->abbrev_code_ != NULL);

 if (this->sibling_offset_ != 0)
   return this->sibling_offset_;

 if (!this->has_children())
   {
     this->sibling_offset_ = this->skip_attributes();
     return this->sibling_offset_;
   }

 if (this->has_sibling_attribute())
   {
     if (!this->read_attributes())
       return 0;
     if (this->sibling_offset_ != 0)
       return this->sibling_offset_;
   }

 // Skip over the children.
 off_t child_offset = this->child_offset();
 while (child_offset > 0)
   {
     Dwarf_die die(this->dwinfo_, child_offset, this);
     // The Dwarf_die ctor will set this DIE's sibling offset
     // when it reads a zero abbrev code.
     if (die.tag() == 0)
       break;
     child_offset = die.sibling_offset();
   }

 // This should be set by now.  If not, there was a problem reading
 // the DWARF info, and we return 0.
 return this->sibling_offset_;
}

// class Dwarf_info_reader

// Begin parsing the debug info.  This calls visit_compilation_unit()
// or visit_type_unit() for each compilation or type unit found in the
// section, and visit_die() for each top-level DIE.

void
Dwarf_info_reader::parse()
{
 if (this->object_->is_big_endian())
   {
#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
     this->do_parse<true>();
#else
     gold_unreachable();
#endif
   }
 else
   {
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
     this->do_parse<false>();
#else
     gold_unreachable();
#endif
   }
}

template<bool big_endian>
void
Dwarf_info_reader::do_parse()
{
 // Get the section contents and decompress if necessary.
 section_size_type buffer_size;
 bool buffer_is_new;
 this->buffer_ = this->object_->decompressed_section_contents(this->shndx_,
                                                              &buffer_size,
                                                              &buffer_is_new);
 if (this->buffer_ == NULL || buffer_size == 0)
   return;
 this->buffer_end_ = this->buffer_ + buffer_size;

 // The offset of this input section in the output section.
 off_t section_offset = this->object_->output_section_offset(this->shndx_);

 // Start tracking relocations for this section.
 this->reloc_mapper_ = make_elf_reloc_mapper(this->object_, this->symtab_,
                                             this->symtab_size_);
 this->reloc_mapper_->initialize(this->reloc_shndx_, this->reloc_type_);

 // Loop over compilation units (or type units).
 unsigned int abbrev_shndx = this->abbrev_shndx_;
 off_t abbrev_offset = 0;
 const unsigned char* pinfo = this->buffer_;
 while (pinfo < this->buffer_end_)
   {
     // Read the compilation (or type) unit header.
     const unsigned char* cu_start = pinfo;
     this->cu_offset_ = cu_start - this->buffer_;
     this->cu_length_ = this->buffer_end_ - cu_start;

     // Read unit_length (4 or 12 bytes).
     if (!this->check_buffer(pinfo + 4))
       break;
     uint32_t unit_length =
         elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
     pinfo += 4;
     if (unit_length == 0xffffffff)
       {
         if (!this->check_buffer(pinfo + 8))
           break;
         unit_length = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
         pinfo += 8;
         this->offset_size_ = 8;
       }
     else
       this->offset_size_ = 4;
     if (!this->check_buffer(pinfo + unit_length))
       break;
     const unsigned char* cu_end = pinfo + unit_length;
     this->cu_length_ = cu_end - cu_start;
     if (!this->check_buffer(pinfo + 2 + this->offset_size_ + 1))
       break;

     // Read version (2 bytes).
     this->cu_version_ =
         elfcpp::Swap_unaligned<16, big_endian>::readval(pinfo);
     pinfo += 2;

     // DWARF 5: Read the unit type (1 byte) and address size (1 byte).
     if (this->cu_version_ >= 5)
       {
         this->unit_type_ = *pinfo++;
         this->address_size_ = *pinfo++;
       }

     // Read debug_abbrev_offset (4 or 8 bytes).
     if (this->offset_size_ == 4)
       abbrev_offset = elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
     else
       abbrev_offset = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
     if (this->reloc_shndx_ > 0)
       {
         off_t reloc_offset = pinfo - this->buffer_;
         off_t value;
         abbrev_shndx =
             this->reloc_mapper_->get_reloc_target(reloc_offset, &value);
         if (abbrev_shndx == 0)
           return;
         if (this->reloc_type_ == elfcpp::SHT_REL)
           abbrev_offset += value;
         else
           abbrev_offset = value;
       }
     pinfo += this->offset_size_;

     // DWARF 2-4: Read address_size (1 byte).
     if (this->cu_version_ < 5)
       this->address_size_ = *pinfo++;

     // For type units, read the two extra fields.
     uint64_t signature = 0;
     off_t type_offset = 0;
     if (this->is_type_unit())
       {
         if (!this->check_buffer(pinfo + 8 + this->offset_size_))
           break;

         // Read type_signature (8 bytes).
         signature = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
         pinfo += 8;

         // Read type_offset (4 or 8 bytes).
         if (this->offset_size_ == 4)
           type_offset =
               elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
         else
           type_offset =
               elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
         pinfo += this->offset_size_;
       }

     // Read the .debug_abbrev table.
     this->abbrev_table_.read_abbrevs(this->object_, abbrev_shndx,
                                      abbrev_offset);

     // Visit the root DIE.
     Dwarf_die root_die(this,
                        pinfo - (this->buffer_ + this->cu_offset_),
                        NULL);
     if (root_die.tag() != 0)
       {
         // Visit the CU or TU.
         if (this->is_type_unit())
           this->visit_type_unit(section_offset + this->cu_offset_,
                                 cu_end - cu_start, type_offset, signature,
                                 &root_die);
         else
           this->visit_compilation_unit(section_offset + this->cu_offset_,
                                        cu_end - cu_start, &root_die);
       }

     // Advance to the next CU.
     pinfo = cu_end;
   }

 if (buffer_is_new)
   {
     delete[] this->buffer_;
     this->buffer_ = NULL;
   }
}

// Read the DWARF string table.

bool
Dwarf_info_reader::do_read_string_table(unsigned int string_shndx)
{
 Relobj* object = this->object_;

 // If we don't have relocations, string_shndx will be 0, and
 // we'll have to hunt for the .debug_str section.
 if (string_shndx == 0)
   {
     for (unsigned int i = 1; i < this->object_->shnum(); ++i)
       {
         std::string name = object->section_name(i);
         if (name == ".debug_str" || name == ".zdebug_str")
           {
             string_shndx = i;
             this->string_output_section_offset_ =
                 object->output_section_offset(i);
             break;
           }
       }
     if (string_shndx == 0)
       return false;
   }

 if (this->owns_string_buffer_ && this->string_buffer_ != NULL)
   {
     delete[] this->string_buffer_;
     this->owns_string_buffer_ = false;
   }

 // Get the secton contents and decompress if necessary.
 section_size_type buffer_size;
 const unsigned char* buffer =
     object->decompressed_section_contents(string_shndx,
                                           &buffer_size,
                                           &this->owns_string_buffer_);
 this->string_buffer_ = reinterpret_cast<const char*>(buffer);
 this->string_buffer_end_ = this->string_buffer_ + buffer_size;
 this->string_shndx_ = string_shndx;
 return true;
}

// Read a possibly unaligned integer of SIZE.
template <int valsize>
inline typename elfcpp::Valtype_base<valsize>::Valtype
Dwarf_info_reader::read_from_pointer(const unsigned char* source)
{
 typename elfcpp::Valtype_base<valsize>::Valtype return_value;
 if (this->object_->is_big_endian())
   return_value = elfcpp::Swap_unaligned<valsize, true>::readval(source);
 else
   return_value = elfcpp::Swap_unaligned<valsize, false>::readval(source);
 return return_value;
}

// Read a possibly unaligned integer of SIZE.  Update SOURCE after read.
template <int valsize>
inline typename elfcpp::Valtype_base<valsize>::Valtype
Dwarf_info_reader::read_from_pointer(const unsigned char** source)
{
 typename elfcpp::Valtype_base<valsize>::Valtype return_value;
 if (this->object_->is_big_endian())
   return_value = elfcpp::Swap_unaligned<valsize, true>::readval(*source);
 else
   return_value = elfcpp::Swap_unaligned<valsize, false>::readval(*source);
 *source += valsize / 8;
 return return_value;
}

// Read a 3-byte integer.  Update SOURCE after read.
inline typename elfcpp::Valtype_base<32>::Valtype
Dwarf_info_reader::read_3bytes_from_pointer(const unsigned char** source)
{
 typename elfcpp::Valtype_base<32>::Valtype return_value;
 if (this->object_->is_big_endian())
   return_value = ((*source)[0] << 16) | ((*source)[1] << 8) | (*source)[2];
 else
   return_value = ((*source)[2] << 16) | ((*source)[1] << 8) | (*source)[0];
 *source += 3;
 return return_value;
}

// Look for a relocation at offset ATTR_OFF in the dwarf info,
// and return the section index and offset of the target.

unsigned int
Dwarf_info_reader::lookup_reloc(off_t attr_off, off_t* target_off)
{
 off_t value;
 attr_off += this->cu_offset_;
 unsigned int shndx = this->reloc_mapper_->get_reloc_target(attr_off, &value);
 if (shndx == 0)
   return 0;
 if (this->reloc_type_ == elfcpp::SHT_REL)
   *target_off += value;
 else
   *target_off = value;
 return shndx;
}

// Return a string from the DWARF string table.

const char*
Dwarf_info_reader::get_string(off_t str_off, unsigned int string_shndx)
{
 if (!this->read_string_table(string_shndx))
   return NULL;

 // Correct the offset.  For incremental update links, we have a
 // relocated offset that is relative to the output section, but
 // here we need an offset relative to the input section.
 str_off -= this->string_output_section_offset_;

 const char* p = this->string_buffer_ + str_off;

 if (p < this->string_buffer_ || p >= this->string_buffer_end_)
   return NULL;

 return p;
}

// The following are default, do-nothing, implementations of the
// hook methods normally provided by a derived class.  We provide
// default implementations rather than no implementation so that
// a derived class needs to implement only the hooks that it needs
// to use.

// Process a compilation unit and parse its child DIE.

void
Dwarf_info_reader::visit_compilation_unit(off_t, off_t, Dwarf_die*)
{
}

// Process a type unit and parse its child DIE.

void
Dwarf_info_reader::visit_type_unit(off_t, off_t, off_t, uint64_t, Dwarf_die*)
{
}

// Print a warning about a corrupt debug section.

void
Dwarf_info_reader::warn_corrupt_debug_section() const
{
 gold_warning(_("%s: corrupt debug info in %s"),
              this->object_->name().c_str(),
              this->object_->section_name(this->shndx_).c_str());
}

// class Sized_dwarf_line_info

struct LineStateMachine
{
 int file_num;
 uint64_t address;
 int line_num;
 int column_num;
 unsigned int shndx;    // the section address refers to
 bool is_stmt;          // stmt means statement.
 bool basic_block;
 bool end_sequence;
};

static void
ResetLineStateMachine(struct LineStateMachine* lsm, bool default_is_stmt)
{
 lsm->file_num = 1;
 lsm->address = 0;
 lsm->line_num = 1;
 lsm->column_num = 0;
 lsm->shndx = -1U;
 lsm->is_stmt = default_is_stmt;
 lsm->basic_block = false;
 lsm->end_sequence = false;
}

template<int size, bool big_endian>
Sized_dwarf_line_info<size, big_endian>::Sized_dwarf_line_info(
   Object* object,
   unsigned int read_shndx)
 : data_valid_(false), buffer_(NULL), buffer_start_(NULL),
   str_buffer_(NULL), str_buffer_start_(NULL),
   reloc_mapper_(NULL), symtab_buffer_(NULL), directories_(), files_(),
   current_header_index_(-1), reloc_map_(), line_number_map_()
{
 unsigned int debug_line_shndx = 0;
 unsigned int debug_line_str_shndx = 0;

 for (unsigned int i = 1; i < object->shnum(); ++i)
   {
     section_size_type buffer_size;
     bool is_new = false;

     // FIXME: do this more efficiently: section_name() isn't super-fast
     std::string name = object->section_name(i);
     if (name == ".debug_line" || name == ".zdebug_line")
       {
         this->buffer_ =
             object->decompressed_section_contents(i, &buffer_size, &is_new);
         if (is_new)
           this->buffer_start_ = this->buffer_;
         this->buffer_end_ = this->buffer_ + buffer_size;
         debug_line_shndx = i;
       }
     else if (name == ".debug_line_str" || name == ".zdebug_line_str")
       {
         this->str_buffer_ =
             object->decompressed_section_contents(i, &buffer_size, &is_new);
         if (is_new)
           this->str_buffer_start_ = this->str_buffer_;
         this->str_buffer_end_ = this->str_buffer_ + buffer_size;
         debug_line_str_shndx = i;
       }
     if (debug_line_shndx > 0 && debug_line_str_shndx > 0)
       break;
   }
 if (this->buffer_ == NULL)
   return;

 // Find the relocation section for ".debug_line".
 // We expect these for relobjs (.o's) but not dynobjs (.so's).
 unsigned int reloc_shndx = 0;
 for (unsigned int i = 0; i < object->shnum(); ++i)
   {
     unsigned int reloc_sh_type = object->section_type(i);
     if ((reloc_sh_type == elfcpp::SHT_REL
          || reloc_sh_type == elfcpp::SHT_RELA)
         && object->section_info(i) == debug_line_shndx)
       {
         reloc_shndx = i;
         this->track_relocs_type_ = reloc_sh_type;
         break;
       }
   }

 // Finally, we need the symtab section to interpret the relocs.
 if (reloc_shndx != 0)
   {
     unsigned int symtab_shndx;
     for (symtab_shndx = 0; symtab_shndx < object->shnum(); ++symtab_shndx)
       if (object->section_type(symtab_shndx) == elfcpp::SHT_SYMTAB)
         {
           this->symtab_buffer_ = object->section_contents(
               symtab_shndx, &this->symtab_buffer_size_, false);
           break;
         }
     if (this->symtab_buffer_ == NULL)
       return;
   }

 this->reloc_mapper_ =
     new Sized_elf_reloc_mapper<size, big_endian>(object,
                                                  this->symtab_buffer_,
                                                  this->symtab_buffer_size_);
 if (!this->reloc_mapper_->initialize(reloc_shndx, this->track_relocs_type_))
   return;

 // Now that we have successfully read all the data, parse the debug
 // info.
 this->data_valid_ = true;
 this->read_line_mappings(read_shndx);
}

// Read the DWARF header.

template<int size, bool big_endian>
const unsigned char*
Sized_dwarf_line_info<size, big_endian>::read_header_prolog(
   const unsigned char* lineptr)
{
 uint32_t initial_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
 lineptr += 4;

 // In DWARF, if the initial length is all 1 bits, then the offset
 // size is 8 and we need to read the next 8 bytes for the real length.
 if (initial_length == 0xffffffff)
   {
     this->header_.offset_size = 8;
     initial_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
     lineptr += 8;
   }
 else
   this->header_.offset_size = 4;

 this->header_.total_length = initial_length;

 this->end_of_unit_ = lineptr + initial_length;
 gold_assert(this->end_of_unit_ <= buffer_end_);

 this->header_.version =
     elfcpp::Swap_unaligned<16, big_endian>::readval(lineptr);
 lineptr += 2;

 // We can only read versions 2-5 of the DWARF line number table.
 // For other versions, just skip the entire line number table.
 if (this->header_.version < 2 || this->header_.version > 5)
   return this->end_of_unit_;

 // DWARF 5 only: address size and segment selector.
 if (this->header_.version >= 5)
   {
     this->header_.address_size = *lineptr;
     // We ignore the segment selector.
     lineptr += 2;
   }

 if (this->header_.offset_size == 4)
   this->header_.prologue_length =
       elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
 else
   this->header_.prologue_length =
       elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
 lineptr += this->header_.offset_size;

 this->end_of_header_length_ = lineptr;

 this->header_.min_insn_length = *lineptr;
 lineptr += 1;

 if (this->header_.version < 4)
   this->header_.max_ops_per_insn = 1;
 else
   {
     // DWARF 4 added the maximum_operations_per_instruction field.
     this->header_.max_ops_per_insn = *lineptr;
     lineptr += 1;
     // TODO: Add support for values other than 1.
     gold_assert(this->header_.max_ops_per_insn == 1);
   }

 this->header_.default_is_stmt = *lineptr;
 lineptr += 1;

 this->header_.line_base = *reinterpret_cast<const signed char*>(lineptr);
 lineptr += 1;

 this->header_.line_range = *lineptr;
 lineptr += 1;

 this->header_.opcode_base = *lineptr;
 lineptr += 1;

 this->header_.std_opcode_lengths.resize(this->header_.opcode_base + 1);
 this->header_.std_opcode_lengths[0] = 0;
 for (int i = 1; i < this->header_.opcode_base; i++)
   {
     this->header_.std_opcode_lengths[i] = *lineptr;
     lineptr += 1;
   }

 return lineptr;
}

// The header for a debug_line section is mildly complicated, because
// the line info is very tightly encoded.
// This routine is for DWARF versions 2, 3, and 4.

template<int size, bool big_endian>
const unsigned char*
Sized_dwarf_line_info<size, big_endian>::read_header_tables_v2(
   const unsigned char* lineptr)
{
 ++this->current_header_index_;

 // Create a new directories_ entry and a new files_ entry for our new
 // header.  We initialize each with a single empty element, because
 // dwarf indexes directory and filenames starting at 1.
 gold_assert(static_cast<int>(this->directories_.size())
             == this->current_header_index_);
 gold_assert(static_cast<int>(this->files_.size())
             == this->current_header_index_);
 this->directories_.push_back(std::vector<std::string>(1));
 this->files_.push_back(std::vector<std::pair<int, std::string> >(1));

 // It is legal for the directory entry table to be empty.
 if (*lineptr)
   {
     int dirindex = 1;
     while (*lineptr)
       {
         const char* dirname = reinterpret_cast<const char*>(lineptr);
         gold_assert(dirindex
                     == static_cast<int>(this->directories_.back().size()));
         this->directories_.back().push_back(dirname);
         lineptr += this->directories_.back().back().size() + 1;
         dirindex++;
       }
   }
 lineptr++;

 // It is also legal for the file entry table to be empty.
 if (*lineptr)
   {
     int fileindex = 1;
     size_t len;
     while (*lineptr)
       {
         const char* filename = reinterpret_cast<const char*>(lineptr);
         lineptr += strlen(filename) + 1;

         uint64_t dirindex = read_unsigned_LEB_128(lineptr, &len);
         lineptr += len;

         if (dirindex >= this->directories_.back().size())
           dirindex = 0;
         int dirindexi = static_cast<int>(dirindex);

         read_unsigned_LEB_128(lineptr, &len);   // mod_time
         lineptr += len;

         read_unsigned_LEB_128(lineptr, &len);   // filelength
         lineptr += len;

         gold_assert(fileindex
                     == static_cast<int>(this->files_.back().size()));
         this->files_.back().push_back(std::make_pair(dirindexi, filename));
         fileindex++;
       }
   }
 lineptr++;

 return lineptr;
}

// This routine is for DWARF version 5.

template<int size, bool big_endian>
const unsigned char*
Sized_dwarf_line_info<size, big_endian>::read_header_tables_v5(
   const unsigned char* lineptr)
{
 size_t len;

 ++this->current_header_index_;

 gold_assert(static_cast<int>(this->directories_.size())
             == this->current_header_index_);
 gold_assert(static_cast<int>(this->files_.size())
             == this->current_header_index_);

 // Read the directory list.
 unsigned int format_count = *lineptr;
 lineptr += 1;

 unsigned int *types = new unsigned int[format_count];
 unsigned int *forms = new unsigned int[format_count];

 for (unsigned int i = 0; i < format_count; i++)
   {
     types[i] = read_unsigned_LEB_128(lineptr, &len);
     lineptr += len;
     forms[i] = read_unsigned_LEB_128(lineptr, &len);
     lineptr += len;
   }

 uint64_t entry_count = read_unsigned_LEB_128(lineptr, &len);
 lineptr += len;
 this->directories_.push_back(std::vector<std::string>(0));
 std::vector<std::string>& dir_list = this->directories_.back();

 for (unsigned int j = 0; j < entry_count; j++)
   {
     std::string dirname;

     for (unsigned int i = 0; i < format_count; i++)
      {
        if (types[i] == elfcpp::DW_LNCT_path)
          {
            if (forms[i] == elfcpp::DW_FORM_string)
              {
                dirname = reinterpret_cast<const char*>(lineptr);
                lineptr += dirname.size() + 1;
              }
            else if (forms[i] == elfcpp::DW_FORM_line_strp)
              {
                uint64_t offset;
                if (this->header_.offset_size == 4)
                  offset =
                      elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
                else
                  offset =
                      elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
                typename Reloc_map::const_iterator it
                    = this->reloc_map_.find(lineptr - this->buffer_);
                if (it != reloc_map_.end())
                  {
                    if (this->track_relocs_type_ == elfcpp::SHT_RELA)
                      offset = 0;
                    offset += it->second.second;
                  }
                lineptr += this->header_.offset_size;
                dirname = reinterpret_cast<const char*>(this->str_buffer_
                                                        + offset);
              }
            else
              return lineptr;
          }
        else
          return lineptr;
      }
     dir_list.push_back(dirname);
   }

 delete[] types;
 delete[] forms;

 // Read the filenames list.
 format_count = *lineptr;
 lineptr += 1;

 types = new unsigned int[format_count];
 forms = new unsigned int[format_count];

 for (unsigned int i = 0; i < format_count; i++)
   {
     types[i] = read_unsigned_LEB_128(lineptr, &len);
     lineptr += len;
     forms[i] = read_unsigned_LEB_128(lineptr, &len);
     lineptr += len;
   }

 entry_count = read_unsigned_LEB_128(lineptr, &len);
 lineptr += len;
 this->files_.push_back(
     std::vector<std::pair<int, std::string> >(0));
 std::vector<std::pair<int, std::string> >& file_list = this->files_.back();

 for (unsigned int j = 0; j < entry_count; j++)
   {
     const char* path = NULL;
     int dirindex = 0;

     for (unsigned int i = 0; i < format_count; i++)
      {
        if (types[i] == elfcpp::DW_LNCT_path)
          {
            if (forms[i] == elfcpp::DW_FORM_string)
              {
                path = reinterpret_cast<const char*>(lineptr);
                lineptr += strlen(path) + 1;
              }
            else if (forms[i] == elfcpp::DW_FORM_line_strp)
              {
                uint64_t offset;
                if (this->header_.offset_size == 4)
                  offset = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
                else
                  offset = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
                typename Reloc_map::const_iterator it
                    = this->reloc_map_.find(lineptr - this->buffer_);
                if (it != reloc_map_.end())
                  {
                    if (this->track_relocs_type_ == elfcpp::SHT_RELA)
                      offset = 0;
                    offset += it->second.second;
                  }
                lineptr += this->header_.offset_size;
                path = reinterpret_cast<const char*>(this->str_buffer_
                                                     + offset);
              }
            else
              return lineptr;
          }
        else if (types[i] == elfcpp::DW_LNCT_directory_index)
          {
            if (forms[i] == elfcpp::DW_FORM_udata)
              {
                dirindex = read_unsigned_LEB_128(lineptr, &len);
                lineptr += len;
              }
            else
              return lineptr;
          }
        else
          return lineptr;
      }
     gold_debug(DEBUG_LOCATION, "File %3d: %s",
                static_cast<int>(file_list.size()), path);
     file_list.push_back(std::make_pair(dirindex, path));
   }

 delete[] types;
 delete[] forms;

 return lineptr;
}

// Process a single opcode in the .debug.line structure.

template<int size, bool big_endian>
bool
Sized_dwarf_line_info<size, big_endian>::process_one_opcode(
   const unsigned char* start, struct LineStateMachine* lsm, size_t* len)
{
 size_t oplen = 0;
 size_t templen;
 unsigned char opcode = *start;
 oplen++;
 start++;

 // If the opcode is great than the opcode_base, it is a special
 // opcode. Most line programs consist mainly of special opcodes.
 if (opcode >= this->header_.opcode_base)
   {
     opcode -= this->header_.opcode_base;
     const int advance_address = ((opcode / this->header_.line_range)
                                  * this->header_.min_insn_length);
     lsm->address += advance_address;

     const int advance_line = ((opcode % this->header_.line_range)
                               + this->header_.line_base);
     lsm->line_num += advance_line;
     lsm->basic_block = true;
     *len = oplen;
     return true;
   }

 // Otherwise, we have the regular opcodes
 switch (opcode)
   {
   case elfcpp::DW_LNS_copy:
     lsm->basic_block = false;
     *len = oplen;
     return true;

   case elfcpp::DW_LNS_advance_pc:
     {
       const uint64_t advance_address
           = read_unsigned_LEB_128(start, &templen);
       oplen += templen;
       lsm->address += this->header_.min_insn_length * advance_address;
     }
     break;

   case elfcpp::DW_LNS_advance_line:
     {
       const int64_t advance_line = read_signed_LEB_128(start, &templen);
       oplen += templen;
       lsm->line_num += advance_line;
     }
     break;

   case elfcpp::DW_LNS_set_file:
     {
       const uint64_t fileno = read_unsigned_LEB_128(start, &templen);
       oplen += templen;
       lsm->file_num = fileno;
     }
     break;

   case elfcpp::DW_LNS_set_column:
     {
       const uint64_t colno = read_unsigned_LEB_128(start, &templen);
       oplen += templen;
       lsm->column_num = colno;
     }
     break;

   case elfcpp::DW_LNS_negate_stmt:
     lsm->is_stmt = !lsm->is_stmt;
     break;

   case elfcpp::DW_LNS_set_basic_block:
     lsm->basic_block = true;
     break;

   case elfcpp::DW_LNS_fixed_advance_pc:
     {
       int advance_address;
       advance_address = elfcpp::Swap_unaligned<16, big_endian>::readval(start);
       oplen += 2;
       lsm->address += advance_address;
     }
     break;

   case elfcpp::DW_LNS_const_add_pc:
     {
       const int advance_address = (this->header_.min_insn_length
                                    * ((255 - this->header_.opcode_base)
                                       / this->header_.line_range));
       lsm->address += advance_address;
     }
     break;

   case elfcpp::DW_LNS_extended_op:
     {
       const uint64_t extended_op_len
           = read_unsigned_LEB_128(start, &templen);
       start += templen;
       oplen += templen + extended_op_len;

       const unsigned char extended_op = *start;
       start++;

       switch (extended_op)
         {
         case elfcpp::DW_LNE_end_sequence:
           // This means that the current byte is the one immediately
           // after a set of instructions.  Record the current line
           // for up to one less than the current address.
           lsm->line_num = -1;
           lsm->end_sequence = true;
           *len = oplen;
           return true;

         case elfcpp::DW_LNE_set_address:
           {
             lsm->address =
               elfcpp::Swap_unaligned<size, big_endian>::readval(start);
             typename Reloc_map::const_iterator it
                 = this->reloc_map_.find(start - this->buffer_);
             if (it != reloc_map_.end())
               {
                 // If this is a SHT_RELA section, then ignore the
                 // section contents.  This assumes that this is a
                 // straight reloc which just uses the reloc addend.
                 // The reloc addend has already been included in the
                 // symbol value.
                 if (this->track_relocs_type_ == elfcpp::SHT_RELA)
                   lsm->address = 0;
                 // Add in the symbol value.
                 lsm->address += it->second.second;
                 lsm->shndx = it->second.first;
               }
             else
               {
                 // If we're a normal .o file, with relocs, every
                 // set_address should have an associated relocation.
                 if (this->input_is_relobj())
                   this->data_valid_ = false;
               }
             break;
           }
         case elfcpp::DW_LNE_define_file:
           {
             const char* filename  = reinterpret_cast<const char*>(start);
             templen = strlen(filename) + 1;
             start += templen;

             uint64_t dirindex = read_unsigned_LEB_128(start, &templen);

             if (dirindex >= this->directories_.back().size())
               dirindex = 0;
             int dirindexi = static_cast<int>(dirindex);

             // This opcode takes two additional ULEB128 parameters
             // (mod_time and filelength), but we don't use those
             // values.  Because OPLEN already tells us how far to
             // skip to the next opcode, we don't need to read
             // them at all.

             this->files_.back().push_back(std::make_pair(dirindexi,
                                                          filename));
           }
           break;
         }
     }
     break;

   default:
     {
       // Ignore unknown opcode  silently
       for (int i = 0; i < this->header_.std_opcode_lengths[opcode]; i++)
         {
           size_t templen;
           read_unsigned_LEB_128(start, &templen);
           start += templen;
           oplen += templen;
         }
     }
     break;
 }
 *len = oplen;
 return false;
}

// Read the debug information at LINEPTR and store it in the line
// number map.

template<int size, bool big_endian>
unsigned const char*
Sized_dwarf_line_info<size, big_endian>::read_lines(unsigned const char* lineptr,
                                                   unsigned const char* endptr,
                                                   unsigned int shndx)
{
 struct LineStateMachine lsm;

 while (lineptr < endptr)
   {
     ResetLineStateMachine(&lsm, this->header_.default_is_stmt);
     while (!lsm.end_sequence)
       {
         size_t oplength;

         if (lineptr >= endptr)
           break;

         bool add_line = this->process_one_opcode(lineptr, &lsm, &oplength);
         lineptr += oplength;

         if (add_line
             && (shndx == -1U || lsm.shndx == -1U || shndx == lsm.shndx))
           {
             Offset_to_lineno_entry entry
                 = { static_cast<off_t>(lsm.address),
                     this->current_header_index_,
                     static_cast<unsigned int>(lsm.file_num),
                     true, lsm.line_num };
             std::vector<Offset_to_lineno_entry>&
               map(this->line_number_map_[lsm.shndx]);
             // If we see two consecutive entries with the same
             // offset and a real line number, then mark the first
             // one as non-canonical.
             if (!map.empty()
                 && (map.back().offset == static_cast<off_t>(lsm.address))
                 && lsm.line_num != -1
                 && map.back().line_num != -1)
               map.back().last_line_for_offset = false;
             map.push_back(entry);
           }
       }
   }

 return endptr;
}

// Read the relocations into a Reloc_map.

template<int size, bool big_endian>
void
Sized_dwarf_line_info<size, big_endian>::read_relocs()
{
 if (this->symtab_buffer_ == NULL)
   return;

 off_t value;
 off_t reloc_offset;
 while ((reloc_offset = this->reloc_mapper_->next_offset()) != -1)
   {
     const unsigned int shndx =
         this->reloc_mapper_->get_reloc_target(reloc_offset, &value);

     // There is no reason to record non-ordinary section indexes, or
     // SHN_UNDEF, because they will never match the real section.
     if (shndx != 0)
       this->reloc_map_[reloc_offset] = std::make_pair(shndx, value);

     this->reloc_mapper_->advance(reloc_offset + 1);
   }
}

// Read the line number info.

template<int size, bool big_endian>
void
Sized_dwarf_line_info<size, big_endian>::read_line_mappings(unsigned int shndx)
{
 gold_assert(this->data_valid_ == true);

 this->read_relocs();
 while (this->buffer_ < this->buffer_end_)
   {
     const unsigned char* lineptr = this->buffer_;
     lineptr = this->read_header_prolog(lineptr);
     if (this->header_.version >= 2 && this->header_.version <= 4)
       {
         lineptr = this->read_header_tables_v2(lineptr);
         lineptr = this->read_lines(lineptr, this->end_of_unit_, shndx);
       }
     else if (this->header_.version == 5)
       {
         lineptr = this->read_header_tables_v5(lineptr);
         lineptr = this->read_lines(lineptr, this->end_of_unit_, shndx);
       }
     this->buffer_ = this->end_of_unit_;
   }

 // Sort the lines numbers, so addr2line can use binary search.
 for (typename Lineno_map::iterator it = line_number_map_.begin();
      it != line_number_map_.end();
      ++it)
   // Each vector needs to be sorted by offset.
   std::sort(it->second.begin(), it->second.end());
}

// Some processing depends on whether the input is a .o file or not.
// For instance, .o files have relocs, and have .debug_lines
// information on a per section basis.  .so files, on the other hand,
// lack relocs, and offsets are unique, so we can ignore the section
// information.

template<int size, bool big_endian>
bool
Sized_dwarf_line_info<size, big_endian>::input_is_relobj()
{
 // Only .o files have relocs and the symtab buffer that goes with them.
 return this->symtab_buffer_ != NULL;
}

// Given an Offset_to_lineno_entry vector, and an offset, figure out
// if the offset points into a function according to the vector (see
// comments below for the algorithm).  If it does, return an iterator
// into the vector that points to the line-number that contains that
// offset.  If not, it returns vector::end().

static std::vector<Offset_to_lineno_entry>::const_iterator
offset_to_iterator(const std::vector<Offset_to_lineno_entry>* offsets,
                  off_t offset)
{
 const Offset_to_lineno_entry lookup_key = { offset, 0, 0, true, 0 };

 // lower_bound() returns the smallest offset which is >= lookup_key.
 // If no offset in offsets is >= lookup_key, returns end().
 std::vector<Offset_to_lineno_entry>::const_iterator it
     = std::lower_bound(offsets->begin(), offsets->end(), lookup_key);

 // This code is easiest to understand with a concrete example.
 // Here's a possible offsets array:
 // {{offset = 3211, header_num = 0, file_num = 1, last, line_num = 16},  // 0
 //  {offset = 3224, header_num = 0, file_num = 1, last, line_num = 20},  // 1
 //  {offset = 3226, header_num = 0, file_num = 1, last, line_num = 22},  // 2
 //  {offset = 3231, header_num = 0, file_num = 1, last, line_num = 25},  // 3
 //  {offset = 3232, header_num = 0, file_num = 1, last, line_num = -1},  // 4
 //  {offset = 3232, header_num = 0, file_num = 1, last, line_num = 65},  // 5
 //  {offset = 3235, header_num = 0, file_num = 1, last, line_num = 66},  // 6
 //  {offset = 3236, header_num = 0, file_num = 1, last, line_num = -1},  // 7
 //  {offset = 5764, header_num = 0, file_num = 1, last, line_num = 48},  // 8
 //  {offset = 5764, header_num = 0, file_num = 1,!last, line_num = 47},  // 9
 //  {offset = 5765, header_num = 0, file_num = 1, last, line_num = 49},  // 10
 //  {offset = 5767, header_num = 0, file_num = 1, last, line_num = 50},  // 11
 //  {offset = 5768, header_num = 0, file_num = 1, last, line_num = 51},  // 12
 //  {offset = 5773, header_num = 0, file_num = 1, last, line_num = -1},  // 13
 //  {offset = 5787, header_num = 1, file_num = 1, last, line_num = 19},  // 14
 //  {offset = 5790, header_num = 1, file_num = 1, last, line_num = 20},  // 15
 //  {offset = 5793, header_num = 1, file_num = 1, last, line_num = 67},  // 16
 //  {offset = 5793, header_num = 1, file_num = 1, last, line_num = -1},  // 17
 //  {offset = 5793, header_num = 1, file_num = 1,!last, line_num = 66},  // 18
 //  {offset = 5795, header_num = 1, file_num = 1, last, line_num = 68},  // 19
 //  {offset = 5798, header_num = 1, file_num = 1, last, line_num = -1},  // 20
 // The entries with line_num == -1 mark the end of a function: the
 // associated offset is one past the last instruction in the
 // function.  This can correspond to the beginning of the next
 // function (as is true for offset 3232); alternately, there can be
 // a gap between the end of one function and the start of the next
 // (as is true for some others, most obviously from 3236->5764).
 //
 // Case 1: lookup_key has offset == 10.  lower_bound returns
 //         offsets[0].  Since it's not an exact match and we're
 //         at the beginning of offsets, we return end() (invalid).
 // Case 2: lookup_key has offset 10000.  lower_bound returns
 //         offset[21] (end()).  We return end() (invalid).
 // Case 3: lookup_key has offset == 3211.  lower_bound matches
 //         offsets[0] exactly, and that's the entry we return.
 // Case 4: lookup_key has offset == 3232.  lower_bound returns
 //         offsets[4].  That's an exact match, but indicates
 //         end-of-function.  We check if offsets[5] is also an
 //         exact match but not end-of-function.  It is, so we
 //         return offsets[5].
 // Case 5: lookup_key has offset == 3214.  lower_bound returns
 //         offsets[1].  Since it's not an exact match, we back
 //         up to the offset that's < lookup_key, offsets[0].
 //         We note offsets[0] is a valid entry (not end-of-function),
 //         so that's the entry we return.
 // Case 6: lookup_key has offset == 4000.  lower_bound returns
 //         offsets[8].  Since it's not an exact match, we back
 //         up to offsets[7].  Since offsets[7] indicates
 //         end-of-function, we know lookup_key is between
 //         functions, so we return end() (not a valid offset).
 // Case 7: lookup_key has offset == 5794.  lower_bound returns
 //         offsets[19].  Since it's not an exact match, we back
 //         up to offsets[16].  Note we back up to the *first*
 //         entry with offset 5793, not just offsets[19-1].
 //         We note offsets[16] is a valid entry, so we return it.
 //         If offsets[16] had had line_num == -1, we would have
 //         checked offsets[17].  The reason for this is that
 //         16 and 17 can be in an arbitrary order, since we sort
 //         only by offset and last_line_for_offset.  (Note it
 //         doesn't help to use line_number as a tertiary sort key,
 //         since sometimes we want the -1 to be first and sometimes
 //         we want it to be last.)

 // This deals with cases (1) and (2).
 if ((it == offsets->begin() && offset < it->offset)
     || it == offsets->end())
   return offsets->end();

 // This deals with cases (3) and (4).
 if (offset == it->offset)
   {
     while (it != offsets->end()
            && it->offset == offset
            && it->line_num == -1)
       ++it;
     if (it == offsets->end() || it->offset != offset)
       return offsets->end();
     else
       return it;
   }

 // This handles the first part of case (7) -- we back up to the
 // *first* entry that has the offset that's behind us.
 gold_assert(it != offsets->begin());
 std::vector<Offset_to_lineno_entry>::const_iterator range_end = it;
 --it;
 const off_t range_value = it->offset;
 while (it != offsets->begin() && (it-1)->offset == range_value)
   --it;

 // This handles cases (5), (6), and (7): if any entry in the
 // equal_range [it, range_end) has a line_num != -1, it's a valid
 // match.  If not, we're not in a function.  The line number we saw
 // last for an offset will be sorted first, so it'll get returned if
 // it's present.
 for (; it != range_end; ++it)
   if (it->line_num != -1)
     return it;
 return offsets->end();
}

// Returns the canonical filename:lineno for the address passed in.
// If other_lines is not NULL, appends the non-canonical lines
// assigned to the same address.

template<int size, bool big_endian>
std::string
Sized_dwarf_line_info<size, big_endian>::do_addr2line(
   unsigned int shndx,
   off_t offset,
   std::vector<std::string>* other_lines)
{
 gold_debug(DEBUG_LOCATION, "do_addr2line: shndx %u offset %08x",
            shndx, static_cast<int>(offset));

 if (this->data_valid_ == false)
   return "";

 const std::vector<Offset_to_lineno_entry>* offsets;
 // If we do not have reloc information, then our input is a .so or
 // some similar data structure where all the information is held in
 // the offset.  In that case, we ignore the input shndx.
 if (this->input_is_relobj())
   offsets = &this->line_number_map_[shndx];
 else
   offsets = &this->line_number_map_[-1U];
 if (offsets->empty())
   return "";

 typename std::vector<Offset_to_lineno_entry>::const_iterator it
     = offset_to_iterator(offsets, offset);
 if (it == offsets->end())
   return "";

 std::string result = this->format_file_lineno(*it);
 gold_debug(DEBUG_LOCATION, "do_addr2line: canonical result: %s",
            result.c_str());
 if (other_lines != NULL)
   {
     unsigned int last_file_num = it->file_num;
     int last_line_num = it->line_num;
     // Return up to 4 more locations from the beginning of the function
     // for fuzzy matching.
     for (++it; it != offsets->end(); ++it)
       {
         if (it->offset == offset && it->line_num == -1)
           continue;  // The end of a previous function.
         if (it->line_num == -1)
           break;  // The end of the current function.
         if (it->file_num != last_file_num || it->line_num != last_line_num)
           {
             other_lines->push_back(this->format_file_lineno(*it));
             gold_debug(DEBUG_LOCATION, "do_addr2line: other: %s",
                        other_lines->back().c_str());
             last_file_num = it->file_num;
             last_line_num = it->line_num;
           }
         if (it->offset > offset && other_lines->size() >= 4)
           break;
       }
   }

 return result;
}

// Convert the file_num + line_num into a string.

template<int size, bool big_endian>
std::string
Sized_dwarf_line_info<size, big_endian>::format_file_lineno(
   const Offset_to_lineno_entry& loc) const
{
 std::string ret;

 gold_assert(loc.header_num < static_cast<int>(this->files_.size()));
 gold_assert(loc.file_num
             < static_cast<unsigned int>(this->files_[loc.header_num].size()));
 const std::pair<int, std::string>& filename_pair
     = this->files_[loc.header_num][loc.file_num];
 const std::string& filename = filename_pair.second;

 gold_assert(loc.header_num < static_cast<int>(this->directories_.size()));
 gold_assert(filename_pair.first
             < static_cast<int>(this->directories_[loc.header_num].size()));
 const std::string& dirname
     = this->directories_[loc.header_num][filename_pair.first];

 if (!dirname.empty())
   {
     ret += dirname;
     ret += "/";
   }
 ret += filename;
 if (ret.empty())
   ret = "(unknown)";

 char buffer[64];   // enough to hold a line number
 snprintf(buffer, sizeof(buffer), "%d", loc.line_num);
 ret += ":";
 ret += buffer;

 return ret;
}

// Dwarf_line_info routines.

static unsigned int next_generation_count = 0;

struct Addr2line_cache_entry
{
 Object* object;
 unsigned int shndx;
 Dwarf_line_info* dwarf_line_info;
 unsigned int generation_count;
 unsigned int access_count;

 Addr2line_cache_entry(Object* o, unsigned int s, Dwarf_line_info* d)
     : object(o), shndx(s), dwarf_line_info(d),
       generation_count(next_generation_count), access_count(0)
 {
   if (next_generation_count < (1U << 31))
     ++next_generation_count;
 }
};
// We expect this cache to be small, so don't bother with a hashtable
// or priority queue or anything: just use a simple vector.
static std::vector<Addr2line_cache_entry> addr2line_cache;

std::string
Dwarf_line_info::one_addr2line(Object* object,
                              unsigned int shndx, off_t offset,
                              size_t cache_size,
                              std::vector<std::string>* other_lines)
{
 Dwarf_line_info* lineinfo = NULL;
 std::vector<Addr2line_cache_entry>::iterator it;

 // First, check the cache.  If we hit, update the counts.
 for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
   {
     if (it->object == object && it->shndx == shndx)
       {
         lineinfo = it->dwarf_line_info;
         it->generation_count = next_generation_count;
         // We cap generation_count at 2^31 -1 to avoid overflow.
         if (next_generation_count < (1U << 31))
           ++next_generation_count;
         // We cap access_count at 31 so 2^access_count doesn't overflow
         if (it->access_count < 31)
           ++it->access_count;
         break;
       }
   }

 // If we don't hit the cache, create a new object and insert into the
 // cache.
 if (lineinfo == NULL)
 {
   switch (parameters->size_and_endianness())
     {
#ifdef HAVE_TARGET_32_LITTLE
       case Parameters::TARGET_32_LITTLE:
         lineinfo = new Sized_dwarf_line_info<32, false>(object, shndx); break;
#endif
#ifdef HAVE_TARGET_32_BIG
       case Parameters::TARGET_32_BIG:
         lineinfo = new Sized_dwarf_line_info<32, true>(object, shndx); break;
#endif
#ifdef HAVE_TARGET_64_LITTLE
       case Parameters::TARGET_64_LITTLE:
         lineinfo = new Sized_dwarf_line_info<64, false>(object, shndx); break;
#endif
#ifdef HAVE_TARGET_64_BIG
       case Parameters::TARGET_64_BIG:
         lineinfo = new Sized_dwarf_line_info<64, true>(object, shndx); break;
#endif
       default:
         gold_unreachable();
     }
   addr2line_cache.push_back(Addr2line_cache_entry(object, shndx, lineinfo));
 }

 // Now that we have our object, figure out the answer
 std::string retval = lineinfo->addr2line(shndx, offset, other_lines);

 // Finally, if our cache has grown too big, delete old objects.  We
 // assume the common (probably only) case is deleting only one object.
 // We use a pretty simple scheme to evict: function of LRU and MFU.
 while (addr2line_cache.size() > cache_size)
   {
     unsigned int lowest_score = ~0U;
     std::vector<Addr2line_cache_entry>::iterator lowest
         = addr2line_cache.end();
     for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
       {
         const unsigned int score = (it->generation_count
                                     + (1U << it->access_count));
         if (score < lowest_score)
           {
             lowest_score = score;
             lowest = it;
           }
       }
     if (lowest != addr2line_cache.end())
       {
         delete lowest->dwarf_line_info;
         addr2line_cache.erase(lowest);
       }
   }

 return retval;
}

void
Dwarf_line_info::clear_addr2line_cache()
{
 for (std::vector<Addr2line_cache_entry>::iterator it = addr2line_cache.begin();
      it != addr2line_cache.end();
      ++it)
   delete it->dwarf_line_info;
 addr2line_cache.clear();
}

#ifdef HAVE_TARGET_32_LITTLE
template
class Sized_dwarf_line_info<32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
class Sized_dwarf_line_info<32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
class Sized_dwarf_line_info<64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
class Sized_dwarf_line_info<64, true>;
#endif

} // End namespace gold.